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Université d’Artois, rue Jean Souvraz, S.P. 18 F-62307, Lens Cedex France

Secrétariat : +33 (0)3 21 79 17 23
http://www.cril.univ-artois.fr

Mise en page avec memcril (B. Mazure, CRIL) et thloria (D. Roegel, LORIA).



Acknowledgements
Mais, vous savez, moi je ne crois pas qu’il y ait de bonne ou de mauvaise situation. Si je devais,
aujourd’hui, résumer cette aventure académique, je dirais avant tout que c’est une histoire de
rencontres, des êtres lumineux qui, peut-être à des moments où la solitude pesait lourd dans
mon quotidien universitaire, ont tendu une main, une idée, un sourire. Il est étrange de penser
comment les rencontres, les discussions apparemment fortuites, ont pu façonner un destin, tisser
la toile de ma thèse.1

Et parmi ces rencontres, trois étoiles ont brillé avec une intensité particulière : Bertrand Mazure,
Christophe Lecoutre et Karim Tabia, mes encadrants de thèse. Bertrand avec qui j’ai partagé
tant de discussions le soir sur le parking de la faculté. Ces moments, loin d’être de simples
échanges, ont été le creuset où se sont forgées mes idées, où ma thèse a pris forme.

Dans ce labyrinthe qu’est la recherche, j’ai eu la chance de croiser le chemin de personnes
extraordinaires. Chez Exakis Nelite, Ophélie Censier, Nicolas Cheymol, David Huard et Victor
Salas ont été plus que des collègues ; vous avez été des alliés, des amis, m’offrant votre soutien
et votre expertise. Céline Barthélémy, Arnaud Berrebi, Maxence Censier, Eric Prevost, Didier
Zeitoun, merci pour avoir cru en moi et pour m’avoir guidé dans cette aventure professionnelle.

À l’Aéroport de Paris, Olivier Gosseaume, Hervé Nicolas, Christophe Sambo, Tom Weschler et
l’ensemble des personnes que j’ai pu croiser, votre accueil et votre ouverture d’esprit ont enrichi
ma recherche d’une dimension pratique indispensable.

Dans l’enceinte du village où j’ai passé beaucoup de mon temps ces dernières années, Daniel Le
Berre et Pierre Marquis ont été les druides capables de vaincre la machinerie de l’administration
Gallo-Romaine, en réussissant à obtenir mon laisser-passer doctoral.2 Nadjib Lazaar et Frédéric
Saubion, maîtres scribes et rapporteurs, vous avez scruté mon travail avec rigueur, contribuant
à en façonner la version finale. Elise Vareille et Stéphanie Roussel, j’ai eu la chance de vous
rencontrer lors de mes aventures à l’intérieur ou à l’extérieur des frontières gauloises et vous
avez accepté d’être membres du conseil des sages ayant évalué mon travail, merci pour cela.

Ma compagne Ermelinda, mes parents, l’ensemble de ma famille, mes amis d’enfance, vous avez
été le roc sur lequel je m’appuyais dans les moments de tempête. Votre amour, votre soutien
sans faille ont été les vents qui ont gonflé les voiles de mon voyage, me portant vers des horizons
que je n’aurais jamais cru atteignables.

Et comment ne pas évoquer mes compagnons de route, les autres doctorants et l’ensemble du
village ? Vous avez été ma famille académique, partageant avec moi les succès et les échecs.

Le FCH Lens, mon échappatoire, mon oxygène. Les entraînements et les moments partagés avec
l’équipe ont été des bouffées d’air frais dans le tumulte de la rédaction.

Dans cette aventure, je suis porté par l’affection, le respect et la gratitude envers toutes ces
personnes qui ont marqué le chemin de ma thèse. Merci à vous tous.

1Ce passage fait référence au célèbre monologue du scribe dans le film Astérix et Obélix Mission Cléopâtre.
2Ce laisser-passer est une référence au laisser-passer A38 de la bande dessinée : Les 12 travaux d’Astérix.

i



ii



Résumé

L’aviation civile, en tant que pilier fondamental de notre ère globalisée, facilite non seulement les
déplacements mais enrichit également les interactions culturelles et économiques à une échelle
sans précédent. Au cœur de cette infrastructure se trouvent les aéroports, tels que Paris Charles
de Gaulle (CDG), qui se distingue par son envergure et sa complexité opérationnelle. En 2019,
CDG a accueilli environ 76 millions de passagers et géré 498000 décollages et atterrissages,
connectant 328 destinations dans 119 pays, ce qui le positionne comme le deuxième aéroport le
plus fréquenté d’Europe et le neuvième au monde en termes de trafic passagers. Ces chiffres, issus
du rapport annuel 20193 des Aéroports de Paris, mettent en lumière l’ampleur des opérations
et la nécessité d’une gestion optimisée pour faire face à l’afflux de passagers et de fret.

Malgré son importance et son volume de trafic, CDG ne prévoit pas actuellement de nouveaux
développements majeurs en termes de terminaux, ce qui souligne un défi crucial : gérer et
optimiser les flux de passagers et de ressources dans l’infrastructure existante. Cette situation
est d’autant plus pressante que, bien que la pandémie de COVID-19 ait entraîné une baisse
significative du trafic aérien, une reprise est observée, alignée sur les tendances pré-pandémiques,
comme le rapporte Le Monde4. Ce rebond souligne l’importance cruciale de la préparation et
de l’optimisation pour répondre à la demande croissante et éviter les goulets d’étranglement,
garantissant ainsi une efficacité opérationnelle continue.

Dans cette optique, cette thèse se consacre à l’exploration de solutions innovantes pour
surmonter les défis inhérents aux opérations des mégahubs aéroportuaires, en se penchant sur
les méthodologies de la programmation par contraintes (CP) et de l’apprentissage automatique
(ML).

La programmation par contraintes (Constraint Programming (CP)) [Apt03, RvW06, Lec09]
a été introduite et formalisée dans les années 1960 et 1970. C’est un paradigme puissant et
reconnu pour la modélisation et la résolution de problèmes variés, allant de la planification quo-
tidienne aux défis combinatoires complexes dans des domaines aussi divers que la configuration,
la planification et la bioinformatique. La force de la CP réside dans sa capacité à simplifier
la modélisation des problèmes en étant aussi proche que possible de la description en langage
naturel du problème. Elle fournit des méthodes génériques pour modéliser et résoudre des prob-
lèmes en spécifiant des variables de décision et des contraintes qui définissent les relations entre
ces variables. En plus des contraintes standards, la CP utilise également des contraintes globales
qui modélisent des relations sémantiques spécifiques et peuvent être appliquées à un nombre ar-
bitraire de variables, rendant la modélisation plus simple et plus efficace. Il existe actuellement
plus de 400 contraintes globales [VHK06, BCDP07]. Des langages de modélisation, comme le

3https://www.parisaeroport.fr/docs/default-source/groupe-fichiers/finance/relations-
investisseurs/information-financi%C3%A8re/rapports-annuels/report-on-activity-and-sustainable-
development-2019.pdf

4https://www.lemonde.fr/economie/article/2023/06/08/l-a380-s-impose-comme-l-avion-de-la-
reprise-du-trafic-aerien_6176792_3234.html
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format XCSP3 offrent un ensemble de base de contraintes globales suffisantes pour modéliser la
plupart des problèmes [BLAP20].

Le problème classique de satisfaction de contraintes (CSP) consiste à déterminer si un réseau
de contraintes donné est satisfiable en fournissant une solution, si elle existe. La décision de savoir
si un CSP est cohérent est un problème NP-complet [Mac77a].

Les problèmes sont résolus à l’aide de solveurs spécialisés qui emploient des méthodes
génériques pour explorer efficacement l’espace de recherche et trouver des solutions satisfaisant
toutes les contraintes.

Cette approche est extrêmement pertinente pour des problèmes combinatoires complexes
tels que l’attribution des vols aux emplacements de stationnement et l’attribution des bu-
reaux d’enregistrement dans les opérations aéroportuaires, où diverses contraintes et objectifs
d’optimisation doivent être considérées.

Notre approche a donc consisté tout d’abord à proposer une modélisation sous la forme
d’un COP (Constraint Optimization Problem (COP)) du problème de planification des bornes
d’enregistrement tel que défini à l’aéroport Charles de Gaulle. Pour modéliser ce problème, divers
langages de modélisation ou bibliothèques existent, tels que OPL [P. 99], MiniZinc [NSB+07,
SBF10], Essence [FGJ+07] et PyCSP3 [LS20]. Le choix s’est porté sur la bibliothèque Python
PyCSP3 récemment développée, qui permet de générer des instances spécifiques dans le format
XCSP3, reconnu par des solveurs CP de l’état de l’art comme ACE (AbsCon Essence) [Lec23],
OscaR [Osc12], Choco [PFL16] et PicatSAT [ZKF17].

