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Compact composition operators on

Bergman-Orlicz spaces

Pascal Lefèvre, Daniel Li,

Hervé Queffélec, Luis Rodŕıguez-Piazza
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Abstract. We construct an analytic self-map ϕ of the unit disk and an Orlicz
function Ψ for which the composition operator of symbol ϕ is compact on the
Hardy-Orlicz space HΨ, but not compact on the Bergman-Orlicz space B

Ψ. For
that, we first prove a Carleson embedding theorem, and then characterize the
compactness of composition operators on Bergman-Orlicz spaces, in terms of
Carleson function (of order 2). We show that this Carleson function is equiva-
lent to the Nevanlinna counting function of order 2.
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1 Introduction and notation

1.1 Introduction

Due to the Littlewood subordination principle, the boundedness of composi-
tion operators Cϕ, defined by Cϕ(f) = f ◦ϕ, on Hardy spaces Hp, as well as on
Bergman spaces B

p, 1 ≤ p ≤ ∞, is automatic. Their compactness is something
much more subtle, but is well understood now, and there are two well-separated
cases. First, the case p = ∞, for which Cϕ : H∞ → H∞ is compact if and only
if ‖ϕ‖∞ < 1 (note that B

∞ = H∞). Secondly, the case p < ∞, for which the
compactness does not depend on p. For Hardy spaces, this fact, proved by J.
Shapiro and P. Taylor ([13]), is not completely trivial, and is due to the good
factorization properties of functions in Hp. For the scale of Bergman spaces
B

p, the factorization properties are not so good, but the independence with
respect to p follows from the following characterization ([10], Corollary 4.4): for
1 ≤ p < ∞, Cϕ : B

p → B
p is compact if and only if the pull-back measure of

the area-measure A by ϕ is a 2-Carleson measure. The case p = 2 (proved in
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[1]) gives then, for 1 ≤ p < ∞:

(1.1) Cϕ : B
p → B

p is compact ⇐⇒ lim
|z|→1

1 − |ϕ(z)|
1 − |z| = ∞ .

In both cases (Hardy and Bergman), a brutal change of situation occurs
when we pass from finite values of p to the value p = ∞, and the need was
felt for an intermediate scale between Hp and H∞, or between B

p and B
∞.

This is what we did ([7]), in full detail, with Hardy-Orlicz spaces HΨ associated
with an Orlicz function Ψ (and began to do for Bergman-Orlicz spaces B

Ψ).
We introduced a generalization of the notion of Carleson measure, and proved
a contractivity property of those Carleson measures mϕ = ϕ∗(m), attached to
an analytic self-map ϕ : D → D, which turned out to be central to obtain a
necessary and sufficient condition for the compactness of Cϕ : HΨ → HΨ. In
that paper, we also began a study of the compactness of composition operators
on B

Ψ. We proved, in particular, but implicitely (see the comments at the
beginning of Section 4), that, if the Orlicz function Ψ grows very fast (satisfying
the so-called ∆2 condition), then the compactness of Cϕ : HΨ → HΨ implies
its compactness as an operator Cϕ : B

Ψ → B
Ψ. On the other hand, it is well-

known that the compactness on Hp implies the compactness on B
p because it

is easy to see that the left-hand side of (1.1) is implied by the compactness on
Hp. One might think that it is generally easier to achieve compactness on B

Ψ

than on HΨ. The main result of the present work is the existence of an analytic
self-map ϕ of D and an Orlicz function Ψ such that the composition operator
Cϕ is compact on HΨ but not on B

Ψ. For that, we first have to characterize
the compactness of composition operators on Bergman-Orlicz spaces. More
precisely, the paper is organized as follows.

In Section 2, given two Orlicz functions Ψ1 and Ψ2, and a finite positive
measure µ on the unit disk D, we investigate under which conditions the canon-
ical inclusion Iµ : B

Ψ1 → LΨ2(µ), defined by Iµ(f) = f , is either bounded, or
compact. In Theorem 2.1, we give a necessary condition and a sufficient con-
dition, in terms of the Carleson function ρµ of µ, for the boundedness of Iµ.
Analoguously, we have a similar statement (Theorem 2.5) for the compactness
of Iµ. In general, these necessary and those sufficient conditions do not fit.

In Section 3, we prove one of the main result of this paper (Theorem 3.1)
under the form of a contractivity principle for the pull-back measure Aϕ of the
planar Lebesgue measure A on D by ϕ. The proof is rather long and uses a
Calderón-Zygmund decomposition, as well as an elementary, but very useful,
inequality due to Paley and Zygmund. This contractivity principle eliminates
the absence of fitness mentioned above and allows us to have a necessary and
sufficient condition for the compactness of Cϕ : B

Ψ → B
Ψ in terms of the same

Carleson function ρAϕ
= ρϕ,2 (Theorem 3.2).

In Subsection 3.2, we consider the Nevanlinna counting function Nϕ,2 (ini-
tiated in [12]), adapted to the Bergman case, and we compare it with the 2-
Carleson function ρϕ,2 of ϕ. These two functions turn out to be equivalent, in
the sense precised in Theorem 3.10. This extends to the Bergman case (and fol-
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lows from) such an equivalence for the Hardy case, that we recently established
in [8], Theorem 1.1.

Finally, in Section 4, we exploit the necessary and sufficient conditions that
we established, either on HΨ and on B

Ψ, to give (Theorem 4.2) an example of an
analytic self-map ϕ : D → D and of a fairly irregularly varying Orlicz function Ψ
such that, contrary to the general intuition, Cϕ : HΨ → HΨ is compact, whereas
Cϕ : B

Ψ → B
Ψ is not compact. This is due to the fact that we can evaluate, in

a fairly way, the two Carleson functions ρϕ and ρϕ,2 of ϕ.

Acknowledgement. The fourth-named author is partially supported by a
Spanish research project MTM2006-05622.

1.2 Notation

We shall denote by D the open unit disk {z ∈ C ; |z| < 1} of the complex
plane, and its boundary, the unit circle, by T. The normalized area measure
dA = dx dy/π on D will be denoted by A.

For any ξ ∈ T, we define, for 0 < h < 1, the Carleson window W (ξ, h) by

W (ξ, h) = {z ∈ D ; |z| ≥ 1 − h and | arg(zξ)| ≤ πh}.

We shall also use the “circular” Carleson windows S(ξ, h) defined by S(ξ, h) =
{z ∈ D ; |z − ξ| < h}. Since S(ξ, h) ⊆ W (ξ, h) ⊆ S(ξ, 3h), measures of W (ξ, h)
and of S(ξ, h) are equivalent, up to constants.

For any finite positive measure µ on D, we define, for 0 < h ≤ 1, the Carleson
function of µ by:

(1.2) ρµ(h) = sup
|ξ|=1

µ
(

W (ξ, h)
)

,

and we set:

(1.3) Kµ,2(h) = sup
0<t<h

ρµ(t)

t2

When ρµ(h) = O (h2), one says that µ is a 2-Carleson measure; we also say
that µ is a Bergman-Carleson measure, to insist that the order 2 is adapted
to the Bergman spaces. When µ = Aϕ is the pull-back measure of A by an
analytic self-map ϕ : D → D, we shall simply write ρϕ,2 and Kϕ,2 instead of
ρAϕ

and KAϕ,2 respectively. We shall say that ρϕ,2 the 2-dimensional Carleson
function of ϕ.

The Hastings-Luecking sets of size 2−n are defined by:

∆k =
{

z ∈ D ; 1 − 1

2n
≤ |z| < 1 − 1

2n+1
and

(2j − 1)π

2n
≤ arg z <

(2j + 1)π

2n

}

,

where k = 2n + j − 1, n ≥ 0, 0 ≤ j ≤ 2n − 1 (note that ∆0 = D(0, 1/2)).
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An Orlicz function Ψ is a positive increasing convex function Ψ: [0,∞) →
[0,∞) such that Ψ(0) = 0 (and Ψ(∞) = ∞). If µ is a positive measure on D, the
Orlicz space LΨ(µ) is the space of (classes of) measurable functions f : D → C

such that
∫

D
Ψ(|f |/C) dA < ∞, for some constant C > 0, and the norm ‖f‖Ψ

is defined as the infimum of all constants C > 0 for which
∫

D
Ψ(|f |/C) dA ≤ 1.

The Bergman-Orlicz space is the subspace of LΨ(A) whose members are analytic
in D.

The Hardy-Orlicz space HΨ is the subspace of H1 whose boundary values
are in the Orlicz space LΨ(T, m).

We refer to [3] (see also [5], and [14]) for the theory of Bergman spaces and
to [11] for more information about Orlicz spaces.

2 Carleson embeddings

We consider in this Section, the “embedding” map Iµ : B
Ψ1 → LΨ2(µ),

defined by Iµ(f) = f , where µ is an arbitrary finite positive Borel measure on
D and Ψ1 and Ψ2 are two Orlicz functions.

