
HAL Id: hal-00936000
https://univ-artois.hal.science/hal-00936000

Submitted on 13 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Poincaré duality of the basic intersection cohomology of
a Killing foliation

Martintxo Saralegi-Aranguren, Robert Wolak

To cite this version:
Martintxo Saralegi-Aranguren, Robert Wolak. Poincaré duality of the basic intersection cohomology of
a Killing foliation. Monatshefte für Mathematik, 2016, 180, pp.145-166. �10.1007/s00605-016-0882-4�.
�hal-00936000�

https://univ-artois.hal.science/hal-00936000
https://hal.archives-ouvertes.fr


Poincaré duality
of the basic intersection cohomology

of a Killing foliation∗†

Martintxo Saralegi-Aranguren‡

Université d’Artois
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Abstract

We prove that the basic intersection cohomology H
∗

p
(M/F ), where F is the singular foliation determined

by an isometric action of a Lie group G on a compact manifold M, verifies the Poincaré duality property.

Basic cohomology theories are cohomology theories taking into account the particular structure of a foliated
manifold and defined using differential forms. The notion was introduced by B. Reinhardt in 1959, cf. [23], in his
fundamental study of Riemannian foliations. He proved that the basic cohomology of a compact manifold with a
Riemannian foliation is finite dimensional and that the Poincaré duality works in this cohomology.

However, the proofs had some gaps, and the theorems were considered as conjectures. In the paper [8], based
his PhD thesis, Carrière published an example of a 1-dimensional Riemannian foliation (a Riemannian flow) on a
compact 3-manifold for which the top basic cohomology, of degree 2, is trivial. Therefore the basic cohomology
of this Riemannian foliation cannot satisfy the Poincaré duality property. The paper also presented a classification
of Riemannian flows on compact 3-manifolds.

Using this classification Y. Carrière noticed that the basic cohomology of foliations given by isometric flows
has the Poincaré duality property, and that the only class of flows whose basic cohomology does not satisfy the
Poincaré duality property consists of foliations which cannot be defined by isometric flows.

That remark led him to formulate a conjecture that the non-triviality of the top basic cohomology space,
which is necessary for the Poincaré duality to hold, is equivalent to the tautness of the Riemannian foliation, i.e.
the existence of a bundle-like metric for which all the leaves of the foliation are minimal sub manifolds. For
dimension one foliations it is equivalent to the fact that the foliation is defined by an isometric action, a Killing
vector field.

For over a decade, the conjecture was the subject of intensive study by a group of foliators and was finally
solved by Masa, cf. [14], and refined Álvarez, cf. [1]. The best account of the development of the theory up to
1995 can be found in Tondeur’s book [33]. For more recent developments see [27].
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The case of singular Riemannian foliations (SRF for short) is much more subtle. The suspension of a linear
flow on a sphere provides an example of a singular isometric flow for which the top-dimensional basic cohomol-
ogy group is isomorphic to R, but this cohomology fails to satisfy the Poincaré duality property (see for example
[27]). Therefore in the case of SRFs there is no direct connection between an SRF being defined by an isometric
action of a Lie group, the non-triviality of the top dimensional basic cohomology group and the Poincaré duality
property of the basic cohomology. It seems that the main reason is the fact that the basic cohomology does not
take into account the structure of the set of singular orbits. Moreover, V. Miquel Molina and the second author
proved that an SRF cannot be taut in the classical sense, cf. [15]. All these facts stress that in the research into the
geometrical properties of SRFs and their relation to their topological ones we have to use more subtle instruments
which take into account the structure of the set of singularities. The well-developed theory of singularities provide
such tools: perverse forms and the intersection cohomology.

The intersection homology was introduced and studied by M. Goresky and R. MacPherson in 80’s in the set-
ting of pseudo manifolds. They established a generalized version of the Poincaré duality property. First versions
of the theory used PL machinery [10] and sheaf theory [11]. The first version of the intersection cohomology
by means of (perverse) differential forms was proposed by J.-L. Brylinski [7] (see also [28]). This point of view
requires some extra data to introduce the notion of perverse form (Thom-Mather system, blow-up, Riemannian
metric, . . . ).

In [29] we adapted these notions to the foliated case and we defined basic perverse forms and basic intersection
cohomology (BIC for short). We used the fact that on a manifold foliated by an SRF there is a natural stratification
defined using the dimension of leaves, the dimension of leaf closures, and holonomy. A remarkable fact is that
these perverse forms do not involve any extra data in order to be defined.

In his thesis, [24], J.I. Royo Prieto demonstrated the Poincaré duality property of the BIC for singular Rie-
mannian flows and the singular version of the Molino-Sergiescu theorem, cf. [20]. Inspired by these results, we
have started to investigate possible generalizations and to study these cohomologies and their relation to tautness;
to this study we dedicated a series of papers, (cf. [25], [26], [27]).

In the paper [29] we studied singular Riemannian foliations with compact leaves on compact manifolds.
The leaf space of such a foliation is a pseudomanifold. The basic intersection cohomology is isomorphic the
the corresponding intersection cohomology of the leaf space, and the Poincaré duality property in the basic
intersection cohomology is equivalent to the Poincaré duality property in the intersection cohomology of the leaf
space. The relation between the Poincaré duality property, the non-triviality of the top dimensional BIC and the
tautness in the case of SRFs is more complex.

Summing up our main results, let us say that in [30] we demonstrated that the BIC of SRFs defined by an
isometric action of an abelian Lie group is finite dimensional and satisfies the Poincaré duality. In the most recent
paper [31] we showed that the BIC for SRFs defined by an isometric action of a Lie group is finite dimensional.

In the paper we prove the Poincaré duality property for the BIC of SRF defined by an isometric action of a
Lie group G without any restriction imposed on the Lie group. We hope to extend our results to the case of OLF
of [19] and general SRFs. However, there is an important technical difference. We have managed to demonstrate
our result due to a nice description and properties of the stratification defined by the action of the closure of G:
tubular neighborhoods of the strata can be assumed to be twisted products. So we can work with trivial tubular
neighborhoods, which makes the calculations much easier. In the general case, tubular neighborhoods of the
strata of the induced stratification are much more complicated.

Singular Riemannian foliations were introduced and studied by P. Molino. His book [18] contains the best
introduction to the subject. The associated stratification was presented and studied in [17]. As a useful reading we
also suggest [21, Section 9.3] of the book which contain a lot of information on isometric actions of Lie groups.
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The classical reference for a compact group action is [5].

Lie group actions appear in the study of physical models as groups of symmetries of such models. Reduction
theory is of great interest and the object of study of numerous papers and books, e.g.[21]

In the present article we use the notation introduced and developed in our previous papers on BIC [29] and
isometric actions [30] and [31].

The authors are very grateful to the referees for their very careful and in depth reading of the first version of the
paper and whose pertinent comments permitted to ameliorate the presentation and remove some ambiguities. We
should also mention and extend our thanks to José Ignacio Royo Prieto for numerous and very fruitful discussions
during the preparation of the paper.

In the sequel M is a connected, second countable, Haussdorff, without boundary and smooth (of class C∞)
manifold.