Plusieurs variables et contraintes sont introduites pour représenter les différentes com-
posantes du problème, telles que les enregistrements, les tâches et les comptoirs d’enregistrement,
ainsi que les règles d’exclusivité, de disponibilité et de satisfaction des compagnies aériennes.

En plus de l’aspect modélisation, nous avons également proposé une contrainte globale et
son propagateur pour représenter les contraintes AllDiffExcept.

Différents modèles pour le problème d’attribution des comptoirs d’enregistrement ont été
présentés, avec trois formulations distinctes du problème et des améliorations spécifiques.
L’approche utilisant la méthode Gather pour la contrainte AllDiffExcept a constamment
montré d’excellentes performances. La comparaison avec l’algorithme ADP a démontré que,
bien que des algorithmes plus simples puissent fournir des solutions, l’utilisation de solveurs
génériques améliore significativement les performances, la qualité des solutions et la capacité
d’évolution du système. Ces travaux sont actuellement déployés en prévisualisation et seront
intégralement mis en production d’ici janvier 2024.

Ensuite, des modèles variés pour résoudre le problème d’allocation des places de station-
nement pour avions sont explorés, prenant en compte diverses contraintes et objectifs, notam-
ment la satisfaction des compagnies aériennes. Au total, trois formulations du problème sont
proposées : une approche classique basée principalement sur des contraintes d’extension, une
approche “allDifferent” qui inclut des contraintes “allDifferent” pour chaque clique maximale is-
sue du graphe d’intervalles formé par les tâches en chevauchement, et une approche “notBreak”
axée sur la maximisation de la satisfaction des compagnies aériennes et la minimisation des
déplacements d’avions.

Les expériences réalisées comparent ces différentes approches et configurations du solveur ACE
aux méthodes utilisées actuellement par ADP. Les résultats démontrent que les configurations
testées surpassent les performances de la solution actuellement utilisée par ADP, en particulier
grâce à l’heuristique de l’ordre de valeurs Bivs qui montre d’excellentes performances.

Nous avons ensuite examiné diverses techniques et méthodologies conçues pour améliorer
l’efficacité des solveurs de contraintes. Nous avons d’abord abordé la technique de la descente
agressive de bornes (Aggressive Bound Descent (ABD)), une méthode qui ajuste proactivement
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les contraintes d’objectifs, montrant des améliorations potentielles de performance, particulière-
ment lorsqu’elle est intégrée au solveur PB Sat4j.

Nous avons ensuite proposé une approche utilisant des encodages booléens pour les domaines
des variables CSP, mettant en évidence les capacités des solveurs PB, notamment en matière
d’inférence et de comptage. Cependant, son efficacité s’est avérée principalement intéressante
pour certains types de contraintes seulement, laissant de la place pour des affinements supplé-
mentaires et l’exploitation de divers encodages.

Enfin, nous avons introduit un nouveau cadre logiciel pour le développement de solveurs
de contraintes parallèles et distribués. En intégrant une multitude de solveurs via l’interface
Universe, nous avons démontré la flexibilité et la puissance du cadre proposé, suggérant son
adaptabilité pour une variété d’approches parallèles et l’intégration de techniques plus sophis-
tiquées.

L’apprentissage automatique, de son côté, offre une promesse considérable pour prédire et
optimiser divers aspects des opérations aéroportuaires. Nous avons donc commencé par dé-
montrer l’importance de prédire précisément le nombre de passagers à mobilité réduite dans les
aéroports, en mettant en avant les bénéfices en termes d’efficacité opérationnelle et l’objectif
global de promouvoir l’inclusivité dans le transport aérien. Face à l’afflux massif de voyageurs,
les aéroports de Paris sont confrontés à la tâche cruciale d’assurer un voyage sans encombre
pour les personnes à mobilité réduite. Ainsi, l’objectif principal était d’améliorer l’exactitude
de ces prédictions.

En analysant les données historiques et en utilisant des techniques d’apprentissage automa-
tique, en particulier le modèle FastTree, nous avons cherché à optimiser ces prédictions. Notre
analyse comparative par rapport aux méthodes existantes a souligné les améliorations apportées
par notre modèle d’apprentissage automatique. Notre modèle a surpassé les prédictions réal-
isées par les outils et méthodes existants. Ces résultats soulignent le potentiel de l’utilisation
des technologies avancées et de l’apprentissage automatique pour améliorer les opérations aéro-
portuaires.

Nous avons ensuite abordé le problème des retards au départ des vols à l’aéroport de Paris-
Charles de Gaulle. La ponctualité y est un enjeu crucial pour l’expérience passager et la gestion
des coûts. Notre étude a commencé par une analyse approfondie du problème et des besoins
en termes de prédictions en temps réel et de prévisions à l’aéroport de Paris-CDG. Nous avons
proposé deux catégories de caractéristiques pour la prédiction des retards : les caractéristiques
statiques, pour les prévisions, et les caractéristiques dynamiques, mises à jour en temps réel,
pour les prédictions en temps réel.

Ensuite, nous avons construit un processus pour extraire les données nécessaires du système
d’informations opérationnelles de Paris-CDG, nous permettant de créer un ensemble de données
représentant une année d’activité. Nous avons conduit une étude empirique pour sélectionner les
caractéristiques et les données, puis pour choisir les modèles appropriés. Malgré les défis posés
par les données très variables en raison de la pandémie de COVID-19 et de ses conséquences
sur le trafic aérien, les résultats montrent que certains retards peuvent être mieux prédits que
le modèle de base.

L’amélioration de la précision de ces prédictions pourrait significativement progresser en ex-
plorant systématiquement d’autres modèles et leurs meilleurs hyperparamètres. L’exploitation
d’informations supplémentaires, comme l’avancée du chargement des bagages, pourrait égale-
ment améliorer les prédictions. Un élément crucial pour notre application reste l’explicabilité
des prédictions, surtout l’identification des explications pouvant aider à la gestion des retards.

L’étude des sujets ci-dessus a permis une amélioration de la gestion opérationnelle d’ADP
mais ouvre également des perspectives. Concernant la planification des parkings avions,
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une adaptation des modèles proposés pour des cas spécifiques, comme celui du terminal 1
de l’aéroport CDG. Les deux problèmes de planification étudiés pourraient dans le futur
être considérés comme des problèmes véritablement multi-objectifs. L’utilisation de solveurs
capables de gérer de multiples critères serait alors nécessaire.
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General Introduction

The aviation industry plays a vital role in shaping our modern world, providing a means for
millions of people to explore new destinations, conduct business, reunite with loved ones, and
experience different cultures.

Airports are essential nodes in the worldwide transportation matrix, offering the infrastruc-
ture for passenger mobility and cargo logistics. Paris Charles de Gaulle Airport (CDG) is a
prime example of operational complexity among global airports. As noted in the Paris Airports
2019 Annual Report5, CDG managed approximately 76 million passengers (approximately 31
million for Paris Orly), oversaw 498, 000 takeoffs and landings (218, 349 for Paris Orly), and
connected to 328 different destinations in 119 countries (128 in 48 countries for Paris Orly).
CDG has 3 large terminals (1 single terminal with 4 check-in areas for Orly) and 4 runways (3
runways for Orly). This makes it the second busiest airport in Europe and the ninth busiest
in the world regarding passenger traffic. As the primary hub for Air France, it is also a major
international gateway for the European Union.

Interestingly, despite its scale and traffic, there are no immediate plans for constructing
new terminals at CDG. This imposes an additional layer of complexity for managing growing
passenger numbers and resources, making optimization more crucial than ever. Furthermore,
although the COVID-19 pandemic led to a significant downturn in airport traffic, recent data
indicate a recovery in line with pre-crisis trends. Some airlines have resumed flying super jumbo
aircraft to absorb the upturn in traffic, as reported by Le Monde6. This resurgence underscores
the urgency to address the challenges of resource management and passenger flow to ensure
operational efficiency and resilience against future disruptions.

Facing the intricacies of airport operations, especially at mega hubs like CDG, calls for in-
novative solutions. Traditional methods, based on technologies several decades old, may require
greater adaptability to handling today’s challenges, especially with the volatile nature of the
aviation industry. With the evolving landscape of computational techniques, two avenues offer
promise. The first leverages advancements in constraint programming, which can efficiently han-
dle problems with large variables and constraints. The second harnesses the predictive power of
machine learning to optimize specific parameters vital for efficient operations.

In order to respond to the problem and the proposed challenges, this manuscript proposes
a plan of three parts divided into seven chapters. The first part of this manuscript presents the
state-of-the-art on Constraint Programming (CP) paradigm and the two main problems studied:
the allocation of registration counters and the allocation of aircraft stands. The second part
focuses on machine learning techniques and methodology in this manuscript.