2.1 Boundedness

Theorem 2.1 Given µ a finite positive Borel measure on D and Ψ1 and Ψ2

two Orlicz functions, let Iµ : B
Ψ1 → LΨ2(µ) be the canonical map defined by

Iµ(f) = f . One has:
1) If Iµ is bounded, then there is a constant A > 0 such that:

(2.1) ρµ(h) ≤ 1

Ψ2[AΨ−1
1 (1/h2)]

, for all 0 < h < 1.

2) In order that Iµ is bounded, it suffices that there is a constant A > 0 such
that:

(2.2) Kµ,2(h) ≤ 1/h2

Ψ2[AΨ−1
1 (1/h2)]

, for all 0 < h < 1.

Note that condition (2.1) reads as
Ψ−1

1 (1/h2)

Ψ−1
2

(

1/ρµ(h)
) is bounded (by 1/A) and

condition (2.2) as
Ψ−1

1 (1/h2)

Ψ−1
2

(

1/h2Kµ,2(h)
) is bounded.

When Ψ1 = Ψ2 = Ψ and the Orlicz functions Ψ satisfies the usual condition
∆2: Ψ(2x) ≤ C Ψ(x) for some constant C > 1 and x large enough, it is clear
that conditions (2.1) and (2.2) are equivalent. However, they are not equivalent
in general; and even condition (2.1) is not sufficient and condition (2.2) is not
necessary: the examples 1.b and 2. of [7], Chapter 4, §3, given in the Hardy
case, work also for the Bergman case. For the sake of completeness, we are
going to sketch them.
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Example 1. For every Orlicz function which does not satisfies the ∆2 condition,
there exists a finite positive measure µ on D such that Iµ : B

Ψ → LΨ(µ) is
continuous, though µ is not a 2-Carleson measure, and a fortiori does not verify
(2.2).

Proof. Since Ψ does not satisfy ∆2, there exists an increasing sequence (an)n≥1

such that Ψ(an)/n is increasing and Ψ(2an)/Ψ(an) ≥ n2n. Define the discrete
measure µ:

µ =

∞
∑

n=1

(

n

Ψ(2an)
− n + 1

Ψ(2an+1)

)

δxn
,

where xn = 1 − 1/
√

Ψ(2an). As µ
(

[xN , 1]
)

= N/Ψ(2aN), µ is not a 2-Carleson
measure. On the other hand, for every f in the unit ball of B

Ψ, one has
([7], Lemma 5.2) |f(z)| ≤ 8 Ψ−1[1/(1 − |z|)2] and it is easy to check that, if
g(z) = Ψ−1[1/(1 − |z|)2], then ‖g‖LΨ(µ) ≤ 2, so ‖f‖LΨ(µ) ≤ 16, proving that Iµ

is bounded. ⌣
·◦ ·◦

Example 2. Let Ψ(x) = ex − 1; there exists a finite positive measure µ on D

such that (2.1) holds but Iµ : B
Ψ → LΨ(µ) is not bounded.

Proof. Let ν be a probability measure on T, supported by a compact set L
of Lebesgue measure zero, such that ν(I) ≤ |I|1/2, for each interval I. We
can associate to ν the measure on D defined by ν̃(E) = ν(E ∩ T). By Rudin-
Carleson’s Theorem, for every integer n, there exists a function gn in the unit
ball of the disk algebra such that |gn| = 1 on L and ‖gn‖HΨ ≤ ‖gn‖∞ ≤ 4−n.
As L is compact, there exists some rn ∈ (1/2, 1) such that |gn(rnz)| ≥ 1/2 for
every z ∈ L. Now, define the measure µ by:

µ(E) =

∞
∑

n=1

1

2n
νn(E) ,

where:
νn(E) = ν

(

{z ∈ T ; rnz ∈ E}
)

.

If W is a Carleson window of size h then, for each n ≥ 1, we have:

ν
(

{z ∈ T ; rnz ∈ W}
)

≤ ν(W ∩ T) ≤ (2h)1/2.

Hence, µ(W ) ≤ (2h)1/2 . 1/Ψ[14Ψ−1(1/h2)], and the condition (2.1) is fulfilled.
Nevertheless, the identity from B

Ψ to L1(µ) is not continuous since this
would imply that the identity from HΨ to L1(µ) were continuous as well, which

is not the case: ‖gn‖L1(µ) ≥ 1/2n+1. ⌣
·◦ ·◦

In order to prove Theorem 2.1, we shall need some results. They are analo-
gous to Proposition 4.9, Theorem 4.13 and Lemma 4.14 of [7], but their proofs
require different arguments1.

1 By the way, we seize the opportunity to correct here the proof of Theorem 4.13 given
in [7], where some argument had been put awkwardly. In that proof, we first had to set
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We first introduce the following maximal function:

(2.3) Λf =

∞
∑

k=0

(

sup
∆k

|f |
)

1I∆k
.

One has:

Lemma 2.2 For every Orlicz function Ψ, the map f ∈ B
Ψ 7→ Λf ∈ LΨ(D) is

bounded.

Proof. Set ck = sup∆k
|f | for every k ≥ 1, and let αk ∈ ∆k be such that

|f(αk)| ≥ 1
2 sup∆k

|f | = ck/2. With C = ‖f‖BΨ > 0, one has:

∫

D

Ψ(Λf/2C) dA =
∑

k≥0

Ψ(ck/2C)A(∆k) ≤
∫

D

Ψ(|f |/C) dµ ,

where µ =
∑

k≥0 A(∆k) δαk
.

But, for every Carleson window W , we can write:

µ(W ) =
∑

αk∈W

A(∆k) ≤
∑

∆k∩W 6=∅
A(∆k) = A

(

⋃

∆k∩W 6=∅
∆k

)

,

and, since
⋃

∆k∩W 6=∅ ∆k is contained in the window W̃ with the same center

as W , but with size two times that of W , one has µ(W ) ≤ A(W̃ ) = 4A(W ).
Hence µ is a Bergman-Carleson measure. By [4], it follows that, for some
constant C0 > 0 (and we shall, as we may, assume that C0 ≥ 1), one has, using
the subharmonicity of Ψ(|f |/C):

∫

D

Ψ(|f |/C) dµ ≤ C0

∫

D

Ψ(|f |/C) dA ≤ C0 .

Now, by convexity of Ψ, we get:

∫

D

Ψ
( Λf

2C0 ‖f‖BΨ

)

dA ≤
∫

D

1

C0
Ψ
( Λf

2 ‖f‖BΨ

)

dA ≤ 1 ,

meaning that ‖Λf‖LΨ(D) ≤ 2C0 ‖f‖BΨ . ⌣
·◦ ·◦

Lemma 2.3 For every f ∈ B
1 and every finite positive Borel measure µ on D,

one has, for 0 < h < 1/2 and t > 0:

µ({z ∈ D ; |z| > 1 − h and |f(z)| > t}) ≤ 4 Kµ,2(2h)A({Λf > t}) .

M = {z ∈ D ; |z| > 1 − h and |f(z)| > t}. Then, Mf being the non-tangential maximal
function of f ∈ H1, the open set {Mf > t} is the disjoint union of a countable family of open
arcs Ij ⊆ T, and we had to say that every z such that |f(z)| > t belongs to some window
W (Ij) (see [2], page 39).
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Proof. Remark that when z ∈ ∆k and |z| > 1 − h, we must have 1 − 2−n−1 >
|z| > 1 − h, hence h > 2−n−1; since k = 2n + j − 1 ≥ 2n−1, we must have
k ≥ 1/4h. Let I = {k ≥ 1 ; sup∆k

|f | > t} and Ih = {k ≥ 1/4h ; sup∆k
|f | > t}.

If Wk is the smallest Carleson window containing ∆k, we have:

µ({z ∈ D ; |z| > 1 − h and |f(z)| > t})
≤
∑

k∈Ih

µ(∆k) ≤
∑

k∈Ih, k≥1/4h

µ(Wk)

.
∑

k∈Ih

Kµ,2(2h)A(Wk) ≤ 4
∑

k∈Ih

Kµ,2(2h)A(∆k)

≤ 4Kµ,2(2h)
∑

k∈I

A(∆k) = 4Kµ,2(2h)A({Λf > t}) .

and Lemma 2.3 is proved. ⌣
·◦ ·◦

Lemma 2.4 Let µ be a finite Borel measure on D and Ψ1 and Ψ2 two Orlicz
functions.

We suppose that, for some positive constant A, there is 0 < hA ≤ 1/2 such
that

Kµ,2(h) ≤ 1/h2

Ψ2[AΨ−1
1 (1/h2)]

, for 0 < h < hA.

Then, for every f ∈ B
Ψ1 such that ‖f‖BΨ1 ≤ 1 and every Borel subset E of D,

one has, with xA = (A/64)Ψ−1
1 (4/h2

A):
∫

E

Ψ2(A |f |/64) dµ ≤ µ(E)Ψ2(xA) +
1

8

∫

D

Ψ1(Λf ) dA .