1. Killing Foliations.

A smooth action Φ : G × M → M of the Lie group G is an isometric action when there exists a Riemannian
metric µ on M preserved by G. Moreover, the isometric action Φ is tame when the closure of G in Iso (M, µ) is
compact. This is always the case when the manifold M is compact (cf. [13, Section II, Theorem 1.2]).

The connected components of the orbits of a tame action determine a partition F on M. In fact, this partition
is a singular Riemannian foliation that we shall call Killing foliation (cf. [18]).

Notice that F is also a conical foliation in the sense of [29]. So, its basic intersection cohomology can be used
for the study of F . In this work, we prove the Poincaré duality property of this cohomology.

If the action Φ is tame, then it is a restriction a smooth action Φ : K × M → M where K is a compact Lie
group containing G. The group K is not unique. We always can choose K in such a way that G is dense in K. We
shall say that K is a tamer group.

Notice that the tamer group is not unique. Consider the two actions Φ : T2×M → M and Φ′ : T3×M → M on
M = S1 defined by Φ((u, v), z) = u·v·z and Φ′((u, v,w), z) = u·v·w·z. Take the subgroups G = {(e2παti, e2πβti)/t ∈ R}
and G′ = {(e2παti, e2πβti, e2πγti)/t ∈ R} where α, β, γ are three given reals which are Q-independents. The two
restrictions Φ : G × M → M and Φ′ : G′ × M → M define the one-leaf Killing foliation of M but they have
different tamer groups: T2 and T3.

For the rest of the work, let F be a Killing foliation. We fix an effective tame action Φ : G × M → M, with G
connected, defining F . We also fix a tamer group K. In this case, G is normal in K and the quotient group K/G
is commutative (see [22, 1.2 and Theorem 1.3]).

There are three key facts for this work: compactness of K (which ensures the existence of invariant metrics,
tubular neighborhoods, Molino’s blow-up, isotropy type stratification), density of G in K (facilitates the compu-
tation of the intersection cohomology of a twisted product) and the normality of the subgroup G in the group K
(which is the key factor in the compatibility between stratifications defined by G and K).

We denote by b = dim G and m = dim M. The induced foliation on the regular stratum RF is regular, and its
dimension will be denoted by w = dimF .

2. Stratification.
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Classifying the points of M following the dimension of the leaves of F one gets the stratification S
F

. It is
determined by the equivalence relation x ∼ y ⇔ dim Gx = dim Gy. The elements of S

F
are called strata. The

open stratum RF is the regular stratum, and the other strata are the singular strata.

We fix a base point p ∈ RF and we put (Gp)0 = L, where E0 stands for the identity component of the Lie
group E (the one containing the identity). When G is abelian then (Gp)0 = L for each p ∈ RF . This implies that
L acts non-effectively on RF and therefore on M. So, L = {e}.

This group L is generic in the following sense.

Proposition 2.1 For each x ∈ RF there exists k ∈ K with (Gx)0 = kLk−1. Moreover, the choice x 7→ k can be done
locally in a smooth way.

Proof. We consider a point x ∈ RF and we will find an open neighborhood V ⊂ RF of x and a smooth map
f : V → K with (Gy)0 = f (y)(Gx)0 f (y)−1, for each y ∈ V .

Since the Lie group K is compact there exists a tube K×H T around the point x ([5, Chapter II, Theorem 5.4])
where H = Kx and T ⊂ RF is a transversal to the orbit K(x) containing x. In particular, dim G<e,z> = dim Gx for
each z ∈ T . Here < k, z > is a generic point of the twisted product K×H T , and e is the identity of G.

The group G being normal in K, we get G<k,z>
[5,pag.82]

= G ∩ kHzk−1 = k(G ∩H)zk−1 = kG<e,z>k−1 and therefore
K×H T ⊂ RF as dim G<k,z> = dim Gx.

We consider a neighborhood W ⊂ K of e. This neighborhood can be chosen small enough to ensure the
existence of a smooth section σ : γ(W) → W of the canonical projection γ : K → K/H. Let Γ : K×H T → K/H
be the projection. So V = Γ−1(γ(W)) is a neighborhood of x in K×H T ⊂ RF . Denote by f : V → K the smooth
map defined by f (y) = σ(Γ(y)). Let us consider a point y =< k, z >∈ V . Since kH = f (y)H, then y =< f (y), z′ >,
and therefore Gy = f (y)(G ∩ H)z′ f (y)−1. On the other hand, Gx = G ∩ Kx = G ∩ H and dim Gx = dim Gy give
dim(G ∩ H) = dim(G ∩ H)z′ and therefore:

(Gy)0 = f (y) ((G ∩ H)z′)0 f (y)−1 = f (y) (G ∩ H)0 f (y)−1 = f (y)(Gx)0 f (y)−1.

This ends the proof. ♣

3. Presentation of the Poincaré duality property .

The basic intersection cohomology H
∗

p
(M/F ), relatively to the perversity p, was introduced in [29, Section

3] for the study of conical foliations1. It coincides with the usual intersection cohomology when the leaves are
compact [29, Theorem 1].

We define the support of a perverse form ω ∈ Π
∗

F
(M) as supp ω = {x ∈ M\ΣF / ω(x) , 0}, where the closure

is taken in M. We denote by Ω
∗

q,c
(M/F ) =

{
ω ∈ Ω

∗

q
(M/F )

/
supp ω is compact

}
the complex of intersection basic

differential forms with compact support relatively to the perversity q. The cohomologyH
∗

q,c
(M/F ) of this complex

is the basic intersection cohomology with compact support of (M,F ), relatively to the perversity2 q.

1We refer the reader to [31] for notation and main properties of this notion.
2We refer the reader to [30] for notation and main properties of this notion.
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The goal of this work is to construct a non-degenerate pairing PM : H
∗

p
(M/F )×H

m−w−∗

q,c
(M/F ) −→ R, inducing

the Poincaré duality
PM : H

∗

p
(M/F ) −→ Hom

(
H

m−w−∗

q,c
(M/F ),R

)
.

Here, p and q are complementary perversities, that is, p + q = t, with

(1) t(S ) = codim M F −codim S FS −2,

where S is a singular stratum and FS the restriction of F to S .

We have seen in [31, Theorem 4.4] that the discussed intersection cohomologies are finite dimensional when
M is compact. So the above Poincaré duality becomes the isomorphism

H
∗

p
(M/F ) � H

m−w−∗

q
(M/F ).

4. Twisted product.

Twisted products are local building blocks of SRFs. Their basic intersection cohomology have been calculated in
[31, Proposition 5]. Below we present the compact support version of this result.

Let K be a compact Lie group, G a normal subgroup of K and H a closed subgroup of K. We consider a
twisted product K ×H N, where N is a manifold endowed with an effective smooth action Θ : H × N → N. The
restriction Θ0 : (G ∩ H)0 × N → N is a tame action, where the tamer group H′ is the closure of (G ∩ H)0 in H.
The associated Killing foliation is denoted by N . We denote by Φ : G × (K ×H N) → (K ×H N) the associated
tame action, and the induced foliation byW. The foliation defined by the tame (left or right!) action of G on K
is denoted by K . The foliation defined by the tame right action of GH3 on K is denoted by E.