5https://www.parisaeroport.fr/docs/default-source/groupe-fichiers/finance/relations-
investisseurs/information-financi%C3%A8re/rapports-annuels/report-on-activity-and-sustainable-
development-2019.pdf

6https://www.lemonde.fr/economie/article/2023/06/08/l-a380-s-impose-comme-l-avion-de-la-
reprise-du-trafic-aerien_6176792_3234.html
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General Introduction

The second part comprises 3 chapters describing proposed contributions to the field of CP.
The third chapter describes different modeling proposals for the check-in desk allocation problem
[FALM23] and allows us to present a new pragmatic constraint that improves the resolution
performance. Experiments will be carried out in an ideal computing environment and then in the
real environment of Paris Airports. This first experimental chapter allows us to present our tool
for extracting and analyzing the results of experimental campaigns: Metrics [FWW20, FWW21].
The fourth chapter focuses on the problem of aircraft stand allocation. Similar to Chapter 3, it
presents different modeling adapted to this problem. The experiments confirm the contribution
of our approach to the method currently used by Paris Airports [FLMT22, FMLT22].
The last chapter of Part 2 presents various generic resolution methods that can be used to
solve the Paris Airports allocation problems and a set of instances from the XCSP problem
library. These works have been published nationally [FLMW21, FW22a] and internationally
[FLMW22, FW22b].

The third part of this thesis delves into two chapters focused on machine learning techniques
for optimizing specific aspects of airport operations. The first chapter of this part focuses on the
prediction of Passengers with Reduced Mobility. Given the significance of ensuring a seamless
airport experience for PRM, an accurate forecast of their number becomes crucial. By leveraging
historical data and advanced machine learning algorithms, this chapter provides a robust model
for predicting the numbers of PRMs with heightened precision. The subsequent chapter shifts
its lens to the prediction of off-block delays. Delays in off-block times can lead to cascading
effects on flight schedules, making their timely prediction essential. Here, machine learning
comes into play, offering the potential to preemptively identify and manage potential delays,
ensuring timely departures and upholding the operational integrity of the airport. Together,
these chapters underscore the transformative potential of machine learning in reimagining and
refining airport operations [FMT23a, FMT23b].

In the constantly evolving landscape of the aviation industry, optimizing operations, espe-
cially in mega hubs like CDG, has implications for efficiency and the economic, environmental,
and socio-cultural fabric of our globalized world. The forthcoming chapters delve deeper into the
challenges and the proposed innovative solutions. This manuscript aims to chart a path toward
a more resilient and efficient future for airport operations by using the powers of constraint
programming and machine learning.
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Chapter 1

Constraint Programming

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Constraint network - Definitions and Notations . . . . . . . . . . 6
1.3 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Consistency and propagation . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Resolution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 Restart policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Airport stand allocation problem . . . . . . . . . . . . . . . . . . . 14
1.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Stand Allocation Formulation . . . . . . . . . . . . . . . . . . . . . 17

1.5 Airport check-in desk allocation problem . . . . . . . . . . . . . . 20
1.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.2 Check-in Desk Allocation Formulation . . . . . . . . . . . . . . . . 24

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.1 Introduction
Constraint Programming (CP) [Apt03, RvW06, Lec09] is a powerful and recognized paradigm
for modeling and solving everyday problems (for example, the time-schedule problem can be
modeled using constraint programming), as well as combinatorial problems ranging from con-
figuration and planning to bioinformatics. CP offers generic methods for modeling and solving
this type of problem. It aims to reduce modeling complexity by being as close to the natural
language description of the problem as possible.

In the CP approach, users define the problem by specifying decision variables and constraints
that define the relationships between these variables. The objective is to find an assignment for
all variables that satisfies all the given constraints. This is known as a Constraint Satisfaction
Problem (CSP). The task is then solved by employing specialized solvers, which use generic
methods to efficiently explore the search space and find solutions that satisfy all the constraints.

This chapter first introduces the definitions and notations related to constraint networks
(CN). Then, we explore the extension of constraint networks to optimization problems, where

5



Chapter 1. Constraint Programming

the goal is not only to find any solution but to find the best solution according to specific
optimization criteria.

Since this manuscript focuses on combinatorial problems in an airport context, we present
two primary problems of interest:

• Assigning Flights to Parking: This problem involves efficiently assigning flights to available
parking slots at the airport, considering various constraints and optimization objectives.

• Check-in Desks Assignment: The problem of assigning check-in desks to different flights,
considering factors like flight schedules and desk capacities.

Constraint programming is an essential tool for handling complex combinatorial problems
in airport operations. Its ability to model problems naturally allows for more intuitive problem-
solving approaches.

1.2 Constraint network - Definitions and Notations

Constraint programming was introduced and formalized in the 1960s and 1970s [Mon74]. This
section introduces the concepts usually used to describe a constraint network [Lec09].

A variable x is an object that can take on different values. This value belongs to a
finite set of values called the current domain of x and is denoted dom(x).

Definition 1 (Variable)

The domain of variable x may evolve, but it is always included in a set called the initial
domain of x, denoted by dominit(x). This manuscript considers only discrete variables and finite
domains.

Let the variables x and y have the current domain dom(x) = {a, b} and dom(y) = {b, c}.
Their initial domain may be dominit(x) = dominit(y) = {a, b, c}

Example 1

A variable is fixed when its current domain contains one value and unfixed otherwise. A
variable can be fixed explicitly. In this case, the variable is fixed on a given value a from its
current domain dom(x) during the execution of an algorithm, every other value b 6= a is considered
to be removed from dom(x). Assigning a value to a variable is called a variable assignment. We
say that the value a is assigned to x. A variable can also be fixed implicitly when deduction
mechanisms are used.

6



1.2. Constraint network - Definitions and Notations

Let two variables x and y with the common initial domain dominit(x) = dominit(y) =
{1, 2} and the equality on this variables x = y. If the variable x is assigned to 1, by
reasoning from the equality we can deduce that y must also be equal to 1. The value 2
can be removed from dom(y) by deduction. The two variables are then fixed, the first
one explicitly and the second one implicitly.

Example 2

The notions of tuple, Cartesian product, and relation are necessary to define constraints.

A tuple τ is a sequence of values. A tuple containing r values is called an r-tuple. The
ith value of an r-tuple (with 1 ≤ i ≤ r), is denoted by τ [i].

Definition 2 (Tuple)

Let S1, S2, . . . , Sr be a sequence of r sets. The Cartesian product S1 × S2 × ...× Sr =∏r
i=1 Si is the set of r-tuple {(a1, a2, . . . , ar) | a1 ∈ S1, a2 ∈ S2, . . . , ar ∈ Sr}.

Definition 3 (Cartesian Product)

Let 3 variables x, y, z such that dom(x) = dom(y) = {a, b} and dom(z) = {a, c}. The
Cartesian producton the domains of these variables are defined by :

dom(x)× dom(y)× dom(z) =



(a, a, a),
(a, a, c),
(a, b, a),
(a, b, c),
(b, a, a),
(b, a, c),
(b, b, a),
(b, b, c)



Example 3

A relation R defined over a sequence of r sets S1, S2, . . . , Sr is a subset of the Cartesian
product

∏r
i=1 Si, so R ⊆

∏r
i=1 Si.

Definition 4 (Relation)

7
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For example a relation Rxyz defined on dom(x)× dom(y)× dom(z) can be :

Rxyz =


(a, a, a),
(a, a, c),
(a, b, c),
(b, a, a),
(b, a, c),

 ⊂



(a, a, a),
(a, a, c),
(a, b, a),
(a, b, c),
(b, a, a),
(b, a, c),
(b, b, a),
(b, b, c)



Example 4

A constraint c is defined over a set of variables, called the scope of c (denoted by
scp(c)) and by a relation (denoted by rel(c)). This relation describes exactly the set
of tuples allowed by c for the variable of its scope. We have:

rel(c) ⊆ Πx∈scp(c)dominit(x).

Definition 5 (Constraint)

The arity of a constraint c is the number of variables involved in c (|scp(c)|). A
constraint is:

• unary iff its arity is 1;
• binary iff its arity is 2;
• ternary iff its arity is 3;
• n-ary otherwise;

Definition 6 (Arity)

A constraint c is intensional, or defined in intension if it is described by a Boolean
expression or formula.

f : Πx∈scp(c)dom(x)→ B

Definition 7 (Intensional Constraint)

8



1.2. Constraint network - Definitions and Notations

Let the variables v, w, x, y et z with domain dom(v) = dom(w) = dom(x) = dom(y) =
dom(z) = {0, 1, 2}:

• v = w × 2 is a binary constraint in intension, its scope is {v, w};
• (x 6= y) ∧ (y 6= z) ∧ (x 6= z) is a ternary constraint in intension, its scope is
{x, y, z}.

Example 5

A constraint c is extensional, or defined in extension iff rel(c) describes explicitly:

• positively by listing the tuples allowed by c;
• negatively by listing the tuples disallowed by c.

