Compact composition operators on Bergman-Orlicz spaces - Université d'Artois Access content directly
Preprints, Working Papers, ... Year :

Compact composition operators on Bergman-Orlicz spaces

Pascal Lefèvre
Daniel Li
Connectez-vous pour contacter l'auteur
Hervé Queffélec
  • Function : Author
  • PersonId : 859618
Luis Rodriguez-Piazza
  • Function : Author
  • PersonId : 859619

Abstract

We construct an analytic self-map $\phi$ of the unit disk and an Orlicz function $\Psi$ for which the composition operator of symbol $\phi$ is compact on the Hardy-Orlicz space $H^\Psi$, but not compact on the Bergman-Orlicz space ${\mathfrak B}^\Psi$. For that, we first prove a Carleson embedding theorem, and then characterize the compactness of composition operators on Bergman-Orlicz spaces, in terms of Carleson function (of order $2$). We show that this Carleson function is equivalent to the Nevanlinna counting function of order $2$.
Fichier principal
Vignette du fichier
bergman_var.pdf (300.29 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00426831 , version 1 (28-10-2009)
hal-00426831 , version 2 (30-03-2010)

Identifiers

Cite

Pascal Lefèvre, Daniel Li, Hervé Queffélec, Luis Rodriguez-Piazza. Compact composition operators on Bergman-Orlicz spaces. 2009. ⟨hal-00426831v1⟩
207 View
373 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More