Proposition 4.1 H∗
q,c

(
K×H N/W

)
=

(
H
∗(K/E) ⊗ H

∗

q,c
(N/N)

)H/H0
.

Proof. It suffices to follow [31, Proposition 5] taking into the account the fact that, given a differential form ω on
K×H RW, we have: �∗

ω ∈ Ω
∗

q,c
(K × N/E × N)⇐⇒ ω ∈ Ω

∗

q,c

(
K×H N/W

)
.

It is so as the canonical projection
�

: K × N → K×H N is an onto map and that the Lie groups K and H are
compact. ♣

5. Tangent volume form.

In order to construct the pairing giving the Poincaré duality we need to introduce a particular tangent volume
form of the orbits of Φ.

We fix a bi-invariant metric ν on k, the Lie algebra of K which exists since K is compact (see for example [3,
pag. 247]). Consider {u1, . . . , u f } an orthonormal basis of k where {u1, · · · , ub} is a basis of g, {u1, · · · , uw} is a
basis of l⊥, the orthogonal complement of l in g, and {uw+1, · · · , ub} is a basis of l. Here, g (resp. l) denotes the Lie
algebra of G (resp. L). We take τ = u∗1 ∧ · · · ∧ u∗w, the associated volume form of l⊥.

3This is the minimal subgroup of K containing G and H. Normality of G implies that GH = {g · h/g ∈ G, h ∈ H}. The Lie algebra of
GH is the sum of the Lie algebras of G and H.
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We denote by Vu the fundamental vector field on M associated to u ∈ g. A tangent volume form of Φ is a
G-invariant differential form η ∈ Π

w

F
(M) verifying:

(2) η(Vv1(x), . . . ,Vvw(x)) = τ
(
Ad (`−1) · v1, . . . ,Ad (`−1) · vw

)
,

where {v1, . . . , vw} ⊂ g, x ∈ RF and (Gx)0 = `L`−1. The existence of a tangent volume form implies that the
foliation F is tangentially orientable on the regular stratum.

In the next Proposition we prove the existence of a tangent volume form under a suitable orientation conditions
on the manifold and on the foliation. The tame action Φ is said to be orientable if

(i) the manifold M is orientable, and

(ii) the adjoint action Ad : NK(L) × l→ l is orientation preserving.

We say that a Killing foliation is orientable if it is induced by an orientable action.

5.1 Remarks.

(a) Condition (ii) does not depend on the choice of the point p defining L. Let us verify that fact. Choose
another point p′ ∈ RF , defining L′ = (Gp′)0. Without loss of generality we can suppose that p′ is near enough
to p (the connectedness of RF ) in order to apply [5, Chapter II, Corollary 5.4] and find k ∈ K with k−1Kp′k ⊂
Kp. Since G is normal in K, we get k−1Gp′k ⊂ Gp, and therefore k−1(Gp′)0k ⊂ (Gp)0. Since p, p′ ∈ RF , we
conclude that k−1(Gp′)0k = (Gp)0, that is k−1L′k = L. This gives the claim since Ad : NK(L′) × l′ → l′ becomes
Ad : kNK(L)k−1 × Ad (k)(l)→ Ad (k)(l).

(b) By connectedness, the group K preserves the orientation of g. So the condition (ii) is equivalent to

(ii’) the adjoint action Ad : NK(L) × l⊥ → l⊥ is orientation preserving.

(c) Condition (ii) is verified in the case where NK(L) is connected. In particular, when G is abelian or when
l = 0, that is, if dimF = dim G.

(d) There are non-orientable actions on orientable manifolds. For example, consider the action of G = S3, on
the twisted product M = S3×

N
S3

(S1 )
S3 = S2×

Z2
S2 (cf. [5, pag. 80]). Here, L = S

1
and the element j ∈ NS3(S

1
) acts

on l = R by multiplying by −1, which does not preserve the orientation. Since M/F = RP2 then the Poincaré
duality property does not hold.

Proposition 5.2 For any orientable action there exists a K-invariant tangent volume form.

Proof. Let Φ : G × M → M be an orientable action.

In order to decrease the depth of the stratification, we are going to use the Molino’s blow up M̂ and the
stratification SK,M defined by the action of K (see Appendix). We prove the following statement by induction on
depth SK,M :

“There exists a K-invariant differential form η ∈ Π
w

F×I
(M × [0, 1[p) verifying

(3) η((Vv1(x), 0), . . . , (Vvw(x), 0)) = τ(Ad (`−1) · v1, . . . ,Ad (`−1) · vw),

where {v1, . . . , vw} ⊂ g, x ∈ RF and (Gx)0 = `L`−1 with ` ∈ K.”
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The existence of η is proven by taking p = 0.

First case: depth SK,M = 0.

Since M = RF then we have Π
∗

F
(M × [0, 1[p) = Ω

∗((M × [0, 1[p)/(F × I)). Take T (F × I) the sub-bundle of
the tangent bundle T (M × [0, 1[p) formed by vectors tangents to the leaves of the foliation F ×I. Here I denotes
the point wise foliation of [0, 1[p. Since the foliation F is K-invariant, then it suffices to define η on T (F × I)
and to extend it by 0 to a K-invariant complement of T (F × I) in T (M × [0, 1[p). In fact, this restriction is given
by (3). It remains to prove that η is well-defined, smooth on the tangent bundle T (F × I) and K-invariant. Let us
check that.

– The definition (3) does not depend on `. Let us consider `′ ∈ K with (Gx)0 = `′L`′−1. Then `′−1` ∈ NK(L).
This gives

τ(Ad (`′−1) · v1, . . . ,Ad (`′−1) · vw) = τ(Ad (`′−1`) Ad (`−1) · v1, . . . ,Ad (`′−1`) Ad (`−1) · vw).

Since the metric ν has been chosen to be bi-invariant, then the element Ad (`′−1`) preserves the metric ν. It
also preserves the orientation of l⊥ (see (ii’)). So, we get

τ(Ad (`′−1) · v1, . . . ,Ad (`′−1) · vw) = τ(Ad (`−1) · v1, . . . ,Ad (`−1) · vw).

– The definition (3) is smooth. Consider x ∈ M. From Proposition 2.1 we know that there exist a neigh-
borhood V ⊂ M and a smooth map f : V → K such that (Gy)0 = f (y)L f (y)−1 for each y ∈ V . The
previous point says that we can choose ` = f (y) in definition (3). So in this neighborhood we have
η(Vv1(y), . . . ,Vvw(y)) = τ(Ad ( f (y)−1) · v1, . . . ,Ad ( f (y)−1) · vw), which is smooth.