Definition 8 (Extensional Constraint)

If dom(x)×dom(y)×dom(z) = {0, 1, 2}×{0, 1, 2}×{0, 1, 2} then the ternary constraint
from the example 5 can be defined postively as follows:

(x, y, z) ∈ {(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)}

and negatively as follows:

(x, y, z) /∈ {(0, 0, 0), (0, 0, 1), (0, 0, 2), . . . , (2, 2, 2)}

Example 6

A global constraint is a constraint model that captures a specific semantic relationship
and can be applied to an arbitrary number of variables.

Definition 9 (Global Constraint)

AllDifferent [Rég94, van01, GMN08] forces all values of specific variables to differ. We
can rewrite the second constraint from the example 5 as follows:

allDifferent(x, y, z)

Example 7

Global constraints make modeling more effortless and efficient by providing dedicated filter-
ing algorithms. There are currently over 400 global constraints [VHK06, BCDP07]. Neverthe-
less, modeling languages offer a core set of global constraints sufficient to model most problems
[BLAP20].

9
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Finally, a structure composed of variables and constraints is called a constraint network.

An instance P of a Constraint Satisfaction Problem (CSP), also called Constraint
Network (CN) is defined by:

• a finite set of variables, denoted by X = vars(P);
• a finite set of constraints, denoted by C = ctrs(P), each covering a sub-set of X

such as ∀c ∈ C, scp(c) ⊆ X .

Definition 10 (Constraint Satisfaction Problem)

For a constraint c:

• an allowed tuple by c is an element of rel(c);
• a valid tuple is an element of V = Πx∈scp(c)dom(x);
• a support (over c) is a tuple that is both allowed and valid.

Definition 11 (Support )

An instantiation I of set of variables X = {x1, . . . , xn} of n variables is a set of tuples
(x1, v1), . . . , (xn, vn) such as ∀i(1 ≤ i ≤ n), vi ∈ dominit(xi) and any variable xi appears
only once. An instantiation is valid iff ∀(x, v) ∈ I, v ∈ dom(x).

Definition 12 (Instantiation)

Let I be an instantiation and X be a set of variables, we note I[X ] an instantiation of
vars(I) ∩ X defined as {(x, a) ∈ I | x ∈ X}. We call this instantiation the restriction
of I over X

Notation 1 (Restriction of Instantiation)

Let I be an instantiation and c a constraint, I satisfying c iff :

• c is covered by I, i.e., scp(c) ⊆ vars(I);
• the set of tuples I[scp(c)] = {(x1, v1), . . . , (xr, vr)} is allowed by c.

Definition 13 (Satisfying Instantiation)

A solution of an instance CSP P is an instantiation of X such that all its constraints
are satisfied. The set of all the solutions is denoted by S = sols(P)

Definition 14 (Solution of CSP)

10



1.3. Resolution

The classic constraint satisfaction problem consists of determining whether a given constraint
network is satisfiable by showing a solution if it is. Deciding whether a CSP is satisfiable is
an NP-complete problem [Mac77a]. Other combinatorial tasks may interest: enumerating or
counting the set of solutions, calculating an optimal solution according to a given objective, etc.
We conclude this section by defining one such task: the constraint optimization problem.

An instance P of a Constraint Optimization Problem (COP), also called Constraint
Network under Optimization (CNO) is defined by:

• a finite set of variables, denoted by X = vars(P);
• a finite set of constraints, denoted by C = ctrs(P), each covering a sub-set of X

such as ∀c ∈ C, scp(c) ⊆ X .
• an objective function O = obj(X ) to be maximized or minimized.

Definition 15 (Constraint Optimization Problem)

A COP instance can be interpreted as a CSP instance with an associated function. This
function gives a numerical value to each instance’s solutions, thereby quantifying its quality.
The objective is to find the solution that maximizes or minimizes this function. For example,
a function that maximizes (resp. minimizes) the sum or product of certain variables (possibly
associated with coefficients) of the problem.

1.3 Resolution

1.3.1 Consistency and propagation

Different consistency operators, denoted ϕ, provide different levels of inference. Consequently,
for a specific constraint network P, achieving different degrees of consistency is possible, leading
to more or less extensive filtering of the search space [Mac77b].

Based on the definition of a support (definition 11), the arc-consistency is defined as
follows:

A constraint c is said to be arc-consistent (AC) if and only if ∀x ∈ scp(c), ∀a ∈
dom(x), there exists a support on c for (x, a), i.e., a support τ on c such that τ [x] = a.

Definition 16 (Constraint arc-consistency)

A value (x, a) is arc-inconsistent for a constraint c when it has no support on c.

Definition 17 (Value arc-inconsistent)

11
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An AC algorithm, for a constraint c, is an algorithm that removes all values that are
arc-inconsistent on c; this algorithm is said to force arc-consistent on c.

Definition 18 (Algorithm AC)

We can now define the arc-consistency for the constraint network level.

A constraint network P is AC if and only if each constraint of P is AC.

Definition 19 (Constraint Network AC)

Calculating the AC-closure on a constraint network P is the act of removing all the
arc-inconsistent values of P.

Definition 20 (AC-closure)

The operator that computes the AC-closure of a constraint network is called an operator
of filtering. Various operators have been proposed in the literature, for instance, AC3
[Mac77b], AC2011 [BRYZ05], etc.

1.3.2 Resolution methods
For a constraint network P, utilizing the generate-and-test approach — which involves creating a
set of full instantiations and linearly checking each — results in an exponential time complexity.
This level of complexity is impractical for real-world applications. This section demonstrates
how to address this issue by integrating the previous propagation method with a backtracking
algorithm. This combination offers a more efficient search space traversal, significantly reducing
the time cost.

Backtracking search is a conventional method for addressing COP/CSP instances, function-
ing as a complete procedure. It conducts a depth-first exploration of the search tree, facilitated
by a backtracking mechanism alongside a sequence of decisions and propagations. Contrarily,
there are incomplete search techniques. While these do not ensure algorithmic completeness,
they can be more effective in locating solutions.

Typically, as in Maintaining Arc Consistency (MAC) [SF94] that propagates constraints by
maintaining the property of arc consistency, a binary search tree T is built: at each internal
node of T , (i) a pair (x, v) is selected where x is an unfixed variable, and v is a value in dom(x),
and (ii) two cases (branches) are considered, corresponding to the assignment x = v and the
refutation x 6= v.

Backtrack search for COP relies on CSP solving: the principle is to add a special objective
constraint obj <∞ to the constraint network (although it is initially trivially satisfied), and to
update the limit of this constraint whenever a new solution is found. It means that whenever a
solution S is found with cost B = obj(S), the objective constraint becomes obj < B. Hence, a
sequence of better and better solutions is generated (SATisfiability is systematically proved with
respect to the current limit of the objective constraint) until no more exists (UNSATisfiability
is eventually proved with respect to the limit imposed by the last found solution), guaranteeing
that the last found solution is optimal.

12
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1.3.3 Heuristics
1.3.3.1 Variable ordering heuristic

The order in which variables are chosen during the depth-first traversal of the search space is
decided by a variable ordering heuristic. Each heuristic associates to a variable a score
computing statically, dynamically or adaptatively.

Heuristics static : Static heuristics assign a score to variables at the onset of the search. We
list a few prominent static heuristics below:

• rand: This heuristic randomly selects a variable for branching.
• lex: This heuristic opts for the variable that minimizes its lexicographical rank. It follows

the variable order as presented in the model. This approach can be valuable if the order
in the modeling phase is meticulously chosen.

• deg: This heuristic picks the variable with the maximum score determined by its degree,
which is the count of constraints in which the variable is involved.

Heustistics dynamic : Dynamic heuristics adapt to the evolving nature of the constraint
network. With each search node, changes in variable assignments and domain filtering constantly
alter the network’s state. Given this fluidity, it is logical for the heuristic to reassess the score
of each variable in response to every network state shift. An example of such a heuristic is dom,
which selects the variable based on the minimization of its current domain score.

Heuristice adaptative : Finally, there are adaptive heuristics which, in addition to using the
current state of the variables and the constraint network, also take into account the history of
the constraint network. A classical heuristic is dom/wdeg [BHLS04] that aggregates by a division
operator the dom heuristics with a dynamic degree of the variable wdeg. In this manuscript, we
also use a recent heuristics called Frba/dom [LYL21a] based on the fail first principle and
exploited two aspects of failure information collected during the search: the failure proportion
after the propagations of assignments of variables and the failure length heuristics consider the
length of failures, which is the number of fixed variables composing a failure.

1.3.3.2 Value ordering heuristic

Similar to variable selection heuristics, a value ordering heuristic is essential to determine
the subsequent value to employ. A straightforward heuristic approach involves utilizing the
initial value in the domain, symbolized by First. This method is frequently adopted due to its
robustness. Recently, a heuristic strategy suggesting using the value exerting the most significant
effect on the objective function was introduced [FP17], labeled as Bivs. For COPs, prioritizing
the value observed in the most recent solution is often advantageous. This tactic, known as
solution saving, is cited in works like [VP17, DCS18].

