Comparison of singular numbers of composition operators on different Hilbert spaces of analytic functions - Université d'Artois Access content directly
Preprints, Working Papers, ... Year : 2020

Comparison of singular numbers of composition operators on different Hilbert spaces of analytic functions

Hervé Queffélec
  • Function : Author
  • PersonId : 870944
Pascal Lefèvre
Daniel Li
Luis Rodriguez-Piazza
  • Function : Author
  • PersonId : 859619

Abstract

We compare the rate of decay of singular numbers of a given composition operator acting on various Hilbert spaces of analytic functions on the unit disk $\D$. We show that for the Hardy and Bergman spaces, our results are sharp. We also give lower and upper estimates of the singular numbers of the composition operator with symbol the ``cusp map'' and the lens maps, acting on weighted Dirichlet spaces.
Fichier principal
Vignette du fichier
comparaison_ne-varietur.pdf (378.61 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02437146 , version 1 (17-01-2020)

Identifiers

Cite

Hervé Queffélec, Pascal Lefèvre, Daniel Li, Luis Rodriguez-Piazza. Comparison of singular numbers of composition operators on different Hilbert spaces of analytic functions. 2020. ⟨hal-02437146⟩
58 View
71 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More