Proof. For every s > 0, the inequality |f(z)| > s implies that the norm of
the evaluation δz at z is greater than s. But this norm is ([7], Lemma 5.2)
Ψ1

(

1/(1 − |z|)2
)

, up to constants; more precisely:

‖δz‖ ≤ 8 Ψ−1
1

( 1

(1 − |z|)2
)

·

Hence, we have:

s < 8 Ψ−1
1

( 1

(1 − |z|)2
)

,

so:

|z| > 1 − 1
√

Ψ1(s/8)
·

Lemma 2.3 gives, when Ψ1(s/8) ≥ 2:

µ({|f(z)| > s}) = µ({|z| > 1 − 1
√

Ψ1(s/8)
and |f(z)| > s}

≤ 4 Kµ,2

( 2
√

Ψ1(s/8)

)

A({Λf > s}) .

7



But, by our assumption,

Kµ,2

( 2
√

Ψ1(s/8)

)

≤ Ψ1(s/8)/4

Ψ2[AΨ−1
1 (
(

Ψ1(s/8)/4
)

]

≤ Ψ1(s/8)/4

Ψ2[(A/4)Ψ−1
1 (
(

Ψ1(s/8)
)

]
(by convexity)

=
1

4

Ψ1(s/8)

Ψ2(As/32)
;

hence:

µ({|f(z)| > s}) ≤ Ψ1(s/8)

Ψ2(As/32)
A({Λf > s}) .

We get therefore:

∫

E

Ψ2(A|f |/64) dµ =

∫ +∞

0

Ψ′
2(t)µ({|f | > 64t/A} ∩ E) dt

≤
∫ xA

0

Ψ′
2(t)µ(E) dt

+

∫ +∞

xA

Ψ′
2(t)

Ψ1(8t/A)

Ψ2(2t)
A({Λf > 64t/A}) dt

≤ Ψ2(xA)µ(E)

+

∫ +∞

xA

Ψ′
2(t)

Ψ2(2t)
Ψ1(8t/A)A({Λf > 64t/A}) dt .

But, as Ψ1 and Ψ2 are Orlicz functions, one has tΨ′
2(t) ≤ Ψ2(2t) and

Ψ1(8t/A) ≤ (8t/A)Ψ′
1(8t/A); hence:

∫ +∞

xA

Ψ′
2(t)

Ψ2(2t)
Ψ1(8t/A)A({Λf > 64t/A}) dt

≤
∫ +∞

0

Ψ1(8t/A)

t
A({Λf > 64t/A}) dt

≤ 8

A

∫ +∞

0

Ψ′
1(8t/A)A({Λf > 64t/A}) dt

=

∫ +∞

0

Ψ′
1(x)A({Λf > 8x}) dx

=

∫

D

Ψ1(Λf/8) dA ≤ 1

8

∫

D

Ψ1(Λf ) dA ,

and the proof of Lemma 2.4 is finished. ⌣
·◦ ·◦

Proof of Theorem 2.1. 1) Consider, for every a ∈ D, the Berezin kernel:

(2.4) Ha(z) =
(1 − |a|2)2
|1 − az|4 ·
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One has ‖Ha‖1 = 1 and

‖Ha‖∞ =
(1 − |a|2)2
(1 − |a|)4 =

(1 + |a|)2
(1 − |a|)2 ≤ 4

(1 − |a|)2 ;

hence ([7], Lemma 3.9):

(2.5) ‖Ha‖BΨ1 ≤ 4/h2

Ψ−1
1 (4/h2)

, h = 1 − |a| .

It follows that the function fa = 1
4 h2Ψ−1

1 (4/h2)Ha is in the unit ball of B
Ψ1 .

Now, let ξ ∈ T and 0 < h < 1. When z ∈ W (ξ, h), one has easily (see [7],
proof of Theorem 4.10, with a slightly different definition of W (ξ, h)): |1−az| ≤
5h, where a = (1 − h)ξ. It follows that then |fa(z)| ≥ (1/2500)Ψ−1

1 (4/h2).
Hence:

1 ≥
∫

D

Ψ2

( |fa|
‖Iµ‖

)

dµ ≥ Ψ2

( 1

2500 ‖Iµ‖
Ψ−1

1 (4/h2)
)

µ
(

W (ξ, h)
)

,

which is (2.1).

2) By Lemma 2.2, there is a constant C > 0, that we may, and do, assume
≥ 1, such that ‖Λf‖LΨ2(µ) ≤ C ‖f‖BΨ1 for every f ∈ B

Ψ1 . Let g be in the unit
ball of B

Ψ1 , and apply Lemma 2.4 to f = g/C (whose norm is ≤ 1 yet), E = D,
with hA = 1/2; we get, with C̃ = max(1, µ(D)Ψ2(xA) + 1

8 ):
∫

D

Ψ2

( A

64CC̃
|g|
)

dµ ≤ 1

C̃

∫

D

Ψ2

( A

64C
|g|
)

dµ

≤ 1

C̃

[

µ(D)Ψ2(xA) +
1

8

∫

D

Ψ1(Λf/C) dA
]

≤ 1

C̃

[

µ(D)Ψ2(xA) +
1

8

]

≤ 1 ,

which means that ‖g‖LΨ2(µ) ≤ 64CC̃/A. ⌣
·◦ ·◦

2.2 Compactness

Theorem 2.5 Let µ be a finite positive Borel measure on D, Ψ1 and Ψ2 two
Orlicz functions, and let Iµ : B

Ψ1 → LΨ2(µ) be the canonical map defined by
Iµ(f) = f . One has:

1) If Iµ is compact, then:

(2.6) lim
h→0

Ψ−1
1 (1/h2)

Ψ−1
2

(

1/ρµ(h)
) = 0.

2) In order that Iµ is compact, it suffices that

(2.7) lim
h→0

Ψ−1
1 (1/h2)

Ψ−1
2

(

1/h2Kµ,2(h)
) = 0.
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As for the boundedness case, conditions (2.6) and (2.7) are equivalent if
Ψ1 = Ψ2 = Ψ is sufficiently regular, but not in general. We shall give examples
after the proof of the theorem, at the end of the section.

To prove the first part of this theorem, we shall need the following lemma.

Lemma 2.6 Iµ : B
Ψ1 → LΨ2(µ) is compact if and only if for every bounded

sequence (fn)n in B
Ψ1 converging to 0 uniformly on compact subsets of D, the

sequence
(

Iµ(fn)
)

n
converges to 0 in the norm of LΨ2(µ).

Proof of Lemma 2.6. Assume that Iµ is compact, and let (fn)n be a bounded
sequence in B

Ψ1 which converges to 0 uniformly on compact subsets of D. Since
Iµ is compact and (fn)n is bounded, we have a subsequence (gn)n such that
gn = Iµ(gn) converges to some g ∈ LΨ2(µ). Then some subsequence of (gn)n

converges µ-a.e. to g. Since (gn)n converges to 0 uniformly on compact subsets
of D, we must have g = 0 µ-a.e., that is g = 0 as an element of LΨ2(µ). Now,
the compactness of Iµ implies that ‖fn‖LΨ2(µ) tends to 0.

Conversely, assume that the condition of the lemma is satisfied, and let
(fn)n be an arbitrary bounded sequence in B

Ψ1 . Since the evaluation map is
continuous on B

Ψ1 ([7], Lemma 5.2), (fn)n is a normal family, and Montel’s
Theorem gives a subsequence (gn)n which converges uniformly on compact sub-
sets, to some holomorphic function g. By Fatou’s lemma, g belongs to B

Ψ1 .
Now, (gn−g)n is a bounded sequence of B

Ψ1 which converges to 0 uniformly on
compact subsets of D. By hypothesis, ‖gn − g‖LΨ2(µ) tends to 0, and it follows

that Iµ is compact. ⌣
·◦ ·◦

Proof of Theorem 2.5. 1) Assume that the map Iµ : B
Ψ1 → LΨ2(µ) is

compact. Consider, for every a ∈ D, the Berezin kernel (2.4). It follows from
(2.4) and (2.5) that Ha/‖Ha‖BΨ1 converges uniformly to 0 on compact subsets
of D as |a| goes to 1; hence, by Lemma 2.6, the compactness of Iµ implies that
‖(Ha/‖Ha‖BΨ1 )‖LΨ2(µ) tends to 0. That means that, for every ε > 0, one has:

∫

D

Ψ2

( |Ha|
ε‖Ha‖BΨ1

)

dµ ≤ 1 ,

for |a| close enough to 1, depending on ε.
Now, let ξ ∈ T and 0 < h < 1; with a = (1 − h)ξ. As already said in the

proof of Theorem 2.1, z ∈ W (ξ, h) implies that |Ha(z)| ≥ 1/625h2. Therefore:

∫

D

Ψ2

( |Ha|
ε ‖Ha‖BΨ1

)

dµ ≥ Ψ2

( 1/625h2

ε(4/h2)/Ψ−1
1 (4/h2)

)

µ
(

W (ξ, h)
)

.