1.3.4 Restart policies
Restart policies play an important role in modern constraint solvers as they permit to address
the heavy-tailed runtime distributions of SAT (Satisfiability Testing) and CSP/COP instances
[GSCK00]. In essence, a restart policy corresponds to a function restart : N+ → N+, that
indicates the maximal number of “steps” allowed for the search algorithm at the attempt, called
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run. It means that backtrack search piloted by a restart policy, builds a sequence of binary
search trees 〈T1, T2, . . .〉, where Tj is the search tree explored at run j.

Note that the cutoff, which is the maximum number of allowed steps during a run, may
correspond to the number of backtracks, the number of wrong decisions [BZF04], or any other
relevant measure. In a fixed cutoff restart strategy, restart(j) is constant whatever is the run j.
In a dynamic cutoff restart strategy, restart increases the cutoff geometrically [Wal99], which
guarantees that the whole space of partial solutions will be explored.

1.4 Airport stand allocation problem

In the following sections, we present two issues studied in this manuscript: Stand Allocation
Problem (SAP) and Check-in Desk Allocation Problem (CDAP).

1.4.1 Introduction

At airports, one of the significant combinatorial problems that need to be solved is the Stand
Allocation Problem. This problem is closely related to the Gates Allocation Problem (GAP),
and both have been extensively studied since the 1980s [MM85, DS91, DJP08, Sim07].

In the following, we will refer to both problems without distinction. The main objective of
the Stand Allocation Problem is to find an optimal assignment of aircraft serving different
flights to the available stands (gates) at the airport. Each flight requires a specific stand for
various tasks, such as passenger boarding, baggage handling, and refueling.

A stand is an aircraft position. There are two types of possible stands:

• contact stands (or hard stand) connected to a terminal by a door and a gateway
(also called bridge or jetway);

• remote stands where a bus is required to reach the terminal.

Airport Term 1 (Stand)

A stand is noted p. The set of all stands is noted PK.

Notation 2 (Stand)

Figure 1.1 illustrates the difference between contact (underline G3) and remote stands (over
line G3).

A flight turnaround (or rotation) comprises at least one arrival or departure flight or
both.

Airport Term 2 (Flight turnaround (or rotation) )
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1.4. Airport stand allocation problem

Figure 1.1: Contact and remote parking.

We note a rotation: ϕ.
The set of all rotations is noted: Φ.
We note aϕ and dϕ the rotation’s start and end time (i.e., the arrival time of the flight
at the airport and the departure time of the flight from the airport).

Notation 3 (Rotation)

The stand operations of a flight turnaround can be divided into three parts:

• operations about the arrival flight composed of the unboarding of passengers and
luggages;

• waiting time;
• operations of the departure flight composed of the boarding of passengers and

luggages.

Note that during these operations, we also have aircraft ground handling operations,
such as catering, refueling, cabin services, etc.

Airport Term 3 (Stand operations)
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Operation

Unboarding Waiting Boarding

(a) Short waiting time - do not
split the rotation.

Unboarding Waiting Boarding

Operation 1 Operation 2

(b) Medium waiting time - split
in 2 operations.

Unboarding Waiting Boarding

Operation 1 Operation 2Operation 3

(c) Long waiting time - split in
3 operations.

Figure 1.2: Number of operations depending on waiting time.

An operation, denoted as i, is characterized by its arrival at ai and departure at di at
the stand for operation i.
Each operation corresponds to an aircraft of a specific type, such as an A320 or B757.
The type of aircraft associated with operation i is denoted as ki.
When referring to the ith operation within rotation ϕ, we use the notation ϕi.
The complete collection of flight operations is symbolized as T .
For a specific rotation, ϕ, the corresponding set of operations (also termed the set of
tasks) is represented as Tϕ.

Notation 4 (Operation)

Depending on the waiting time and for operational reasons, the aircraft may be moved
to another stand, creating several flight operations. Figures 1.2 illustrate the possible cases.
This movement requires a towing tractor (see Figure 1.3) and involves a cost for the operator.
Figure 1.2a presents the case where the arrival and the departure flight are the same operations.
Figures 1.2b and 1.2c show that the waiting time is enough to consider a decomposition on two
or three operations, respectively.

Figure 1.3: A towing tractor.

Of course, stand assignments must be adapted to the airport’s services and be practical for
passengers. A solution must satisfy a set of strict rules [DDNP07]:

1. one stand is assigned to at most one flight at the same time,
2. space restrictions concerning adjacent stands must be respected,
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3. the affinity of specific aircraft for particular aircraft positions must be respected.

We found different single objectives for this problem [DDNP07, BGSS14, DGS20]:

1. minimizing passenger walking distances using Binary Integer Programming (BIP) [Bih90,
YSC02] or stochastic model [YT07],

2. minimizing the number of off-gate event [VB88],

Or multi-objectives:

1. [LRZ05] use Integer Linear Programming (IP) to optimize two objectives:

• minimizing the sum of the delay penalties,
• minimizing the total walking distance,

2. [PKB14] uses binary integer programming to optimize three objectives:

• maximizing the gate rest time between two turns,
• minimizing the cost of towing an aircraft with a long turn,
• minimizing overall costs, including penalization for not assigning preferred gates to

certain turns.

3. [DJP12] use a Clique Partitionning formulation for optimize four objectives:

• maximizing the total assignment preference score,
• minimizing the number of unassigned flights,
• minimizing the number of tows,
• maximizing the robustness of the resulting schedule.

1.4.2 Stand Allocation Formulation
In this section, we consider the formulation of the gate allocation problem proposed by
[DJP08, GABG15] which we will adapt for a stand allocation problem (without any loss of
generality) and to the case of Paris Airports.

The previous section explains that the rotation can be decomposed into several operations.
At Paris Airports, there can only be two movements for the same aircraft, i.e., a maximum of 3
parking positions, and the conditions for determining whether a rotation must be decomposed
depend on certain processing times:

• Tϕ: minimum transit time; if the duration dϕ − aϕ of the rotation (i.e., between the two
flights concerning the plane) is less than this time, the plane cannot be moved (towed) to
remote parking;

• Thang: minimum time of departure from the hangar; if the rotation is simply a flight
arrival, this is the minimum occupation time at the first parking of the rotation

• Trunway: minimum time on the runway; if the rotation is simply a flight departure, this is
the minimum occupation time at the last parking of the rotation

• Tarr: minimum time to process the arrival; this is the minimum occupation time at the
first parking of the rotation

• Tdep: minimum processing time for departure; this is the minimum occupation time at the
last parking of the rotation

• Tdepl: minimum time of travel; if two tows are required (i.e., if we have 3 operations), this
is the minimum time of the middle task
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The waiting period exists (i.e., the middle operation) only if the turnaround is longer
than Tarr + Tdepl + Tdep.

Remark 1

Some physical constraints exist, as imposed by the airport infrastructure.

The capacity rule prevent certain aircraft types from being placed on some parking.

Rule 1 (Capacity)

The No-Overlap constraints reflects the impossibility of assigning two operations
(two flights) to the same parking. An operation i ∈ T overlaps with another operation
j ∈ T if ai < dj ∧ aj < di. The operations overlapping with i is denoted by Oi, and
so, contains all operations j overlapping with i.

Rule 2 (No-Overlap)

The shading constraints blocks an aircraft’s positioning on some nearby parking
(regardless of the type of aircraft, e.g., two large aircraft cannot be simultaneously
assigned to adjacent stands due to space limitations).

Rule 3 (Shading constraints)

For example, Figure 1.4 shows that, if an aircraft is placed on parking A14 then the
parkings A16 are “shaded’ ’ and vice versa (it is symmetrical).

Example 8 (Shading constraints)

The reduction constraints are similar to the shading constraints except that they
consider aircraft types. The reduction constraints can be defined by 4-tuples
(k, p, k′,∆) with ∆ ⊂ PK being a set of parkings. For every parking p′ in ∆, a
plane of type k′ is allowed on p′ if a plane of type k is placed on p.

Rule 4 (Reduction constraints)
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1.4. Airport stand allocation problem

Figure 1.4: Example for the shading constraint. Parking A14 is shaded by parking A16 and
vice-versa.

As an illustration, considering Figure 1.5, shading will only be effective if a specific
aircraft type has been placed on A10, then the reduction will still allow a subset of
aircraft types to be placed on A8 and A12.

Example 9 (Reduction constraint)

Figure 1.5: Example for the reductions constraint.

We note D the set of all such reductions (all 4-tuples).

Notation 5 (Set of reductions)
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The components for stand allocation problem formulation at Paris Airports can be
summarized as follows:

• T the set of operations. The previous section explains that an operation i ∈ T is defined
by a start time ai and an end time di. For each operation i, we also have the set of
operations that overlap with i: Oi.