– The form η is K-invariant. If k ∈ K we get (Gk·x)0 = k`L`−1k−1 and

(k∗η)(Vv1(x), . . . ,Vvw(x)) = η(k∗Vv1(x), . . . , k∗Vvw(x))
= η(VAd (k)·v1(k · x) . . . ,VAd (k)·vw(k · x))
= τ(Ad (`−1k−1) Ad (k) · v1, . . . ,Ad (`−1k−1) Ad (k) · vw)
= τ(Ad(`−1) · v1, . . . ,Ad (`−1) · vw) = η(Vv1(x) . . . ,Vvw(x)).

Second case: depth S
F
> 0.

By induction hypothesis there exists a K-invariant differential form η0 ∈ Π
w

F̂

(
M̂ × [0, 1[p

)
verifying (3). As-

sociated to M̂, we have the K-equivariant imbedding σ : M\S min → L
−1(M\S min), defined by σ(z) = (z, 1). The

differential form η = (σ×identity[0,1[p)∗η0 belongs to Ω
w(RF × [0, 1[p), it is K-invariant and verifies (3). It remains

to prove that η ∈ Π
w

F×I
(M × [0, 1[p), which is a local property.

So we can assume that M = Tmin and prove (∇min × identity[0,1[p)∗η ∈ Π
w

F×I

(
Dmin × [0, 1[p+1

)
(cf. [30, 3.1.1

(e)]). This is the case since the map σ◦∇min : Dmin×]0, 1[→ Dmin×] − 1, 1[ is just the inclusion and we have η0 ∈

Π
w

F×I

(
Dmin×] − 1, 1[×[0, 1[p). ♣

In this Proposition the density of G in K is used to ensure that G is a normal subgroup of K.
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Proposition 5.3 An invariant tangent volume form η verifies:

(a) For each ω ∈ Ω
m−w−1

t
(M/F ) the product ω ∧ dη is 0.

(b) For each ω ∈ Ω
m−w

t,c
(M/F ) the integral

∫
RF

ω ∧ η is finite and it does not depend on the choice of η.

(c) For each ω ∈ Ω
m−w−1

t,c
(M/F ) the integral

∫
RF

d(ω ∧ η) is 0.

Proof.

(a) Since the question is a local one, it is enough to prove ω ∧ dη = 0 on an open subset V ⊂ RF (cf. proof of
Proposition 2.1).

For each y ∈ V we have (Gy)0 = f (y)L f (y)−1. Then {VAd ( f (y))·v1(x), . . . ,VAd ( f (y))·vw(x)} is a basis of TyG(y). For
degree reasons it suffices to prove that we have iVAd ( f (y))·v1 (x) · · · iVAd ( f (y))·vw (x)(ω∧ dη) = 0. Since ω is a basic form and
η is a K-invariant form, we can write

iVAd ( f (y))·v1 (y) · · · iVAd ( f (y))·vw (y)(ω ∧ dη) = (−1)wω ∧ iVAd ( f (y))·v1 (y) · · · iVAd ( f (y))·vw (y)dη = ω ∧ d
(
iVAd ( f (y))·v1 (y) · · · iVAd ( f (y))·vw (y)η

)
= ω ∧ d

(
η
(
VAd ( f (y))·v1(y), . . . ,VAd ( f (y))·vw(y)

))
= ω ∧ d (τ (v1, . . . , vw))

= ω ∧ d1 = 0.

Notice that this property holds for any ω ∈ Π
m−w−1

F
(M).

(b) To demonstrate the finiteness, it suffices to prove that
∫

RF ×[0,1[p

γ < ∞ where γ ∈ Π
w

F×I
(M × [0, 1[p) is of

compact support. We proceed by induction on the depth of SK,M . When depth SK,M = 0 the result is clear since
M = RF (see Appendix).

In the general case we know that the result is true for M\S min × [0, 1[p and
(
Tmin\S min

)
× [0, 1[p by induction. It

remains to consider Tmin × [0, 1[p. We have seen that we can identify the perverse forms of Tmin × [0, 1[p with the
perverse forms of Dmin × [0, 1[p+1 through the map

∇min × Identity [0,1[p : Dmin × [0, 1[×[0, 1[p≡ Dmin × [0, 1[p+1−→ Tmin × [0, 1[p

(this is a general result for basic intersection cohomology proved in [30, 3.4.1 (d)]). Since this map is a diffeo-
morphism between Dmin×]0, 1[×[0, 1[p and

(
Tmin\S min

)
× [0, 1[p, then we have∫

RFTmin
×[0,1[p

γ =

∫
RFDmin

×]0,1[×[0,1[p

γ =

∫
RFDmin

×[0,1[×[0,1[p

γ =

∫
R
FDmin

×[0,1[p+1

γ.

The induction hypothesis gives that this integral is finite.

LetNF ⊕TF be a sub-bundle decomposition of TRF . Since ω is a basic form on RF then it vanishes on TF .
It is a top degree basic form, so ω∧ η (a1, . . . am−w︸       ︷︷       ︸

NF

, b1, . . . bw︸    ︷︷    ︸
TF

) = ω(a1, . . . am−w) · η(b1, . . . bw) and η(b1, . . . bw) does

not depend on η (see (2)).

(c) Since supp ω is compact then it suffices to prove
∫

U∩RF

d(ω ∧ η) = 0 where (U, ϕ) is a conical chart of

F and ω ∈ Ω
`−1

t,c
(U/F ) with supp ω ⊂ U. Recall that the restriction Pϕ : Rm−n × Sn−1×]0, 1[−→ U ∩ RF is a
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diffeomorphism. Also, the pull-back P∗ϕ : Π
∗

F
(U) −→ Π

∗

H×G×I

(
Rm−n × Sn−1 × [0, 1[

)
is a dgca isomorphism (this is

a general result for basic intersection cohomology, see for example [30, Section 3.1]). So, we have:∫
U∩RF

d(ω ∧ η) =

∫
Rm−n×RG×]0,1[

d(P∗ϕω ∧ P∗ϕη) =

∫
Rm−n×RG×[0,1[

d(ωϕ ∧ ηϕ) S tokes
====

∫
Rm−n×RG×{0}

ωϕ ∧ ηϕ = 0

since, for any ω ∈ Ω
m−w−1

t
(M/F ), the restriction of ωϕ to Rm−n×RG× {0} vanishes (this is a general result for basic

intersection cohomology, see for example [30, 3.4.1 (c)])). ♣

6. The pairing.

In Section 9 we will prove the Poincaré duality property : H
∗

p
(M/F ) � Hom (H

m−w−∗

q,c
(M/F );R), when F is ori-

entable and the two perversities p and q are complementary. This isomorphism comes from the pairing PM

constructed from the a tangent volume form η (cf. Proposition 5.2) in the following way:

(4) PM : Ω
∗

p
(M/F ) ×Ω

m−w−∗

q,c
(M/F ) −→ R ∴ (α, β) {

∫
RF

α ∧ β ∧ η.

Proposition 5.3 implies that this operator is well defined and that it induces the pairing

PM : H
∗

p
(M/F ) × H

m−w−∗

q,c
(M/F ) −→ R,

defined by PM([α], [β]) = PM(α, β). Moreover, it does not depend on the choice of the tangent volume form η.
The Poincaré duality property asserts that PM is a non degenerate pairing, that is, the operator

PM : H
∗

p
(M/F ) −→ Hom

(
H

m−w−∗

q,c
(M/F ),R

)
defined by PM([α])([β]) =

∫
RF

α ∧ β ∧ η is an isomorphism.