We get, for h > 0 small enough:

µ
(

W (ξ, h)
)

≤ 1

Ψ2

(

(1/2500ε)Ψ−1
1 (4/h2)

) ·

10



Since ξ ∈ T is arbitrary, it follows that, for h > 0 small enough:

ρµ(h) ≤ 1

Ψ2

(

(1/2500ε)Ψ−1
1 (4/h2)

)

,

which reads:
Ψ−1

1 (4/h2)

Ψ−1
2

(

1/ρµ(h)
) ≤ 2500ε.

Since Ψ−1
1 (4/h2) ≥ Ψ−1

1 (1/h2), we have obtained (2.6). ⌣
·◦ ·◦

2) Assume now that (2.7) is satisfied. By Lemma 2.6, we have to show that
for every sequence (fn)n in the unit ball of B

Ψ1 which converges uniformly to 0
on compacts subsets of D, (Iµ(f))n converges to 0 for the norm of LΨ2(µ). So,
let (fn)n be such a sequence, and let ε > 0.

By Lemma 2.2, there is a constant C ≥ 1 such that ‖Λf‖LΨ2(µ) ≤ C ‖f‖BΨ1

for every f ∈ B
Ψ1 . Set A = 64C/ε. By (2.7), there is an hA < 1 such that, for

0 < h ≤ hA, one has Ψ−1(1/h2) ≤ (1/A)Ψ−1
2

(

1/h2Kµ,2(h)
)

, i.e.

Kµ,2(h) ≤ 1/h2

Ψ2[AΨ−1
1 (1/h2)]

·

For 0 < r < 1, we may therefore apply, for every n ≥ 1, Lemma 2.4 to fn/C
(which is in the unit ball of B

Ψ1 , with E = D \ rD; we get:
∫

D\rD

Ψ2(|fn|/ε) dµ =

∫

D\rD

Ψ2(A|fn|/64C) dµ

≤ µ(D \ rD)Ψ2(xA) +
1

8

∫

D

Ψ1(Λfn
/C) dA

≤ µ(D \ rD)Ψ2(xA) +
1

8
·

But this last quantity is ≤ 1/2 for r small enough.
Fix such an r < 1. Since (fn)n converges uniformly to 0 on compacts subsets

of D, one has
∫

rD
Ψ2(|fn|/ε) dµ ≤ 1/2 pour n large enough.

It follows that
∫

D
Ψ2(|fn|/ε) dµ ≤ 1, and hence ‖fn‖LΨ2(µ) ≤ ε, for n large

enough.

That ends the proof of Theorem 2.5. ⌣
·◦ ·◦

As we said, in general, condition (2.6) is not sufficient to ensure compactness,
and condition (2.7) is not necessary. They are equivalent (and hence necessary
and sufficient for compactness) if Ψ1 = Ψ2 = Ψ and Ψ is a regular Orlicz
function. Here, regular means that Ψ satisfies the condition we called ∇0: for

some x0 > 0 and some C ≥ 1, one has Ψ(2x)
Ψ(x) ≤ Ψ(2Cy)

Ψ(y) for x0 ≤ x ≤ y (see [7],

Theorem 4.11, whose proof works as well in the Bergman case). However, we
gave in [7], examples showing, in the Hardy case, that this is not always the case
(examples 3 and 4 in [7], Chapter 4, §3). These examples work in the Bergman
case and we are going to recall them sketchily.
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Example 1. For every Orlicz function Ψ not satisfying ∇0, there exists a
measure µ such that Iµ : B

Ψ → LΨ(µ) is compact but for which (2.7) is not
satisfied.

Proof. Since Ψ /∈ ∇0, we can select two increasing sequences (xn)n≥1 and
(yn)n≥1, with 1 ≤ xn ≤ yn ≤ xn+1 and Ψ(xn) > 1, such that lim xn = +∞ and

Ψ(2xn)

Ψ(xn)
≥ Ψ(2nyn)

Ψ(yn)
·

Define the discrete measure

µ =

∞
∑

n=1

1

Ψ(2nyn)
δrn

,

where rn = 1 − 1/
√

Ψ(yn). The series converge since Ψ(2nyn) ≥ 2n.
The same proof as in [7] shows that Iµ is compact, but, writing hn =

1/
√

Ψ(xn) and tn =
√

Ψ(yn), we have:

Kµ,2(hn) ≥ µ([1 − tn, 1])

t2n
≥ Ψ(yn)

Ψ(2nyn)
≥ Ψ(xn)

Ψ(2xn)
=

1/h2
n

Ψ
(

2Ψ−1(1/h2
n)
)

,

showing that (2.7) is not satisfied. ⌣
·◦ ·◦

This actually shows that condition Ψ ∈ ∇0 is necessary and sufficient in
order to have that the identity from BΨ to LΨ(µ) is compact if and only if µ
satisfies (2.7).

Example 2. There exist an Orlicz function Ψ and a measure µ on D such that
(2.6) holds, but for which Iµ : B

Ψ → LΨ(µ) is not compact.

Proof. We shall use the Orlicz function Ψ introduced in [6]. The key properties
of this function are:

1) Ψ(x) ≥ x3/3 for every x > 0;
2) Ψ(k!) ≤ (k!)3 for every integer k ≥ 1;
3) Ψ

(

3(k!)
)

> k.(k!)3 for every integer k ≥ 1.

Define xk = k!, yk = (k+1)!/k1/3, rk = 1−1/
√

Ψ(yk) and ρk = 1−1/
√

Ψ(xk).
Of course, x2 < y2 < x3 < · · · . Let ν be the discrete measure defined by:

ν =

∞
∑

k=2

νk ,

where:

νk =
1

Ψ
(

(k + 1)!
)

∑

ak2=1

δrka .

In order to show that (2.6) is satisfied, it is clearly sufficient to prove that,
when 1/

√

Ψ(yk) ≤ h < 1/
√

Ψ(yk−1) (with k ≥ 3), we have:

ρν(h) ≤ 1

Ψ
(

1
2k1/3Ψ−1(1/h2)

) ·
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But, for such h, we have Ψ−1(1/h2) ≤ yk so

Ψ
(

1
2k1/3Ψ−1(1/h2)

)

≤ 1

2
Ψ
(

(k + 1)!
)

.

Hence, the conclusion follows from the fact that ρν(h) ≤ 2/Ψ
(

(k + 1)!
)

(see [7]
for more details). So, condition (2.6) is fulfilled.

We now introduce fk(z) = xk

( 1 − ρk

1 − ρkzk2

)4

. By (2.5), ‖fk‖BΨ ≤ 1. An easy

computation gives rk2

k ≥ ρk, for every k ≥ 2; so, for every a ∈ T with ak2

= 1,
we have:

fk(ark) ≥ xk

(1 − ρk

1 − ρ2
k

)4

≥ 1

16
xk.

Hence:
∫

D\rk−1D

Ψ(48 |fk|) dν ≥
∫

D\rk−1D

Ψ(48 |fk|) dνk ≥ k2

Ψ
(

(k + 1)!
)Ψ(3xk)

>
k2

Ψ
(

(k + 1)!
)

(

k.(k!)3
)

≥ 1.

Therefore, we conclude that sup‖f‖
BΨ≤1 ‖f‖LΨ(D\rkD,µ) ≥ 1/48, though rk → 1.

Hence (see the above proof of Theorem 2.5), Iµ is not compact. ⌣
·◦ ·◦

3 Compactness for composition operators

3.1 Carleson function

We know ([7], Proposition 5.4), that every analytic self-map ϕ : D → D

induces a bounded composition operator Cϕ : B
Ψ → B

Ψ. The main result of
this section is that, for the pull-back measure Aϕ of A by ϕ, the necessary and
the sufficient conditions of Theorem 2.5 are equivalent. The same kind of result
occurs for Hardy-Orlicz spaces ([7], Theorem 4.18 and Theorem 4.19), but the
proofs must be different (because we use the analytic functions themselves, and
not their boundary values).

We have the following contractivity (or homogeneity) result.

Theorem 3.1 There exists a constant C0 > 0 such that, for every analytic
self-map ϕ : D → D, one has:

(3.1) A
(

{ϕ ∈ S(ξ, εh)}
)

≤ C0 ε2 A
(

{ϕ ∈ S(ξ, h)}
)

for every ξ ∈ T, 0 < h < (1 − |ϕ(0)|), and 0 < ε ≤ 1.

As a consequence, one has ρϕ,2(εh) ≤ C ε2 ρϕ,2(h), for h > 0 small enough,
and hence:

ρϕ,2(h)

h2
≤ Kµ,2(h) = sup

0<ε≤1

ρϕ,2(εh)

ε2h2
≤ Cα

ρϕ,2(h)

h2
·

Therefore:
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Theorem 3.2 For every analytic self-map ϕ : D → D and every Orlicz function
Ψ, the composition operator Cϕ : B

Ψ → B
Ψ is compact if and only if

(3.2) lim
h→0

Ψ−1(1/h2)

Ψ−1
(

1/ρϕ,2(h)
) = 0.