• PK the set of the stands.
• PKi ⊂ PK the set of compatible stands (i.e stands with a capacity compatible with

i) for operation i. Because each rotation operation concerns the same flight, the set of
compatible stands for a rotation ϕ is the same for each operation i of Tϕ.

• U : T 7→ T ∪ {0}. U(i) is the direct successor of the operation i for a given flight, i.e., if a
rotation is divided in two operations i and i2, then U(i) = i2. Conventionally, if operation
i does not have a successor, then U(i) equals 0. The end time di of an operation i ∈ T is
supposed to be equal to the start time aU(i) of its successor if there is one.

• Q ⊆ T 2 × PK2 the set of shadow restrictions. If (tϕ1,i, tϕ2,j , p1, p2) ∈ Q and operation
tϕ1,i is assigned to stand p1, then operation tϕ2,j cannot be assigned to stand p2 and recip-
rocally. This quadruplet only exists if operation tϕ1,i overlaps with tϕ2,j (i.e., tϕ2,j ∈ Otϕ1,i

).

• D the set of reductions. For a quadruplet (k, p, k′,∆) ∈ D and an operation i ∈ T with
an aircraft type k, if the operation i is assigned to the parking p, then only operations
with an aircraft kind of k′ are allowed to parkings of the set ∆.

• MP = (mi,p)T ×PK the affinity matrix, i.e mi,p is the airline satisfaction realized if opera-
tion i ∈ T is assigned to stand p.

An assignment I is a mapping between operations T and stands PK. The quality f(I) of
an assignment I is defined as follows:

Obj(I) = αC1(I)− βC2(I)

where α and β are non negative. C1 and C2 are the total operation-stand affinity and the num-
ber of towing operations, respectively. We aim to find an assignment maximizing Obj(I) while
respecting operation-stand compatibilities, shadow and reduction restrictions and overlapping
constraints.

1.5 Airport check-in desk allocation problem
1.5.1 Introduction
In the previous section, we have presented the stand allocation problem, a classical air transport
problem that involves assigning each flight to an available stand while maximizing both passenger
conveniences and the airport’s operational efficiency. Another classical problem is the Check-in
Desk Allocation Problem (CDAP), which involves assigning each flight to one or more check-in
desks depending on the airline’s requirements. Different approaches in MILP (mixed-integer
linear programming) have been proposed [YTC04, AR15]. A recent survey [LM22] explains that
the airlines demand more check-in from the airport operator than required [Chu96].
This implies problems for the airport operator, who has to satisfy the real need for counters,
ensure optimum distribution between all the airlines, and reduce changeover operations to a
minimum. To avoid a change of operation for staff of the same flight, check-in desks were
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1.5. Airport check-in desk allocation problem

allocated to a flight for its entire check-in time. The authors of [LM22] divide the allocation
problem into two sub-problems:

• First, find the optimal number of check-in desks.
• Second, consider to place the resulting polyominoes (see Figure 1.6).
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Figure 1.6: Polyominoes in counter allocation.

Although different approaches consider a dynamic number of check-in desks (see Figure 1.7a),
in this chapter, we consider the case where the same number of banks is requested for the entire
duration of the registration (see Figure 1.7b).

Before formally formulating the problem, we need to introduce a few terms:

A Check-in desk (or bank) is the check-in and baggage counter and is noted c.
We note CD the set of all check-in desks (i.e., ∀c, c ∈ CD).

Airport Term 4 (Check-in desk (or bank))

A check-in desk belongs to a zone. A zone is noted z. The set of all zones is noted Z.

Airport Term 5 (Zones)

A registration corresponds to a flight or a set of flights of the same airline.

Airport Term 6 (Registration)
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(a) Dynamic check-in desk allocation.
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(b) Static check-in desk allocation.

Figure 1.7: Difference between dynamic and static check-in desk allocation
.

We note a registration ρ. The set of all registrations is noted R. We note ar and dr
the registration’s start time and end time.

Notation 6 (Registration)

Depending on the airline’s requirements, registration can be broken down into 1 or more
tasks.

A task t is similar to an operation but has no successor. All tasks of a registration ρ
have the same start time and end time.

Airport Term 7 (Task)

Figure 1.8 presents some registration tasks at Orly Airport with 1, 4 and 5 tasks.

Example 10 (Task and registration)
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1.5. Airport check-in desk allocation problem

Figure 1.8: An example of planning at Orly Airport

The set of all tasks is noted T .
The set of tasks of registration ρ is noted Tρ. We note ν the maximum number of tasks
requested for a registration (i.e., max({|Tρ|, ∀ρ ∈ R})).

Notation 7 (Set of tasks)

We note MC = (mt,c)T ×CD the affinity matrix based on the airlines preferences, i.e
mt,c is the airline satisfaction realized if task t is assigned to check-in desk c.

Notation 8 (Affinity matrix)

We call a compatible check-in desk c ∈ CDt for a task t the banks that have an affinity
with t strictly greater than 0 or a bank at a distance of at most number of requested
banks minus 1. For a task t and its registration ρ, we define the set of compatible desk
by affinity:

CAt = {c ∈ CD | mt,c > 0}

Now we can define the set of compatible desks by distance:

CDIST t = {c1 ∈ CD | ∃c2 ∈ CAt : dist(c1, c2) < |Tρ|}

Finally, the set of check-in desks compatible with t is defined by the union of the two
previous sets:

CDt = CAt ∪ CDIST t

Definition 21 (Compatible check-in desk c ∈ CDt for a task t)
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A check-in desk c is said to be compatible with a task t if it meets one of the following
criteria:

1. The bank associated with the desk c has an affinity with task t that is strictly
greater than zero (mt,c > 0).

2. The bank is within a distance less than the total number of banks requested
for the registration ρ (registration of t) minus one from any bank compatible by
affinity.

For a given task t and its associated registration ρ, we define:

• The set of desks compatible by affinity as:

CAt = {c ∈ CD | mt,c > 0}

• The set of desks compatible by distance as:

CDIt = {c1 ∈ CD | ∃c2 ∈ CAt : dist(c1, c2) < |Tρ| − 1}

Consequently, the complete set of check-in desks compatible with task t is determined
by the union of desks compatible by affinity and those by distance:

CDt = CAt ∪ CDIt

Definition 22 (Compatible Check-in Desk for a Task)

Consider Figure 1.8, focusing on the group of blue tasks positioned on the left side
(noted ρ): Four banks are required for this registration (4). For all tasks t in
this registration, the set of banks that demonstrate an affinity strictly greater than
zero is denoted as CAt and equals 1103, 1104, 1105, 1106 in this scenario. Corre-
spondingly, the set of banks located within a maximum distance of three (3) from
any bank in CAt is represented as CDIt, which in this case includes the banks
1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1109.
Remark: It is trivial to observe that allowing banks 1101, 1102, or1103 as compatible
banks for the last registration task would make placement impossible, as there would
not be enough banks available to accommodate the preceding tasks. Consequently, in
our modeling, a ‘zone constraint’ is implemented to prevent impossible configuration.

Example 11 (Compatible check-in desk)

In the next section, we present the check-in desk allocation problem formulation.

1.5.2 Check-in Desk Allocation Formulation

In this section, we formally introduce the CDAP as defined at Paris Airports.
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1.5. Airport check-in desk allocation problem

The consecutive constraints ensure that the check-in desks used for a specific
registration ρ are consecutives.

Rule 5 (Imposing Consecutive Desks)

Figure 1.8 shows an example of an assignment that respects the consecutive constraint.

Example 12 (Imposing Consecutive Desks)

Figure 1.9: Example of a planning that allows overlapping.

The same zone constraints ensure that the check-in desks used for a specific regis-
tration ρ come from the same zone.

Rule 6 (Same zone)

For example, in Figure 1.9, there are two zones (colored in blue and red); so for
registration, we cannot use both a blue and a red bank.

Example 13 (Same zone)

By default, a registration cannot share its assigned banks with another registration if the
two registration tasks overlap. The non-overlapping constraint ensures this.

The no-overlap constraint ensures that a task cannot share its check-in desk with
another task if the two tasks are time overlapping (i.e., so at any time, no bank can
be shared by two different registrations).

Rule 7 (No-overlap)
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However, for some logistical reason (space) and under certain general conditions (called
overlapping rules), some overlapping between flights from the same airline company may be
tolerated for a limited period and/or for a limited number of tasks.

Figure 1.9 presents an example of planning that allows overlapping for 100% of the
time and without a limited number of tasks.

Example 14 (Overlapping)

If for example, the number of banks required by a registration is set to 4 and the
maximum number of overlapping situations is 2, then only two banks from the four
banks associated with the registration can be shared with another registration that
shares the same overlapping rule.

