Poincaré duality of the basic intersection cohomology of a Killing foliation - Université d'Artois Access content directly
Journal Articles Monatshefte für Mathematik Year : 2016

Poincaré duality of the basic intersection cohomology of a Killing foliation

Abstract

We prove that the basic intersection cohomology $IH^*_{\overline{p}}(M / \mathcal{F})$, where $\mathcal{F}$ is the singular foliation determined by an isometric action of a Lie group $G$ on the compact manifold $M$, verifies the Poincaré Duality Property.
Fichier principal
Vignette du fichier
VersionFinal.pdf (201.22 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00936000 , version 1 (13-02-2016)

Identifiers

Cite

Martintxo Saralegi-Aranguren, Robert Wolak. Poincaré duality of the basic intersection cohomology of a Killing foliation. Monatshefte für Mathematik, 2016, 180, pp.145-166. ⟨10.1007/s00605-016-0882-4⟩. ⟨hal-00936000⟩

Collections

UNIV-ARTOIS
98 View
215 Download

Altmetric

Share

Gmail Facebook X LinkedIn More