Proof of Theorem 3.1. It suffices, even if it means enlarging C0, to show (3.1)
for 0 < h ≤ h0 = α0(1−|ϕ(0)|) and 0 < ε ≤ ε0 for some 0 < α0 < 1 and 0 < ε0 <
1. Indeed, if 0 < h ≤ h0 and ε0 ≤ ε ≤ 1, one has A

(

S(ξ, εh)
)

≤ A
(

S(ξ, h)
)

≤
(1/ε2

0) ε2A
(

S(ξ, h)
)

. Now, for h0 ≤ h < 1 − |ϕ(0)|, one has, on one hand,

for 0 < ε ≤ α0, A
(

S(ξ, εh)
)

≤ A
(

S(ξ, (ε/α0)h0)
)

≤ C0(ε
2/α2

0)A
(

S(ξ, h0)
)

≤
(C0/α2

0) ε2A
(

S(ξ, h)
)

; and, on the other hand, for α0 ≤ ε ≤ 1, A
(

S(ξ, εh)
)

≤
A
(

S(ξ, h)
)

≤ (1/α2
0) ε2A

(

S(ξ, h)
)

.

Since, moreover, it suffices to make the proof for ξ = 1, Theorem 3.1 will
result from the following theorem.

Theorem 3.3 There exist a constant K > 0, α0 > 0 and λ0 > 1 such that
every analytic function f : D → Π+ with |f(0)| ≤ α0 satisfies, for every λ ≥ λ0:

A({|f | > λ}) ≤ K

λ2
A({|f | > 1}) ,

where Π+ is the right-half plane Π+ = {z ∈ C ; Re z > 0}.

Indeed, let f = h/(1−ϕ). Then Re f > 0 and |f(0)| ≤ h/(1− |ϕ(0)|) ≤ α0. We
may apply Theorem 3.3 and we get, for 0 < ε ≤ 1/λ0:

Aϕ

(

S(1, εh)
)

= A ({|ϕ − 1| < εh|}) = A ({|f | > 1/ε})
≤ Kε2A ({|f | > 1}) = Kε2A ({|1 − ϕ| < h}) = Kε2Aϕ

(

S(1, h)
)

,

which proves Theorem 3.1. ⌣
·◦ ·◦

3.1.1 Some lemmas

Lemma 3.4 There is some constant C1 > 0 such that

(3.3) A({|f | > λ}) ≤ C1

λ2
|f(0)|2 ,

for every analytic function f : D → Π+ and for every λ > 0.
In particular, there is a constant K1 > 0 such that ‖f‖L1(D) ≤ K1|f(0)|2 for

every such a function.

Proof. We may assume that |f(0)| = 1.
The second assertion follows from the first one:
∫

D

|f | dA =

∫ +∞

0

A({|f | > λ}) dλ ≤
∫ 1

0

dλ +

∫ +∞

1

C1

λ2
dλ = 1 + C1 := K1 ;
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To prove the first assertion, remark first that the left-hand side of inequality (3.3)
is ≤ 1, so (3.3) is obvious for λ ≤ 2 (with C1 ≥ 4). Assume that λ > 2, and

set ϕ(z) = f(z)−f(0)

f(z)+f(0)
. Then |f(z)| > λ implies |ϕ(z) − 1| = 2 |Re f(0)|/|f(z) +

f(0)| ≤ 2/(λ−1) ≤ 4/λ. But ϕ maps D into itself and hence induces a bounded
composition operator Cϕ : B

2 → B
2. It follows from [4] that Aϕ is a Bergman-

Carleson measure, and hence (see the proof of Theorem 2.1, 1), with Ψ1(x) =
Ψ2(x) = x2):

A({|f | > λ}) ≤ Aϕ

(

S(1, 4/λ)
)

≤ Aϕ

(

W (1, 12/λ)
)

≤ C0 ‖Cϕ‖2/(λ/12)2 = C′
0 ‖Cϕ‖2/λ2 ,

for some constant C0 ≤ 25002/4. But ‖Cϕ‖ ≤ 1+|ϕ(0)|
1−|ϕ(0)| = 1 ([14], Theorem 11.6,

page 308), and the result follows. ⌣
·◦ ·◦

Let:

(3.4) G = {z ∈ C ; | arg z| < π/4} .

By applying Lemma 3.4 to f2, we get, where :

Lemma 3.5 There exists a constant C2 > 0 such that every analytic function
f : D → G, one has, for every λ > 0

(3.5) A({|f | > λ}) ≤ C2

λ4
|f(0)|4 .

In particular there is a constant K2 > 0 such that ‖f‖L2(D) ≤ K2|f(0)|4 for
every such a function.

Now, we shall have to replace D by some conformal copies of D. This will
be possible by the following version of Lemma 3.5.

Lemma 3.6 Let Ω be a bounded Jordan domain bounded by a C1 Jordan curve
J and let c ∈ Ω. Let ∆ = T (Ω) be a domain similar to Ω, i.e. T (z) = αz + β
with α 6= 0. Set γ = T (c). Then, there exists a constant C > 0, depending only
on Ω and c, such that, for any λ > 0 and any analytic function f : ∆ → G, one
has:

(3.6) A({|f | > λ}) ≤ C

λ4
|f(γ)|4 A(Ω) .

In particular, there is a constant K = K(Ω, c) > 0 such that ‖f‖2 ≤
K |f(γ)|4 A(Ω) for all such functions.

Moreover C > 0 can be taken so that, for every positive harmonic function
u : ∆ → R+, one has:

(3.7)
1

C
u(γ) ≤ 1

A(∆)

∫

∆

u dA ≤ C u(γ) .
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Proof. First take a Riemann map h : D → Ω such that h(0) = c, which extends
to a bi-Lipschitz homeomorphism h of D to Ω. Hence, for some constants
a, b > 0, we have:

a ≤ |h′(z)| ≤ b , ∀z ∈ D .

Then, by the change-of-variable formula, we have, setting F = f ◦ h and w =
h(z):

A({|f | > λ}) =

∫

Ω

1I{|f |>λ}(w) dA(w) =

∫

D

1I{|F |>λ}(z)|h′(z)|2 dA(z)

≤ b2

∫

D

1I{|F |>λ}(z) dA(z) = b2A({|F | > λ}) ≤ b2 C2

λ4
·

We implicitely used the fact that F maps D to G and that |F (0)| = |f(c)| ≤ 1,
so we are allowed to use the previous lemma. Moreover, we have

A(Ω) =

∫

Ω

dA(w) =

∫

D

|h′(z)|2 dA(z) ≥ a2A(D) = a2 ;

so that finally:

A({|f | > λ}) ≤ C2
b2

a2

1

λ4
A(Ω)

def
=

C

λ4
A(Ω) .

This ends the proof of the first part of Lemma 3.6 for Ω, with C = C2b
2/a2,

since the case of similar domains is a trivial consequence: if ∆ = T (Ω) is such
a domain and γ = T (c), let h1 = T ◦ h. We have |h′| = |α||h′| ≤ |α| b, as well as
|h′| ≥ |α| a, so that a and b are respectively changed into a′ = |α|a and b′ = |α|b,
and the quotient b/a = b′/a′ remaining unchanged. Moreover, h1(D) = ∆ and
h1(0) = T (c) = γ, so the previous case gives the result.

Finally, one has:

u(γ) = (u ◦ h1)(0) =

∫

D

(u ◦ h1)(z) dA(z)

≥ 1

b′2

∫

D

u
(

h1(z)
)

dA(z) =
1

b′2

∫

∆

u(w) dA(w) ,

which gives the right-hand side of (3.7), since A(∆) ≥ a′2. The left-hand side

is proved in the same way. ⌣
·◦ ·◦

The last lemma is of a different kind.

Lemma 3.7 For every analytic function f : D(z0, r) → G, one has:

A({Re f > Re f(z0)/2}) ≥ 1

8K2
2

A
(

D(z0, r)
)

,

where K2 is the constant given by Lemma 3.5.
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Proof. Recall Paley-Zygmund’s inequality (see [9], Proposition III.3), usually
stated in probabilistic language: for any positive random variable X on some
probability space, one has, for 0 < a < 1:

(3.8) P
(

X > a E(X)
)

≥ (1 − a)2
[E(X)]2

E(X2)
,

where E stands for expectation.
For our problem, we will take as probability space the disk D(z0, r) equipped

with the probability measure dA/r2, and as random variable X = Re f := u.
We get from (3.8) that, since u(z0) = E(X) by the mean value property of
harmonic functions:

A({u > a u(z0)}) ≥ (1 − a)2
[u(z0)]

2

E(u2)
r2 .

Now, observe that
√

2 Re w ≥ |w| when w ∈ G; hence the function g(z) =
f(z − z0)/[

√
2u(z0)], which maps D into G, satisfies |g(0)| ≤ 1 and Lemma 3.5

gives E(u2) ≤ E(|f |2) = ‖f‖2
2 ≤ 2K2

2 [u(z0)]
2. We get:

A({u > a u(z0)}) ≥
(1 − a)2

2K2
2

r2 ,

which gives the desired result in taking a = 1/2. ⌣
·◦ ·◦

3.1.2 Proof of Theorem 3.3.

For technical reason, we are going to work with functions with range in the
set G. Proving Theorem 3.3 amounts to prove:

Proposition 3.8 There exist a constant K ′ > 0, α1 > 0 and λ1 > 1 such that
every analytic function f : D → G with |f(0)| ≤ α1 satisfies, for λ ≥ λ1:

A({|f | > λ}) ≤ K ′

λ4
A({|f | > 1}) .