7. Twisted product and Poincaré duality .

We first get the Poincaré duality property in the framework of a twisted product K ×H N (see Section 4). We
fix a bi- invariant metric on the Lie algebra k and we choose

B =
{
u1, . . . ua, ua+1, . . . , uw, uw+1, . . . , ub, ub+1, . . . , uc, uc+1, . . . , u f

}
, with 0 ≤ a ≤ w ≤ b ≤ c ≤ f

an orthonormal basis of k with {u1, . . . ub} basis of g, {ua+1, . . . uc} basis of the Lie algebra h of H and {uw+1, . . . ub}

basis of l. Notice that b = w when G is abelian.

Let {γ1, . . . , γ f } (reps. {ζa+1, . . . , ζc}) be the dual forms associated to a basis {u1, . . . , u f } (resp. {ua+1, . . . , uc} )
relatively to a bi -invariant metric ν on K (resp. H-invariant Riemannian metric on N).

We shall use the following notation.

- X• the fundamental vector fields of the right action of G on K,

- X• the fundamental vector fields of the left action of G on K.
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They are related Xu(k) + XAd (k)·u(k) = 0 if k ∈ K and u ∈ g.

- W• are the fundamental vector fields of the action Θ.

- V• =
�
∗(X•, 0) are the fundamental vector fields of the action Φ.

First of all, we establish a relationship between the tangent volume forms of Φ and Θ0.

Lemma 7.1 If the action Φ : G × (K ×H N)→ (K ×H N) is orientable then the action Θ0 : (G ∩ H)0 × N → N is
also orientable. We denote by η a tangent volume form of Φ (resp. η0 of Θ0) associated to the metric ν (resp. of
ν|g∩h). Then

(5) (−1)abγa+1 ∧ · · · ∧ γb ∧
�∗

η = γ1 ∧ · · · ∧ γb ∧ η0 on the tangent bundle of K ×N .

Proof. We fix a base point v0 ∈ RN . Since G<e,v0> = (G ∩ H)v0 then < e, v0 >∈ RW. We fix these two base points.
So, we have the same L for N andW. The orientability of Θ0 comes now from the inclusion NH′(L) ⊂ NK(L).

For the second part we use the foliated blow up
�

: (K × N,K × N) → (K×H N,W). We also recall that
τ = u∗1 ∧ · · · ∧ u∗w and τ0 = u∗a+1 ∧ · · · ∧ u∗w are the the associated volume forms of l⊥ on g and g ∩ h, respectively.

The leaf of K ×N at the point (k, z) ∈ K × N is generated by

B =
{
Xu1(k), . . . , Xub(k),WAd (`)·ua+1(z), . . . ,WAd (`)·uw(z)

}
,

where ` ∈ K with ((H ∩G)v)0 = `L`−1. Notice that (G<k,v>)0 = k((G ∩ H)v)0k−1 = k`L(k`)−1.

The RHS of (5) applied to B gives,

η0(WAd (`)·ua+1(z)), . . . ,WAd (`)·uw(z) = τ0(ua+1, . . . , uw) = (u∗a+1 ∧ · · · ∧ u∗w)(ua+1, . . . , uw) = 1.

Using the fact that
�
∗Xu(k) = −

�
∗Wu(z) if u ∈ g ∩ h (cf. [29, Proposition 5 〈5〉] ) the LHS of (5) applied to B

gives: �∗

η
(
Xu1(k), . . . , Xua(k),WAd (`)·ua+1(z), . . . ,WAd (`)·uw(z)

)
=

(−1)w−aη
(�

∗
Xu1(k), . . . ,

�
∗
Xua(k),

�
∗
XAd (`)·ua+1(k), . . . ,

�
∗
XAd (`)·uw(k)

)
=

(−1)aη
(�

∗
XAd (k)·u1(k), . . . ,

�
∗
XAd (k)·ua(k),

�
∗
XAd (k`)·ua+1(k), . . . ,

�
∗
XAd (k`)·uw(k)

)
=

(−1)aη
(
VAd (k)·u1(< k, v >) . . . ,VAd (k)·ua(< k, v >),VAd (k`)·ua+1(< k, v >), . . . ,VAd (k`)·uw(< k, v >)

)
=

(−1)aτ
(
Ad (`−1) · u1, . . . ,Ad (`−1) · ua, ua+1, . . . , uw

)
= (−1)a(u∗1 ∧ · · · ∧ u∗a)

(
Ad (`−1) · u1 . . . ,Ad (`−1) · ua

)
,

up to the sign (−1)a(b−a), coming form the reordering: (Xu1 , . . . , Xua , Xua+1 , . . . , Xub) 7→ (Xua+1 , . . . , Xub , Xu1 , . . . , Xua).
Since ` ∈ H′, the closure of (G ∩H)0 on H, then Ad (`) preserves g and h. The connectedness of H′ gives that the
operator Ad (`) : (g ∩ h)⊥g → (g ∩ h)⊥g is an orthogonal map preserving orientation. So

(u∗1 ∧ · · · ∧ u∗a)
(
Ad (`−1)(u1) . . . ,Ad (`−1)(ua)

)
= det(Ad (`−1))(u∗1 ∧ · · · ∧ u∗a) (u1, . . . , ua) = 1,

We obtain (5). ♣

Proposition 7.2 If N verifies the Poincaré duality property thenW also verifies the Poincaré duality property .
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Proof. Let p and q two complementary perversities on N. We have dim N = m + c − a − f and dimN = w − a,
where w = dimW and m = dim K×H N. By hypothesis, the pairing PN : H

∗

p
(N/N) × H

m+c−w− f−∗

q,c
(N/N)→ R is non

degenerate.

The foliation E of K is generated by the vector fields {X1, . . . , Xc}. This gives H
∗(K/E) =

∧∗

(γc+1, . . . , γ f ). It

is clear that the pairing P : H
∗(K/E)×H

f−c−∗(K/E) −→ R, defined by P([ξ], [χ]) =

∫
K
ξ ∧ χ ∧ γ1 ∧ · · · ∧ γc is non

degenerate (cf. [31, 4.1].

Since the first cohomology is finite dimensional then the pairing

P ⊗ PN : H
∗

(K/E) ⊗ H
∗

p
(N/N) × H

f−c−∗
(K/E) ⊗ H

m+c−w− f−∗

q,c
(N/N) −→ R

is non degenerate. Notice that the group H/H0 is finite. The group H ∩ G is normal on H, so the subgroup
(H ∩G)0 is also normal on H. The remark following Proposition 5.2 implies that we can suppose that the tangent
volume form defining PN can be chosen H-invariant. On the other hand, the right-action of H on K preserves E
and therefore h∗γ1 ∧ · · · ∧ γc = ±γ1 ∧ · · · ∧ γc for each h ∈ H. We conclude that the induced pairing

P ⊗ PN :
(
H
∗

(K/E) ⊗ H
∗

p
(N/N)

)H/H0
×

(
H

f−c−∗
(K/E) ⊗ H

m+c−w− f−∗

q,c
(N/N)

)H/H0
−→ R

is also non degenerate.