Example 15 (Overlapping for a limited number of tasks)

We will note F the set of pairs of registrations (ρ1, ρ2) that cannot strictly share banks
(they may be time overlapping, but no rule exists permitting to have shared banks
between them).

Notation 9 (Set of forbidden overlaps )

We will note OR where each element or is a pair (R, t) or triplet (R, t,m). In the
former case, R ⊂ R represents the set of registrations covered by the rule, while t
indicates the permissible duration of overlap stipulated by the rules. In the latter case,
an additional parameter m specifies the maximum number of tasks that can overlap.
Finally, we note for each rule or and for each registration ρ ∈ R, Nρ,or ⊂ R the set of
neighbors (i.e., registrations that have a temporal overlap with ρ) of ρ considering the
rule or.

Notation 10 (Set of Overlapping Rules)

Frequently, some banks are unavailable for several hours to several days (for example, for
maintenance reasons).

The unavailable constraints ensures that certain banks are not available for some
time (which may be periodic). In other words, we must remove the check-in desk from
the domain for each task that overlaps with the exclusion period. We note u = (c, s, e)
a triplet where c is the check-in desk to exclude, s and e is the start and end time of
the excluded period.

Rule 8 (Unavailable constraints)

26



1.5. Airport check-in desk allocation problem

Another type of exclusion is to exclude the check-in desk for a given registration regardless
of the time.

The exclusion constraints ensures that certain banks are excluded from certain
registrations under some conditions.

Rule 9 (Exclusion constraints)

Sometimes, employees (from Paris Airports) may want to force a specific set of banks to be
associated with some registrations.

The pre-assignment constraint ensures that the user’s desired assignment is re-
spected.

Rule 10 (Pre-assigning Banks)

We will note (ρ, j, c) the triplet that represents the pre-assignment of bank c as the
jth bank used by registration ρ; all such triplets will be denoted by P .

Notation 11 (Pre-assignment)

The components for check-in desk allocation problem formulation at Paris Airports can be
summarized as follows:

• T the set of tasks.
• CD the set of check-in desks.
• R the set of registrations.
• Tρ the set of tasks for registration ρ.
• CDρ ⊂ CD the set of compatible check-in desks for the registration ρ.
• P the set of pre-assignment.
• Eρ the set of excluded check-in desks for a registration ρ.
• U the set of unavailable rules (i.e., the set of all triplet c, s, e).
• F the set of forbidden overlaps.
• OR the set of overlaping rules.
• MC = (mt,c)T ×CD the affinity matrix.

An assignment I is a mapping between tasks T and check-in desks CD. The quality f(I) of
an assignment I is defined as follows:

Obj(I) = C(I)

where C are the total task-check-in desk affinity. Our objective is to find an assignment
maximizing Obj(I) while respecting task-check-in desk compatibilities, forbidden and allowed
overlaps, and user constraints (e.g., excluded check-in desks and pre-assignment).

27



Chapter 1. Constraint Programming

1.6 Conclusion
This first chapter introduces the concept of the constraint satisfaction problem, the un-
derlying constraint network, and its components. As an extension of this problem, we have
also introduced the constraint optimization problem. Next, we introduced two common
problems in an airport context: the stand allocation problem and check-in desk allocation prob-
lem. In Chapters 3 and 4.2.3, we will see how to model these problems via a COP model.
Finally, Chapter 5 presents some methods for resolving these problems.
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2.1 Introduction
This chapter focuses on Machine Learning (ML) in an airport context. Machine learning is
divided into three paradigms:

• Supervised Learning : In this paradigm, the agent (the learner) is provided with a la-
beled dataset, where the input data is associated with corresponding output labels. The
objective is for the algorithm to learn the link between inputs and outputs so that it can
make accurate predictions on new, unseen data. Typical examples of supervised learning
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tasks include classification, where the agent assigns inputs to predefined categories, and
regression, where the learner predicts continuous numerical values.

• Unsupervised Learning: In this case, we deal with datasets that are not labeled. The
algorithm’s task is to identify patterns, relationships, or structures within the data without
explicit guidance on the output. Clustering is a common example of unsupervised learning
tasks.

• Reinforcement Learning: In reinforcement learning, an agent interacts with an environment
and learns by receiving feedback in the form of rewards or penalties based on its actions.
The agent aims to discover the best actions or policies that maximize the cumulative
reward over time.

This manuscript will concentrate on the first paradigm, as the other two are not covered
here. The chapter begins by introducing different types of models used in machine learning. We
then explore various methods for explaining these models. Before concluding, we present the
usage of machine learning in the airport context, focusing on the Paris Airport case.

2.2 Definitions and notations
This section introduces the concepts commonly used to describe a learning task or learning
problem.

We consider a set of attributes {a1, a2, . . . , an} where each attribute ai (or feature ) takes
its value vi in a domain Di. The values can be a totally ordered set of numbers (real
numbers R, or integers Z), categorical (in this case, the values are not necessarily
ordered, e.g., Di = {AirFrance, EasyJet, Emirates}) or Boolean (Di is B = {0, 1}).

Definition 23 (Attribute)

An instance is an observation χ= v1, v2, . . . , vn where each vi is an element of the
domain Di.

Definition 24 (Instance)

An example is a pair (χ, y) where χ is an instance and y is the label or an associated
decimal value. A training set is a list E of examples used to train the model. By
contrast, the test set tests its performance.

Definition 25 (Training and Test Set)

Let E be a trainet set: A decision function is a function f : E 7→ Y mapping each
example (χ, y) of E to y = f(χ).

Definition 26 (Decision function)
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A binary classifier is a decision function where Y is composed of two classes (i.e.,
f : E 7→ B).

Definition 27 (Binary classifier)

To explain the binary classifier, let us take the example of a model that determines
whether an image represents a hotdog. The positive class is hotdog, the negative class
is not hotdog ab.

aThanks to the series Silicon Valley for this funny idea https://www.youtube.com/watch?v=
vIci3C4JkL0

bA real dataset of images for this task is available on Kaggle: https://www.kaggle.com/datasets/
dansbecker/hot-dog-not-hot-dog

Example 16 (Hotdog or Not Hotdog)

The previous example shows us that using a binary classifier can have some limitations. There
are also multi-class classifiers that can add other classes like pizza, hamburger, etc. However,
this kind of classifier is outside the scope of this manuscript.

A regressor (or regression model) is a decision function where Y is real number from
R (i.e., f : E 7→ R).

Definition 28 (Regressor)

Unless otherwise stated, the models used in this manuscript are regression models.

Remark 2

We now introduce decision tree and boosted decision tree. The latter is the principal
kind of model used in this manuscript.

A decision tree (in case of regression) T over a1, . . . , an is a binary tree where each
node is labelled with a condition on input features a1, . . . , an and each leaf is labelled
by a real number (from R).

Definition 29 (Decision Tree)
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a4 ≤ 2T1

20 a2 = 2

15 a3 ≤ 10

30 a1

45 10

Figure 2.1: A decision tree
.

A condition in a decision tree can take different forms:

• ai ≤ vj with vj a number when ai is a numerical attribute.
• ai = vj or ai ∈ {v1, v3, v6} when ai is a categorical attribute.
• ai when ai is a Boolean attribute.

Definition 30 (Condition)

We note the output of the decision tree T over the instance χ: o(T , χ).

Notation 12 (Output of a decision tree T over an instance χ)

Figure 2.1 shows a basic decision tree.
Circular nodes represent conditions, while square nodes represent leaves. The left
(dashed) arc (resp. the right (plain) arc) outgoing from any (circle) node labeled by
a condition c corresponds to the case c is false (resp. true). Consider an instance
χ = (a1 = 1, a2 = 2, a3 = 9, a4 = 0), we always take the right child, as the condition is
verified and the decision tree output is 10.

Example 17 (Decision Tree )

Because using a single tree may create a weak model, there are different methods for com-
bining these models and creating a model called stacked model or ensemble model [Bre96, Fri02,
Bre01].
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a4 ≤ 2T1

20 a2 = 2

15 a3 ≤ 10

30 a1

45 10

a2 = 2T2

a1 1

−5 a4 ≤ 2

5 1

a3 ≤ 10T3

a2 = 2 a2 = 2

a1 a4 ≤ 2

2 a1

3 4

0 a4 ≤ 2

6 1 −1 −2

Figure 2.2: An example of decision forest F for a regression task with 3 trees T1, T2 and T3.

A decision forest represents a collective term for models constituted by multiple deci-
sion trees. Such a forest can be denoted as F = {T1, . . . , Tm}, where each individual
tree, Ti (i ∈ [m]), functions as a binary tree. The prediction derived from the forest is
an aggregation of the predictions (also referred to as outputs) of its inherent decision
trees. This prediction can be symbolized as o(F , χ) or ŷ. The models that form part of
this ensemble are termed constituent models. Collectively, they make up the ensemble
model, often referred to as the strong model.