It will be useful to note that
√

2w ≥ |w| when w ∈ G.

Proof. The idea of the proof is to split Fλ = {|f | > λ} (actually, Fλ will
be conditionned by the more regular set {Mdf > 1}) in parts on which we
shall be able to apply Lemma 3.6. In order to construct these parts, we shall
use a Calderón-Zygmund type decomposition adapted to the geometry of the
unit disk. We are going to recall the principle of this decomposition for the
convenience of the reader.

Before that, we have to say that we shall begin to work not with the function
f as is the statement of Proposition 3.8, but with this function multiplied by
a constant (as we shall precise at the end of the proof). Nevertheless, we shall
call this new function by f yet.
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Now, remark that for f : D → G with |f(0)| ≤ α < 1, one has:

(3.9) |f(z)| > 1 =⇒ |z| > β ,

for β = (1−α2)/(1+α2). In fact, setting a = f(0), the function g = f2−a2

f2+a2 maps

D into itself and vanishes at 0. By Schwarz’s lemma, |z| ≤ β implies |g(z)| ≤ β,

and since f2 = a2g+a2

1−g , we get:

|f(z)|2 ≤ |a|2β + |a|2
1 − β

=
|a|2
α2

≤ 1 .

The goal of the remark (3.9) is that, in order to make the Calderón-Zygmund
decomposition, we have to avoid the center 0 of D, which is not covered by the
dyadic “squares” defined below.

Recall now the Calderón-Zygmund decomposition. We consider the family
S =

⋃

n∈N
Sn of all dyadic half-open “squares”, where Sn is the family of sets

S = {z ∈ D ; r1 ≤ |z| < r2 and 2πθ1 ≤ arg z < 2πθ2} ,

where r1 = 1 − 2−n(j + 1), r2 = 1 − 2−nj, θ1 = 2−nk, θ2 = 2−n(k + 1),
0 ≤ j, k ≤ 2n − 1 are pairs of “consecutive” dyadic numbers in (0, 1).

Consider the conditional expectation En|f | of |f |, given the sigma-algebra
generated by Sn, namely:

(En|f |)(z) =
∑

S∈Sn

( 1

A(S)

∫

S

|f | dA
)

1IS(z) .

The dyadic maximal function Mdf is defined by:

Mdf(z) = sup
n

(En|f |)(z) .

Note that:

Mdf(z) = sup
Sz

1

A(Sz)

∫

Sz

|f | dA ,

where the supremum is taken over all Sz ∈ S containing z.
By Lebesgue’s differentiation Theorem (or by the martingale convergence

Theorem), we know that (En|f |)(z) converges to |f(z)|, A-almost everywhere,
so Mdf(z) ≤ 1 implies |f(z)| ≤ 1 for almost all z ∈ D, and we can write:

(3.10) F1 = {|f | > 1} ⊆ {Mdf > 1} ∪ N ,

where N is a negligible set. Hence Fλ ⊆ {Mdf > 1}∪N for λ ≥ 1. Now, the set
{Mdf > 1} can be decomposed in a disjoint union {Mdf > 1} =

⊔

n En, where

En = {z ∈ D ; (En|f |)(z) > 1 and (Ej |f |)(z) ≤ 1 if j < n}.

Since En|f | is constant on the squares S ∈ Sn, each En can be in its turn
decomposed into a disjoint union En =

⊔

k Sn,k, where Sn,k ∈ Sn.
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By definition, for z ∈ En, one has (En|f |)(z) ≥ 1 and hence

1

A(Sn,k)

∫

Sn,k

|f | dA ≥ 1 for z ∈ Sn,k .

But, on the other hand, (En−1|f |)(z) ≤ 1, and, since the area of an (n−1)-dyadic
square is four times that of an n-dyadic one, we have, if z ∈ Sn,k:

(En|f |)(z) =
1

A(Sn,k)

∫

Sn,k

|f | dA

≤ 1

A(Sn,k)

∫

Sn−1,j

|f | dA = 4
1

A(Sn−1,j)

∫

Sn−1,j

|f | dA ≤ 4 ,

where Sn−1,j is the dyadic square of rank (n − 1) containing Sn,k.

Finally, reindexing the sets Sk,n, we can write {Mdf > 1} as a disjoint union

(3.11) {Mdf > 1} =
⊔

l≥1

Sl ,

for which:

(3.12) 1 ≤ 1

A(Sl)

∫

Sl

|f | dA ≤ 4 ,

Equations (3.10), (3.11) and (3.12) define the Calderón-Zygmund decompo-
sition of the function f .

In order to apply Lemma 3.6, we have to control (from above and from below)
the values of |f | at the “center” of the squares. One might think of doing this
by using (3.12), but it is not always possible (for example, the fonction 1/z2 is
not integrable on the square of vertices 0, 1 + i, 1− i, 2). Nevertheless, we may
enlarge these squares in order to use (3.12).

Let us round the sets Sl in Ŝl, by adding half-disks, as indicated in Figure 1.
Those sets Ŝl can be performed by making similarities from

S0,1 = {z ∈ D ; 1/2 ≤ |z| < 1 and 0 ≤ arg z < π/2} .

Moreover, the boundary of each Ŝl is C1, hence conformally and bi-Lipschitz
equivalent to D; therefore, we are able to apply Lemma 3.6 with, as it is essential,
a constant independent of the index l: for some constant C > 0, one has, for
every l ≥ 1, if γl is the center (defined in an obvious way) of Sl (and hence of
Ŝl):

A({z ∈ Ŝl ; |f(z)| > λ}) ≤ C

λ4
|f(γl)|4 A(Ŝl) .

Now, let Dl be the greatest open disk with center γl and contained in Sl (see
Figure 2). We have, by the last part of Lemma 3.6:

|f(γl)| ≤
C

A(Dl)

∫

Dl

|f | dA ≤ 16C

A(Sl)

∫

Sl

|f | dA ≤ 64 C .
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Figure 2: Disk Dl

Using the fact that A(Ŝl) ≤ 4A(Sl) and that Fλ ⊆ {Mdf > 1} ∪ N when
λ ≥ 1, we get:

A(Fλ) = A(Fλ ∩ {Mdf > 1}) ≤
∑

l≥1

A({z ∈ Ŝl ; |f(z)| > λ})(3.13)

≤ C

λ4
(64C)4

∑

l≥1

A(Ŝl) ≤
226C5

λ4

∑

l≥1

A(Sl)

=
226C5

λ4
A({Mdf > 1}) .

It remains to control A({Mdf > 1}) by A({|f | > δ}), for some numerical
δ > 0.

For that, we shall use Lemma 3.7. By harmonicity and Lemma 3.6, one has,
with u = Re f :

u(γl) ≥
1/C

A(Ŝl)

∫

Ŝl

u dA ≥ 1

4C

1

A(Sl)

∫

Sl

u dA

≥ 1

4
√

2C

1

A(Sl)

∫

Sl

|f | dA ≥ 1

4
√

2 C
·

We now apply Lemma 3.7 and we get:

A({|f | > 1/8C}) ≥ A({u > 1/4
√

2C}) ≥ A({u > u(γl)/2})

≥ 1

8K2
2

A(Dl) .

We obtain hence:

(3.14) A({Mdf > 1}) =
∑

l≥1

A(Sl) ≤ 4
∑

l≥1

A(Dl) ≤ 32K2
2 A({|f | > 1/8C}) .
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The proof of Theorem 3.3 is now finished, because (3.13) and (3.14) give,
for λ ≥ 1:

(3.15) A({|f | > λ}) ≤ 231 C5 K2
2

λ4
A({|f | > 1/8C})

and if f is as in the statement of Proposition 3.8, we can apply (3.15) to f1 =
f/8C and we get, for λ ≥ λ1 = 8C:

A({|f | > λ}) ≤ 231(8C)4 C5K2
2

λ4
A({|f | > 1}) ,

when |f(0)| ≤ 8C. ⌣
·◦ ·◦

3.2 Nevanlinna counting function

Nevanlinna counting function is defined, for every analytic function ϕ : D →
D, and for every w ∈ ϕ(D) \ {ϕ(0)}, by:

(3.16) Nϕ(w) =
∑

ϕ(z)=w

log
1

|z| ,

where each term log 1
|z| being repeated according to the multiplicity of z, and

by Nϕ(w) = 0 for the other w ∈ D.
Recall (see [8] that, if m is the normalized Lebesgue measure on T, then the

Carleson function of ϕ is the Carleson function of the pull-back measure mϕ of
m by ϕ. We proved in [8] (Theorem 3.1 and Theorem 3.7) that it is equivalent
to the Carleson function ρϕ in the following way.