We also denote by p and q the associated perversities on K ×H N, which also are two complementary perver-
sities. Recall that the isomorphisms

∇min :
(
H
∗

(K/E) ⊗ H
∗

p
(N/N)

)H/H0
−→ H

∗

p
(K ×H N),

∇min :
(
H
∗

(K/E) ⊗ H
∗

q,c
(N/N)

)H/H0
−→ H

∗

q,c
(K ×H N)

are characterized by

(6)
�∗

∇min([ξ] ⊗ [α]) =

ξ ∧
α +

∑
b<i1<···<il≤c

(−1)lγi1 ∧ · · · ∧ γil ∧ (iW il
· · · iW i1

α)︸                                                     ︷︷                                                     ︸
α




(cf. [31, Proposition 5] and Proposition 4.1).

Let us consider the following diagram(
H
∗(K/E) ⊗ H

∗

p
(N/N)

)H/H0
×
(
H

f−c−∗(K/E) ⊗ H
m+c−w− f−∗

q,c
(N/N)

)H/H0 P⊗PN //

∇min×∇min

��

R

Identity

��
H
∗

p
(K ×H N) × H

m−w−∗

q,c
(K ×H N)

PK×H N // R,

where a suitable rearrangement in the top left term is necessary in order to apply P ⊗ PN . We will complete the
proof if we show that this diagram commutes up to a non-zero constant depending on Φ. In effect, vertical arrows
are isomorphisms and top arrow is a non degenerate pairing.

Write ∇min([ξ] ⊗ [α]) = [ξ • α]. We have,

PK×H N(∇min × ∇min)([ξ] ⊗ [α], [χ] ⊗ [β]) =

∫
K×H RN

ξ • α ∧ χ • β ∧ η.
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Recall that we have denoted by {Wua+1 = Wa+1, . . . ,Wuc = Wc} the fundamental vector fields of the action Θ : H ×
N → N associated to the basis {ua+1, . . . , uc}. Let {ζa+1, . . . , ζc} be the associated dual forms relatively to an H-
invariant Riemannian metric on RN . So 1

2c−a (γa+1 + ζa+1)∧ · · · ∧ (γc + ζc) is a differential form of K × RN giving a
volume form on each fiber of

�
. Thus

PK×H N(∇min × ∇min)([ξ] ⊗ [α], [χ] ⊗ [β]) =
1

2c−a

∫
K×RN

�∗

(ξ • α ∧ χ • β ∧ η) ∧ (γa+1 + ζa+1) ∧ · · · ∧ (γc + ζc).

We claim that the integrand is the differential form ξ ∧ α∧ χ∧ β∧ η0 ∧ γ1 ∧ · · · ∧ γc, up to a non-zero constant C
depending on Φ. We get

PK×H N(∇min × ∇min)([ξ] ⊗ [α], [χ] ⊗ [β]) =
(−1)|α|·|χ|+c·dim NC

2c−a

∫
K
ξ ∧ χ ∧ γ1 ∧ · · · ∧ γc ·

∫
RN
α ∧ β ∧ η0

=
(−1)|α|·|χ|+c·dim NC

2c−a P([ξ], [χ]) · PN([α], [β])

=
(−1)|α|·|χ|+c·dim NC

2c−a (P ⊗ PN)([ξ] ⊗ [α], [χ] ⊗ [β]).

This would end the proof after the verification of the claim, which is a local question.

We denote byH the foliation defined by the action of H on RN . It is a regular foliation. Since RH is dense in
RN , it suffices to prove the claim on K × RH . Let us consider a point (k, z) ∈ K × RH . We need to find a non-zero
constant C depending on Φ such that

ξ ∧ (α + α) ∧ χ ∧ (β + β) ∧
�∗

η ∧ (γa+1 + ζa+1) ∧ · · · ∧ (γc + ζc) = C ξ ∧ α ∧ χ ∧ β ∧ η0 ∧ γ1 ∧ · · · ∧ γc,

on the tangent space TkK × TzN. Without loss of generality, we can suppose that this vector espace is generated
by the family

{X1(k), . . . , X f (k),Wa+1(z), . . . ,Ww(z),Wb+1(z), . . . ,Wv(z),V1, . . . ,Vv′},

where {Wa+1(z), . . . ,Ww(z)} is a basis of TzN , {Wa+1(z), . . . ,Ww(z),Wb+1(z), . . . ,Wv(z)} is a basis of TzH , Ww+1(z) =

· · · = Wb(z) = Wv+1(z) = · · · = Wc(z) = 0 and {V1, . . . ,Vv′} is a basis of the orthogonal of TzH in TzN.

The following differential forms vanish on the basis {X1(k), . . . , Xb(k),Wa+1(z), . . . ,Ww(z)} of TkK × TzN :

ξ ∧ χ ∈
∧∗

(γc+1, . . . , γ f ), {α, β, α, β} ⊂
∧∗

(γb+1, . . . , γc) ⊗Ω
∗

(RH/N) and {γb+1, . . . , γc}.

Moreover, the forms {γw+1 + ζw+1, . . . , γc + ζc} vanish on {Xa+1(k) + Wa+1(z), . . . , Xw(k) + Ww(z)}.

Applying Lemma 7.1 we conclude that it suffices to find a non-zero constant C depending on Φ such that

ξ ∧ χ ∧ (α + α) ∧ (β + β) ∧ (γb+1 + ζb+1) ∧ · · · ∧ (γc + ζc) = C
(−1)wb

2w−a ξ ∧ χ ∧ α ∧ β ∧ γb+1 ∧ · · · ∧ γc,

on the family {Xb+1(k), . . . , X f (k),Wb+1(z), . . . ,Wv(z),V1, . . . ,Vv′},

The following differential forms vanish on {Xc+1(k), . . . , X f (k)}:

{α, β, α, β} ⊂
∧∗

(γb+1, . . . , γc) ⊗Ω
∗

(RH/N), {γb+1, . . . , γc} and {ζb+1, . . . , ζc}.

We conclude that it suffices to find a non-zero constant C depending on Φ such that

(α + α) ∧ (β + β) ∧ (γb+1 + ζb+1) ∧ · · · ∧ (γc + ζc) = C
(−1)wb

2w−a α ∧ β ∧ γb+1 ∧ · · · ∧ γc,
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on the family {Xb+1(k), . . . , Xc(k),Wb+1(z), . . . ,Wv(z),V1, . . . ,Vv′},

Since Wv+1(z) = · · · = Wc(z) = 0, the following differential forms vanish on {Xv+1(k), . . . , Xc(k)}:

{α, β, α, β} ⊂
∧∗

(γb+1, . . . , γv) ⊗Ω
∗

(RH/N), {ζb+1, . . . , ζc} and {γb+1, . . . , γv}.

