A spectral radius type formula for approximation numbers of composition operators - Université d'Artois Access content directly
Preprints, Working Papers, ... Year : 2014

A spectral radius type formula for approximation numbers of composition operators

Hervé Queffélec
  • Function : Author
  • PersonId : 916881
Luis Rodriguez-Piazza
  • Function : Author
  • PersonId : 859619

Abstract

For approximation numbers $a_n (C_\phi)$ of composition operators $C_\phi$ on weighted analytic Hilbert spaces, including the Hardy, Bergman and Dirichlet cases, with symbol $\phi$ of uniform norm $< 1$, we prove that $\lim_{n \to \infty} [a_n (C_\phi)]^{1/n} = \e^{- 1/ \capa [\phi (\D)]}$, where $\capa [\phi (\D)]$ is the Green capacity of $\phi (\D)$ in $\D$. This formula holds also for $H^p$ with $1 \leq p < \infty$.
Fichier principal
Vignette du fichier
Spectral_radius_E.pdf (251.66 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01020782 , version 1 (08-07-2014)

Identifiers

Cite

Daniel Li, Hervé Queffélec, Luis Rodriguez-Piazza. A spectral radius type formula for approximation numbers of composition operators. 2014. ⟨hal-01020782⟩
175 View
296 Download

Altmetric

Share

Gmail Facebook X LinkedIn More