Theorem 3.9 ([8]) There exist two universal constants C, c > 1, such that,
for every analytic self-map ϕ : D → D, one has:

(3.17) sup
w∈W (ξ,h)∩D

Nϕ(w) ≤ C mϕ[W (ξ, c h)] ,

and

(3.18) mϕ

(

W (ξ, h)
)

≤ C
1

A
(

W (ξ, ch)
)

∫

W (ξ,ch)

Nϕ(z) dA(z)

for 0 < h < 1 small enough.

We are going to deduce from Theorem 3.9 the same result in the 2-dim-
ensional case. The Nevanlinna counting function of order 2 is defined (see [12],
§ 6.2), for w ∈ D \ {ϕ(0)}, by:

(3.19) Nϕ,2(w) =
∑

ϕ(z)=w

(

log(1/|z|)
)2

,
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where each preimage z of w appears as often as its multiplicity. The partial
Nevanlinna counting function is defined, for 0 < r ≤ 1 by:

Nϕ(r, w) =
∑

ϕ(z)=w,|z|<r

log(1/|z|)

and we have ([12], Proposition 6.6, where a misprint occurs):

(3.20) Nϕ,2(w) = 2

∫ 1

0

Nϕ(r, w)
dr

r
·

One has:

Theorem 3.10 There exists a universal constant C > 1, such that, for every
analytic self-map ϕ : D → D, one has:

(3.21) (1/C) ρϕ,2(h/C) ≤ sup
|w|≥1−h

Nϕ,2(w) ≤ C ρϕ,2(C h),

for 0 < h < 1 small enough.

Proof. Let w0 = ϕ(0) and set:

u(z) =
w0 − ϕ(z)

1 − w0ϕ(z)
·

Since u(0) = 0, Schwarz’s lemma gives |u(z)| ≤ |z|. Hence there is no z with
|z| < t such that ϕ(z) = w when t ≤ |w0 − w|/|1 − w0w| = |u(w)|. It follows
that (3.20) actually writes:

(3.22) Nϕ,2(w) = 2

∫ 1

|u(w)|
Nϕ(r, w)

dr

r
·

1) It follows from (3.22) that:

Nϕ,2(w) ≤ 2

|u(w)|2
∫ 1

0

Nϕ(r, w) r dr .

But (see [8], Lemma 3.4) 1/|u(w)| = |w − w0|/|1 − ww0| > 1/3 when 1 − |w| <
(1 − |w0|)/4; therefore, for 1 − |w| < (1 − |w0|)/4, we have:

Nϕ,2(w) ≤ 18

∫ 1

0

Nϕ(r, w) r dr .

Now, Nϕ(r, w) = Nϕr
(w), where ϕr(z) = ϕ(rz), and it follows from (3.17)

that, for w ∈ W (ξ, h), with ξ ∈ T and h > 0 small enough, one has:

Nϕ,2(w) ≤ 18

∫ 1

0

Cmϕr
[W (ξ, c h)] r dr

= 18C

∫ 1

0

m
(

{eiθ ; ϕ(reiθ) ∈ W (ξ, c h)}
)

r dr

= 9CA
(

{z ∈ D ; ϕ(z) ∈ W (ξ, c h)}
)

.
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2) Conversely, it follows from (3.20) that:

Nϕ,2(w) ≥ 2

∫ 1

0

Nϕ(r, w) r dr ;

hence:

1

A[W (ξ, ch)]

∫

W (ξ,ch)

Nϕ,2(z) dA(z)

≥ 2

∫ 1

0

[

1

A[W (ξ, ch)]

∫

W (ξ,ch)

Nϕ(r, z) dA(z)

]

r dr

≥ 2

C

∫ 1

0

mϕr
[W (ξ, h)] r dr

=
2

C

∫ 1

0

m
(

{eiθ ; ϕ(reiθ) ∈ W (ξ, h)}
)

r dr

=
1

C
A
(

{z ∈ D ; ϕ(z) ∈ W (ξ, h)}
)

,

and that finishes the proof of Theorem 3.10. ⌣
·◦ ·◦

Remark. Actually, the proof shows that for some constant C > 1, one has:

(3.23) (1/C)Aϕ[W (ξ, h/C)] ≤ sup
w∈W (ξ,h)

Nϕ,2(w) ≤ C Aϕ[W (ξ, Ch)] ,

for every ξ ∈ T and 0 < h < 1 small enough. Since, by Cauchy-Schwarz’s
inequality, one has Nϕ,2(w) ≤ [Nϕ(w)]2, it follows hence from Theorem 3.9 and
Theorem 3.10 (actually (3.23)) that, for some constant C > 1, one has:

(3.24) A({z ∈ D ; ϕ(z) ∈ W (ξ, h)}) ≤ C
[

m({u ∈ T ; ϕ∗(u) ∈ W (ξ, Ch)})
]2

,

for every ξ ∈ T and every 0 < h < 1 small enough, a fact which does not seem
to be proved in a straightforward way.

Corollary 3.11 For every analytic self-map ϕ : D → D and for every Orlicz
function Ψ, the composition operator Cϕ : B

Ψ → B
Ψ is compact if and only if:

(3.25) lim
h→0

Ψ−1(1/h2)

Ψ−1
(

1/νϕ,2(h)
) = 0 ,

where νϕ,2(h) = sup|w|≥1−h Nϕ,2(w).

Proof. If Cϕ is compact, Theorem 3.2 gives, for every A > 0, an hA > 0 such
that, for 0 < h ≤ hA:

Ψ−1(1/h2) ≤ 1

A
Ψ−1

(

1/ρϕ,2(h)
)

.
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Then Theorem 3.10 gives:

νϕ,2(h) ≤ C ρϕ,2(Ch) ≤ C/Ψ[AΨ−1(1/C2h2)] ,

i.e. AΨ−1(1/C2h2) ≤ Ψ−1[C/νϕ,2(h)]; and then, by concavity, since C > 1:

1

C2
Ψ−1(1/h2) ≤ Ψ−1(1/C2h2) ≤ 1

A
Ψ−1

(

C/νϕ,2(h)
)

≤ C

A
Ψ−1

(

1/νϕ,2(h)
)

,

which implies (3.25).

The converse follows the same lines. ⌣
·◦ ·◦

Corollary 3.12 The compactness of the composition operator Cϕ : B
Ψ → B

Ψ

implies that:

lim
|z|→1

Ψ−1
(

1/[1 − |ϕ(z)|]2
)

Ψ−1
(

(1 − |z|)2
) = 0 .

This corollary was proved in [7], Theorem 5.7, by a more direct method; and
we also showed that the condition is sufficient when Ψ grows enough (namely,
satisfies the condition ∆2).

Proof. Since Nϕ,2

(

ϕ(z)
)

≥
(

log(1/|z|)
)2 ≥ (1 − |z|)2, it follows from Corol-

lary 3.11 that, for every A > 0, one has:

(1 − |z|)2 ≤ 1

Ψ
[

AΨ−1
(

1/(1 − |ϕ(z)|)2
)] ;

that is:
Ψ−1

(

1/(1 − |ϕ(z)|)2
)

Ψ−1
(

(1 − |z|)2
) ≤ 1/A ,

and that proves Corollary 3.12. ⌣
·◦ ·◦

4 Comparison of the compactness of composi-

tion operators on Hardy-Orlicz spaces and on

Bergman-Orlicz spaces

In the classical case (Ψ(x) = xp, 1 ≤ p < ∞), it is known ([10], The-
orem 3.5, with Proposition 2.7) that the compactness of Cϕ : Hp → Hp im-
plies the compactness of Cϕ : B

p → B
p. On the other hand, we implicitely

proved in [7], Theorem 5.7, that when Ψ grows very fast (namely, satisfies the
so-called ∆2 condition), then the compactness of Cϕ : HΨ → HΨ implies the
compactness of Cϕ : B

Ψ → B
Ψ. Let us write why: it is easy to show (see [8],

proof of Theorem 4.3) that the compactness of Cϕ : HΨ → HΨ implies that
Ψ−1[1/1 − |ϕ(z)|)]/Ψ−1[1/(1− |z|)] tends to 0 as |z| goes to 1, and we actually
proved in [7], Theorem 5.7, that, when Ψ ∈ ∆2, this last condition implies the
compactness of Cϕ : B

Ψ → B
Ψ. The next proposition gives a condition, though

not very satisfactory, on Ψ which includes the cases Ψ(x) = xp and Ψ ∈ ∆2 and
for which the compactness on HΨ implies the compactness on B

Ψ.
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Proposition 4.1 Assume that that the Orlicz function Ψ satisfies the following
condition: for every A > 0, there exist xA > 0 and B ≥ A such that:

(4.1) Ψ[AΨ−1(x2)] ≤
(

Ψ[BΨ−1(x)]
)2

for every x ≥ xA. Then every analytic map ϕ : D → D defining a compact
composition operator Cϕ : HΨ → HΨ also defines compact composition operator
Cϕ : B

Ψ → B
Ψ.