(cf. (6)). We conclude that it suffices to find a non-zero constant C depending on Φ such that

(α + α) ∧ (β + β) ∧ (γb+1 + ζb+1) ∧ · · · ∧ (γv + ζv) = C
(−1)wb

2w−a α ∧ β ∧ γb+1 ∧ · · · ∧ γv,

on the family {Xb+1(k), . . . , Xv(k),Wb+1(z), . . . ,Wv(z),V1, . . . ,Vv′},

We consider the canonical representation of α:

α = α0 +
∑

b<i1<···<il≤v

ζi1 ∧ · · · ∧ ζil ∧ αi1,...,il ,

where αi1,...,il ∈ Ω
∗(RH/N) and iW jαi1,...,il = 0 for any j ∈ {b + 1, . . . , v}. A straightforward calculation gives

α + α = α0 +
∑

b<i1<···<il≤v

(ζi1 − γi1) ∧ · · · ∧ (ζil − γil) ∧ αi1,...,il ,

Analogously for β.

Differential forms α ∧ β and (α + α) ∧ (β + β) vanish respectively on {Xb+1(k), . . . , Xv(k)} and {Xb+1(k) +

Wb+1(z), . . . , Xv(k) + Wv(z)}. On the other hand, we have (γ j + ζ j)(X j(k) + W j(z)) = 2 for j ∈ {b + 1, . . . , v}. Then
it suffices to find a non-zero constant C depending on Φ such that

(α + α) ∧ (β + β) =
C(−1)wb

2w+v−a−b α ∧ β

on the family {Wb+1(z), . . . ,Wv(z),V1, . . . ,Vv′},

Without loss of generality we can suppose α = ζb+1 ∧ · · · ∧ ζ` ∧ αb+1,...,` and β = ζ`+1 ∧ · · · ∧ ζv ∧ β`+1,...,v where
b < ` ≤ v. By orthogonality, differential forms {ζb+1, . . . , ζv, γb+1, . . . , γv} vanish on {V1, . . . ,Vv′}. Then it suffices
to find a non-zero constant C depending on Φ such that

(ζb+1 − γb+1) ∧ · · · ∧ (ζv − γv) = C
(−1)wb

2w+v−a−b ζb+1 ∧ · · · ∧ ζv

on the family {Wb+1(z), . . . ,Wv(z)}. As γ j(W j′(x)) = 0 for any j, j′ ∈ {b + 1, . . . , v}, just take C = (−1)wb2w+v−a−b.
Notice that b = dim G, a = b − dim G ∩ H, w = dimW and v = b + dimH − dimN do not depend on the choice
of the point (k, v) but on Φ. ♣

8. Tubular neighborhoods and Poincaré duality .

In this section we consider a manifold M endowed with a Killing foliation F induced by an orientable action
Φ : G × M → M, G connected. We fix a tamer group K and a tangent volume form η. We also fix a couple of
complementary perversities p and q.

We prove the Poincaré property of F by cutting the manifold M into nicer pieces where this property is
checked and by gluing these facts using Mayer-Vietoris technique and Bredon’s Trick. These pieces are essen-
tially tubular neighborhoods of strata. But we do not use the stratification S

F
(induced by G) since its properties

are not strong enough. We work with the stratification SK,M (induced by K). It possesses very useful properties
because of the compactness of K.
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8.1 Mayer-Vietoris. For any saturated open subset U ⊂ M we introduce the following statement:

(7) P(U) = “The pairing PU : H
∗

p
(U/F ) −→ Hom

(
H

m−w−∗

q,c
(U/F ),R

)
is an isomorphism.

Any covering {U,V} of an open subset of M, made up of saturated ( union of leaves ) open subsets of M, possesses
a subordinated partition of the unity made up of basic functions (see for example [26, Lemma 2.1.1]), which also
are controlled functions [30, Remark 3.2.1 (b)]. This is the main ingredient permitting us to say that the two rows
of the following commutative diagram are exact (see for example [4, Propositions 2.3 and 2.7])

0 // Ω
∗

p
((U ∪ V)/F ) //

PU∪V

��

Ω
∗

p
(U/F ) ⊕Ω

∗

p
(V/F )

PU⊕PV��

// Ω
∗

p
((U ∩ V)/F )

PU∩V

��

// 0

0 // Hom (Ω
∗

q,c
((U ∪ V)/F );R) //


Hom (Ω

∗

q,c
(U/F );R)
⊕

Hom (Ω
∗

q,c
(V/F );R)

 // Hom (Ω
∗

q,c
((U ∩ V)/F );R) // 0

The Five Lemma gives the Mayer-Vietoris property:

(8) P(U),P(U) and P(U ∩ V) =⇒ P(U ∪ V).

8.2 Bredon’s trick. The Mayer-Vietoris property allows to make computations when the manifold is covered
by suitable covering. The passage local-global may be done using an adapted version of the Bredon’s trick of [6,
pag. 289]:

Let X be a paracompact topological space and let {Uα} be an open covering, closed for finite intersection.
Suppose that Q(U) is a statement about open subsets of X, satisfying the following three properties:

(BT1) Q(Uα) is true for each α;

(BT2) Q(U), Q(z) and Q(U ∩ V) =⇒ Q(U ∪ V), where U and V are open subsets of X;

(BT3) Q(Ui) =⇒ Q

 ⋃
i

Ui

, where {Ui} is a disjoint family of open subsets of X.

Then Q(X) is true.

Consider a singular closed stratum S of the stratification SK,M . Since S is a K-invariant sub manifold of M
and then it possesses a K-invariant tubular neighborhood (T, τ, S ,Rn). Notice the the restriction of the G-action
on T is still orientable. The associated Killing foliation is FT . We fix a base point x ∈ S . The isotropy subgroup
Kx acts orthogonally and effectively on the fiber Rn = τ−1(x). So, the induced action Λx : Gx × R

n → Rn is a tame
action and also an orientable action since (Gy)x = Gy for each y ∈ τ−1(x). The associated Killing foliation is FRn .
We have:

Proposition 8.3 If FRn verifies the Poincaré duality property then FT also verifies the Poincaré duality property .

Proof. The canonical projection π : S → S/K is a K/Kx-homogeneous bundle over the manifold S/K (cf. [5,
Chapter 5, Theorem 5.8])4. We can find a good covering {Uα} of it (cf. [4, Theorem 5.1]). For each open subset
V ⊂ S/K we define the statement: Q(z) = P(τ−1π−1(z)). We prove (BT1)-(BT3) and the Bredon’s trick gives
Q(S/K), ending the proof.

4This fact is a direct consequence of the compactness of K and the main reason to introduce the stratification SK,M .
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(BT1) Since Uα is contractible then π−1(Uα) = Uα×K/Kx and therefore τ−1π−1(Uα) = Uα×(K×Kx
Rn). Notice

that the action of G on K×Kx
Rn is orientable. The contractibility of Uα implies that we can suppose

that Uα is a point. So, property Q(Uα) becomes P(K×Kx
Rn), which is true from Proposition 7.2.

(BT2) Mayer-Vietoris (8).

(BT3) Straightforward. ♣

9. Poincaré duality .

We present the main result of this work.

