On approximation numbers of composition operators - Université d'Artois Access content directly
Preprints, Working Papers, ... Year :

On approximation numbers of composition operators

Daniel Li
Hervé Queffélec
  • Function : Author
  • PersonId : 859618
Luis Rodriguez-Piazza
  • Function : Author
  • PersonId : 859619

Abstract

We show that the approximation numbers of a compact composition operator on the weighted Bergman spaces $\mathfrak{B}_\alpha$ of the unit disk can tend to 0 arbitrarily slowly, but that they never tend quickly to 0: they grow at least exponentially, and this speed of convergence is only obtained for symbols which do not approach the unit circle. We also give an upper bounds and explicit an example.
Fichier principal
Vignette du fichier
approximation_preprint.pdf (321.57 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00588256 , version 1 (22-04-2011)

Identifiers

Cite

Daniel Li, Hervé Queffélec, Luis Rodriguez-Piazza. On approximation numbers of composition operators. 2011. ⟨hal-00588256⟩
177 View
318 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More