Some revisited results about composition operators on Hardy spaces - Université d'Artois Access content directly
Preprints, Working Papers, ... Year :

Some revisited results about composition operators on Hardy spaces

Pascal Lefèvre
Daniel Li
Hervé Queffélec
  • Function : Author
  • PersonId : 859618
Luis Rodriguez-Piazza
  • Function : Author
  • PersonId : 859619

Abstract

We generalize, on one hand, some results known for composition operators on Hardy spaces to the case of Hardy-Orlicz spaces $H^\Psi$: construction of a ``slow'' Blaschke product giving a non-compact composition operator on $H^\Psi$; construction of a surjective symbol whose composition operator is compact on $H^\Psi$ and, moreover, is in all the Schatten classes $S_p (H^2)$, $p > 0$. On the other hand, we revisit the classical case of composition operators on $H^2$, giving first a new, and simplier, characterization of closed range composition operators, and then showing directly the equivalence of the two characterizations of membership in the Schatten classes of Luecking and Luecking and Zhu.
Fichier principal
Vignette du fichier
Comp_revisited.pdf (226.23 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00448623 , version 1 (19-01-2010)

Identifiers

Cite

Pascal Lefèvre, Daniel Li, Hervé Queffélec, Luis Rodriguez-Piazza. Some revisited results about composition operators on Hardy spaces. 2010. ⟨hal-00448623⟩
183 View
325 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More