It is clear that Ψ satisfies (4.1) if Ψ(x) = xp. Recall that condition ∆2 means
that there exists some α > 1 such that [Ψ(t)]2 ≤ Ψ(αt) for t large enough.
For such a function, one has Ψ−1(x2) ≤ αΨ−1(x), and hence Ψ[AΨ−1(x2)] ≤
Ψ[αAΨ−1(x)], which is ≤

(

Ψ[αAΨ−1(x)]
)2

for x large enough, since it tends
to infinity. Therefore, (4.1) holds if Ψ has ∆2. Classical examples of Orlicz
functions with ∆2 are Ψ(x) = exq − 1, where q ≥ 1.

Another example, which does not have ∆2, but satisfies (4.1), is Ψ(x) =
exp

(

[log(x + 1)]2
)

.

Proof of Proposition 4.1. One has Nϕ,2(w) ≤ [Nϕ(w)]2 by Cauchy-Schwarz’s
inequality. Let A > 0 be arbitrary. If Cϕ is compact on HΨ, we know, by [8],
Theorem 4.2, that:

sup
|w|≥1−h

Nϕ(w) = o

(

1

Ψ[BΨ−1(1/h)]

)

, as h → 0.

By (4.1), we get:

sup
|w|≥1−h

Nϕ,2(w) = o

(

1

Ψ[AΨ−1(1/h2)]

)

·

Corollary 3.11 ensures that Cϕ is compact on B
Ψ. ⌣

·◦ ·◦

However, we are going to see that the conclusion of Proposition 4.1 does not
hold for an arbitrary Orlicz function, in proving the following theorem.

Theorem 4.2 There exist an analytic self-map ϕ : D → D and Orlicz function
Ψ such that Cϕ : HΨ → HΨ is compact whereas Cϕ : B

Ψ → B
Ψ is not compact.

In order to prove it, we shall show and use the following result.

Theorem 4.3 There exists an analytic self-map ϕ : D → D such that, for some
constants c2 ≥ π and π/4 ≥ c1 > 0, one has, for some constant C > 0 and for
h > 0 small enough:

ρϕ(h) ≤ C e−c1/h ;(4.2)

ρϕ,2(h) ≥ (1/C) e−c2/h .(4.3)

25



We may remark that this result is rather sharp, since, by (3.24), one must
have ρϕ,2(h) ≤ C [ρϕ(h)]2 and hence, here, 2c1 ≤ c2.

Proof of Theorem 4.2. We know ([7], Theorem 4.18) that Cϕ : HΨ → HΨ is
compact if and only if

(4.4) lim
h→0

Ψ−1(1/h)

Ψ−1
(

1/ρϕ(h)
) = 0

and (by Theorem 3.2) that the compactness of Cϕ : B
Ψ → B

Ψ implies that

(4.5) lim
h→0

Ψ−1(1/h2)

Ψ−1
(

1/ρϕ,2(h)
) = 0

Hence, it suffices to construct an Orlicz function Ψ such that:

(4.6) lim
x→∞

Ψ−1(x)

Ψ−1(e c1x)
= 0 ;

and

(4.7) lim sup
x→∞

Ψ−1(x2)

Ψ−1(e c2x)
> 0 .

We shall actually construct an increasing concave function f : [0,∞) → R+

such that f(0) = 0 and f(∞) = ∞ which satisfies (4.6) and (4.7) (with f instead
of Ψ−1) and we shall then take Ψ = f−1.

1) For that, we set α0 = 0 and we define an increasing sequence of positive
numbers α1 = 1, α2, . . . by:

(4.8) αn+1 = ec1αn , n ≥ 0 ,

and we take f affine on each interval [αn, αn+1], n ≥ 0. More precisely, we set

(4.9) f(t) = Ant + Bn , for αn−1 ≤ t ≤ αn , n ≥ 1,

where A1 = 1, B1 = 0, and for n ≥ 1:

(4.10) Bn+1 − Bn = (An − An+1)αn .

and, for n ≥ 0:

(4.11)
Bn+1

An+1
=

1

2
(ec2

√
αn − 3αn) .

Condition (4.10) ensures that f is continuous. It is clear that f is increasing
and that f(∞) = ∞.

Now, since c2 >
√

6, the function u defined by u(x) = ec2x − 3x2 is positive
and increasing for x > 0; hence, if one sets

(4.12) βn = (ec2
√

αn − 3αn)/2 , n ≥ 0,
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(βn)n is an increasing sequence of positive numbers. But βn = Bn+1/An+1;
hence (4.10) gives, for n ≥ 1:

An =
αn + 1/βn

αn + 1/βn−1
An+1 ·

Since βn > βn−1, it follows that An > An+1, and so the function f is concave.

2) For n large enough, one has αn < ec2
√

αn < ec1αn = αn+1; hence, for
these n,

f(αn)

f(ec2
√

αn)
=

An+1αn + Bn+1

An+1ec2
√

αn + Bn+1

=
αn + βn

ec2
√

αn + βn

=
1

3
,

and it follows that

lim sup
x→∞

f(x2)

f(ec2x)
≥ 1

3
·

Condition (4.7) is satisfied.

3) It remains to check condition (4.6).
For that, we shall fix a number M > c2/c1 and take n0 large enough in order

that αn−1 < M
√

αn < αn for n ≥ n0.
Let x0 be such that x ≥ x0 if and only if αn−1 ≤ x < αn with n ≥ n0.

Choose such an x. We have:

αn = ec1αn−1 ≤ ec1x ≤ ec1αn = αn+1

We shall separate two cases. For convenience, we set εn = 1/βn.

a) Case 1 : αn−1 ≤ x < M
√

αn. Then:

f(x)

f(ec1x)
=

Anx + Bn

An+1ec1x + Bn+1
≤ AnM

√
αn + Bn

An+1αn + Bn+1

=
AnM

√
αn + Bn

Anαn + Bn

, by (4.10)

=
εn−1M

√
αn + 1

εn−1αn + 1
∼ M√

αn

,

since

εn−1
√

αn = 2
ec1αn−1/2

ec2
√

αn−1 − 3αn−1
∼ 2 exp

(c1

2
αn−1 − c2

√
αn−1

)

−→
n→∞

+∞.

b) Case 2 : M
√

αn ≤ x < αn. Then:

f(x)

f(ec1x)
≤ f(αn)

f(ec1M
√

αn)
=

An+1αn + Bn+1

An+1ec1M
√

αn + Bn+1
=

εnαn + 1

εnec1M
√

αn + 1

=

2αn

ec2
√

αn − 3αn

+ 1

2ec1M
√

αn

ec2
√

αn − 3αn

+ 1

∼ exp
(

(c2 − Mc1)
√

αn

)

−→
n→∞

0
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since Mc1 > c2.

Putting the two cases together, we get that lim
x→+∞

f(x)

f(ec1x)
= 0, so (4.6) is

satisfied, and Theorem 4.2 is fully proved. ⌣
·◦ ·◦

Proof of Theorem 4.3. The analytic map ϕ will be a conformal mapping
from D to the domain G, edged by three arcs of circle of radii 1/2, and which
is represented in Figure 3.

More precisely, let G0 = D∩{Re z > 0} and let f : D → G0 be the conformal
map such that

f(−1) = 0 ; f(1) = 1 ; f(i) = i ; f(−i) = −i .

We define successively ϕ1(z) = log f(z), which maps D onto the half-band
{Re w < 0 |Im w| < π/2}, ϕ2(z) = − 2

πϕ1(z) + 1, ϕ3(z) = 1
ϕ2(z) , and finally

ϕ(z) = ϕ3(z) − 1.

-1 0
G

Figure 3: Domain G

1) When W (ξ, h) ∩ G 6= ∅, we must have W (ξ, h) ∩ G ⊆ S(−1, 2h), for h
small enough. Hence:

ρϕ(h) ≤ m({z ∈ T ; |ϕ3(z)| < 2h}) = m({z ∈ T ; |ϕ2(z)| > 1/2h})
≤ m({z ∈ T ; Re ϕ2(z) > 1/2h− 1}) , since |Im ϕ2(z)| < 1 ,

= m({z ∈ T ; Re ϕ1(z) < π − π/(4h)})
= m({z ∈ T ; |f(z)| < eπe−π/4h})
≤ K |{t ∈ [−1, 1] ; |f(it)| < eπe−π/4h}| = 2K eπe−π/4h ,

for small h > 0.
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2) On the other hand, S(−1, h) ∩ G ⊆ W (−1, h), so:

ρϕ,2(h) ≥ A({z ∈ D ; ϕ(z) ∈ W (−1, h)})
≥ A({z ∈ D ; |ϕ3(z)| < h}) = A({z ∈ D ; |ϕ2(z)| > 1/h})

≥ A
(

{z ∈ D ; Re ϕ1(z) <
π

2
(1 − 1

h
)}
)

= A
(

{z ∈ D ; |f(z)| < eπ/2e−π/2h})
≥ cA

(

{z ∈ D ; |z| < eπ/2e−π/2h}) = c′ eπe−π/h ,

for h > 0 small enough.

The proof of Theorem 4.3 is completed. ⌣
·◦ ·◦
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