Theorem 9.1 Any orientable Killing foliation F verifies the Poincaré duality property.

Proof. We assume that the Killing foliation F is induced by an orientable action Φ : G × M → M with G
connected. We fix a tamer K. We prove P(M) by induction on depth SK,M .

First step: depth SK,M = 0.

We know that the the foliation F is a regular Riemannian foliation induced by the action of a group of
isometries. So, its central sheaf is trivial (cf. [16, Lemma III]). Since the action Φ is orientable we get that the
manifold M is orientable and the foliation F is tangentially orientable (existence of tangent volume form η).
When the manifold M is compact then P(M) comes from [2, Theorem 1.1] and [12, Theorem 3.1] (see also [32,
Remarque 2.5 (ii), Corollaire I] and [9, Théorème 4.10]).

In the case of non-compact M, we notice that the canonical projection π : M → M/K is a K/Kx-homogeneous
bundle over the manifold M/K (cf. [5, Chapter 5, Theorem 5.8]). For each open subset V ⊂ M/K we formulate
the statement: Q(z) = P(π−1(z)) (see (8)). We prove (BT1)-(BT3) and the Bredon’s trick gives Q(S ) , ending the
proof.

(BT1) Since Uα is contractible then π−1(Uα) = Uα×K/Kx. Notice that the action of G on K/Kx is orientable.
The contractibility of Uα implies that we can suppose that Uα is a point. So, the property Q(Uα)
becomes P(K/Kx), which is true by the previous argument since K/Kx is compact

(BT2) Mayer-Vietoris (8).

(BT3) Straightforward.

Second step: Conical case.

We suppose that M = Rm and the Killing foliation F is defined by an orthogonal, orientable action Φ : G ×
M → M having the origin as unique fixed point. We prove P(Rm).

We denote by G the induced Killing foliation on Sm−1 defined by the restriction an orthogonal, orientable
action Φ : G × Sm−1 → Sm−1 having no fixed point. Since depth S

K,Sm−1 < depth SK,Rm , we have P(Sm−1).
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From [31, Proposition 4] we have

H
i

p
(Rm/F ) =

 H
i

p

(
Sm−1/G

)
if i ≤ p(ϑ)

0 if i ≥ p(ϑ) + 1.
(9)

Here, Rm+1 = cSm−1 = Sm−1×]0,∞[/Sm−1 × {0} and {ϑ} is the vertex of the cone. Since p and q are complementary
perversities on Rm then we have p({ϑ}) + q({ϑ}) = t({ϑ}) = m − w − 2, From [30, Proposition 3.7.2] we get

H
m−w−i

q,c
(Rm/F ) =

 H
m−w−i−1

q

(
Sm−1/G

)
if i ≤ p({ϑ})

0 if i ≥ p({ϑ}) + 1.
(10)

Now, P(Rm) comes from P(Sm−1) and the two following facts

(i) The perversities p and q are complementary on Sm−1 (see definition (1)).

A perversity r on Rm induces the perversity r on Sm−1 by: r(S ) = r(S×]0,∞[) for any stratum
S ∈ SG. The restriction of the foliation F to Sm−1×]0,∞[ is the product G × I where I is the
point-wise foliation of ]0,∞[. Then we have

p(S ) + q(S ) = p(S×]0,∞[) + q(S×]0,∞[) = t(S×]0,∞[) = codim Rm F − codim S×]0,∞[(G × I) − 2
= codim Sm−1 G − codim S G − 2 = t(S ).

(ii) The pairing PRm becomes the pairing PSm−1 through the isomorphisms induced by (9) and (10).

First notice that if η is a tangent volume form of G then χ∗η is a tangent volume form for FRm

since G(x,t) = Gx for each (x, t) ∈ RF = RG×]0,∞[. Here χ : RF → RG is the canonical projection.
The operator ℵ : H

∗

p

(
Sm−1/G

)
→ H

∗

p
(Rm/F ) defining (9) is ℵ([α]) = [χ∗α], (see [30, Proposition

3.5.2]. The operator ℵ′ : H
∗

q

(
Sm−1/G

)
→ H

∗

q,c
(Rm/F ) defining (10) is ℵ′([β]) = [g dt∧χ∗β], where

g ∈ C∞([0,∞[) with g ≡ 1 on [0, 1/4], g ≡ 0 on [3/4, 1[ and
∫ 1

0
g = 1 [30, Proposition 3.7.2].

Now, for [α] ∈ H
i

p

(
Sm−1/G

)
and [β] ∈ H

m−1−w−i

q,c

(
Sm−1/G

)
we have

PRm(ℵ[α],ℵ′[β]) =

∫
RG×]0,∞[

g χ∗α∧ dt∧ χ∗β∧ χ∗η =

(∫
RG
α ∧ β ∧ η

) (∫ 1

0
gdt

)
= PSm−1([α], [β]).

Third step: General case.

Let us suppose that depth SK,M > 0. Since the family
{
M\S min ,Tmin

}
is a basic covering of M and then we

get : P(M\S min),P(Tmin),P(Tmin\S min) =⇒ P(M) (cf. (8)). The depth of the restriction to M\S min and Tmin\S min is
strictly smaller than depth S

F
. So, we get P(Tmin) =⇒ P(M). It remains to prove P(Tmin). This result comes from

Proposition 8.3 and the Second step. ♣

10. Appendix: Molino’s blow up [17],[31, Section 4.2].
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We consider in this Appendix a manifold M endowed with a Killing foliation F induced by an orientable
action Φ : G ×M → M, G connected. We fix a tamer K. The compact Lie group5 K acts smoothly on M defining
the isotropy type stratification SK,M . It is given by the equivalence relation

x ∼ y⇔ Kx is conjugate to Ky.

Since G is a normal subgroup of K then x ∼ y implies that Gx is conjugate to Gy on K and therefore dim(Gx)0 =

dim(Gy)0. So, condition depth SK,M = 0 implies that the foliation F is regular foliation and then M = RF .

The Molino’s blow up is a technical tool we use to desingularize the Killing foliation F when depth SK,M > 0.
It is a continuous map L : (M̂, F̂ )→ (M,F ) verifying:

- the foliation F̂ is a Killing foliation defined by an orientable action Φ̂ : G × M̂ → M̂ having also K as a tamer
group,

- depth S
K,M̂

< depth SK,M ,

- the map L is G-equivariant,

- the restriction L : M̂\L−1(S min) → M\S min , where S min is the union of closed strata of depth SK,M , is a K-
equivariant smooth trivial 2-covering,

- depth SK,M\S min
< depth SK,M ,

- there exists a commutative diagram

Dmin×] − 1, 1[

∇min

��

� � // M̂

L

��
Tmin
� � // M

where

+ Tmin is a K-equivariant tubular neighborhood of S mn ,

+ Dmin ⊂ Tmin are the points whose distance to S min is 1/2,

+ ∇min(x, t) = 2|t| · x.

- depth SK,Dmin
< depth SK,M . ♣

Hau amaiera da.
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MA, 1988. Translated from the French by Grant Cairns, With appendices by Cairns, Y. Carrière, É. Ghys,
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