Definition 31 (Decision Forest)

For example, in a multi-class classification random foresta (a type of decision forest),
each tree votes for a single class, and the random forest prediction is the most repre-
sented class. In a regression gradient boosted decision tree (another type of decision
forest), each tree outputs a real, and the gradient boosted tree prediction is the sum of
those values.
Now consider the decision forest on Figure 2.2 composed of 3 trees and the same
instance χ as the example 17, we have o(T1, χ) = 10, o(T2, χ) = 1, o(T3, χ) = −2.
If we consider sum as an aggregation function, the output for the decision forest is
o(F , χ) = 9

aThis example is taken from https://developers.google.com/machine-learning/decision-
forests/intro-to-decision-forests-real?hl=en

Example 18 (Decision Forest)

For training, a random forest uses bagging. Each tree in the random forest trains on a subset
of training examples sampled with replacement.

33

https://developers.google.com/machine-learning/decision-forests/intro-to-decision-forests-real?hl=en
https://developers.google.com/machine-learning/decision-forests/intro-to-decision-forests-real?hl=en


Chapter 2. Machine learning

Another method is to use gradient boosting applied to decision forest, which formed a gradient
boosting decision tree [Fri02, RG15].

Gradient boosting is a training algorithm where each constituent model is trained iter-
atively for improving the quality of the main model (or the strong model).

Definition 32 (Gradient boosting)

A Gradient Boosting Decision Tree (GBDT) is a kind of decision forest in which:

• training used gradient boosting.
• each weak model is a decision tree.

At each step, a new weak model is trained to predict the error of the current strong
model (i.e., it learns a correction for the strong model learned so far). The weak model
is then added to the strong model.

Fi+1 = Fi + Ti
where:

• Fi is a strong model at step i
• Ti is a weak model (a decision tree) at step i

The iteration stops when the maximum number of iterations is reached.

Definition 33 (Gradient Boosting Decision Tree)

GBDT is very efficient on many machine learning tasks, such as multi-class classification
[Li10], click prediction [RDR07] and, learning to rank [Bur10].

Now that we have described what a regression model is, we can present well-known regression
quality measures based on residuals (errors between predicted and actual values) to assess the
regression quality.

For a set of samples E, we note:

• ŷi the predicted value for the i-th sample.
• yi the true value for the i-th sample.
• y the average of the target variable.

Notation 13 (Notation for metrics)

Based on this notation, we can define the error.
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The error between the predicted value and the true value is defined as:

ϵi = yi − ŷi

Definition 34 (Error )

Based on this error formulation, we can define the mean absolute error (MAE) based on
Manhattan distance.

Mean Absolute Error (MAE) measures the average absolute difference between the
actual and predicted values. It provides a straightforward representation of the average
prediction error. This measure is less sensitive to extreme values in the data. For a
set of samples E, the MAE is defined as:

MAE(E) =
1

|E|

|E|∑
i=1

|ϵi|

Definition 35 (Mean absolute error)

Mean Squared Error (MSE) measures the average of the squared difference between
the actual and predicted values. Unlike MAE, MSE penalizes the most significant
errors more heavily. For a set of samples E, the MSE is defined as:

MSE(E) =
1

|E|

|E|∑
i=1

(ϵi)
2

Definition 36 (Mean squared error)

Root Mean Squared Error (RMSE) is the square root of MSE and represents the
typical magnitude of the prediction errors. RMSE is particularly useful when we want
to interpret prediction errors in the same unit as the target variable. For a set of
samples, the RMSE is noted RMSE(E) and defined as:

RMSE(E) =
√
MSE(E)

Definition 37 (Root Mean squared error)

Finally, the coefficient of determination (R2) is the last measure.
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Coefficient of determination is a statistical measure that represents the proportion of
the variance for a dependent variable that is explained by variables in a regression
model and is defined as follows:

R2(E) = 1−
∑|E|

i=1 (ϵi)
2∑|E|

i=1 (yi − y)2

Definition 38 (Coefficient of determination)

2.3 Explanation methods for a regression model
Several tree-based ML models were presented in the previous section. These models are inher-
ently interpretable, but the interpretation can become more complex as the trees get larger
and more complicated tree methods like random forests or boosted trees are used.

Due to the extensive use of machine learning in various applications, much research has
focused on explainability in recent years. eXplainable AI (XAI) plays a crucial role in making
complex AI models understandable to humans. XAI aims to develop effective methods and
approaches for interpreting learning models and providing explanations for the decisions made
[HDM+11, RSG16, FH17, LL17, GMR+18, IMM18, SDC19, HEKK19, Mil19, SDC19]. We now
introduce some XAI concepts based on the presentation by [BADDS+20].

The purpose of model-agnostic techniques are to extract specific information from a
model’s prediction process and can be implemented with any model.

Definition 39 (Model agnostic)

It is a sub-category of model-agnostic post-hoc methods. We found local explanations
or methods that consist of rule extraction.

Definition 40 (Explanation by simplification)

For example, Local Interpretable Model-agnostic Explanations (LIME)[RSG16] is a model-
agnostic approach that creates interpretable explanations for individual predictions by approx-
imating the model’s behavior. It perturbs the input data and observes how the predictions
change to determine feature importance.

Feature relevance explanation methods for posthoc explainability aim to describe the
functioning of a black-box model by ranking or measuring the importance (influence)
of each feature in the prediction output by the model to be explained.

Definition 41 (Feature relevance explanation methods)
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SHapley Additive exPlanations (SHAP)[LL17] is a popular method in the feature
relevance explanation methods category. SHAP values are based on cooperative game
theory and attribute the prediction outcome to each feature in the input data.
LIME and SHAP are two model-agnostic approaches and have the advantage in theory of
avoiding the need to access the model’s internal. Otherwise, it has been shown that SHAP or
LIME can produce similar feature attributions for different predictions.

We can note that, recently, some generic agnostic approaches that generate symbolic expla-
nations have been proposed [BCMT21a].

In model-precise (model-specific) methods the internal structure of the concrete ML
model is used for reasoning and generating explanations.

Definition 42 (Model precise)

In the case of classification, we can refer for example [SCD18, IM21, ABB+22b, ABB+22a]

2.4 Example: How many hotdogs will be sold?

In this section, we will extend the hotdogs example in the context of a regression task to answer
the question: how many hotdogs will be sold?. For this purpose, we will use a notional dataset
specially created for this manuscript. We randomly generated a dataset of 100,000 rows. To
make the randomly generated data more realistic, we gave a higher probability of having more
hotdogs sold when the day had specific characteristics. The source code used to generate the
data is available on Gitlab.

To approach this example, we will follow the same procedure as the rest of this document.
Here is an outline of the steps we will take:

1. Exploratory Data Analysis (EDA): We will begin by studying various figures and
statistics about the dataset to gain insights into its characteristics. This will include
examining the distribution of the target variable (the number of hotdogs sold) and analyzing
the relationships between different attributes and the target variable.

2. Correlation Analysis: Next, we will investigate the correlation between the various
attributes (features) and the target variable. This will help us to identify which features
significantly impact the number of hotdogs sold.

3. Experiments: We will explore different regression models to predict the number of hotdogs
sold based on the available features. This may involve decision tree and boosted tree.

4. Explanations: Finally, we will generate explanations for the predictions made by the
regression models. This will involve techniques such as feature importance analysis to
understand which features contribute the most to the prediction.

We aim to build a regression model that can effectively predict the number of hotdogs sold
based on the given dataset. Additionally, we will gain insights into the factors influencing hotdog
sales and explain the model’s predictions. All these experiments are available on Gitlab ( ).
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Name Description Type Example
Season The season of the sales day. Categorical Winter
Temperature The temperature (Celcius) on hotdog sales day. Numeric 18
Day The day of the week of the sales day. Categorical Saturday
Holiday The sale day is a public holiday or not. Boolean True
Event Event or not. Boolean False
Price The price of the hotdog. Numeric 2.25
Quantity The number of hotdogs sold. Numeric 150

Table 2.1: Attributes for the sold hotdog prediction task

2.4.1 Exploratory Data Analysis (EDA)

Table 2.1 presents the dataset’s features used in the example. The dataset consists of 100, 000
rows, each one representing a sample with various features. For example, they are the season
encoded with a categorical value that represents different seasons (e.g., winter, spring, summer,
autumn), a number indicating the temperature on the respective day, and some Booleans for
indicating whether the day is a holiday or if the day has a special event, such as a football
match, concert, or any other event.

Figure 2.3 shows the number of hotdogs sold considering if the day has a special event (1,
bars on the right) or not (0, bars on the left) and if it is a holiday day (orange bars) or not (blue
bars). The bar plot shows that the most hotdogs were sold on holidays with an event.”
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Figure 2.3: Count of hotdogs sold on holiday in event feature.

Figure 2.4 shows the number of hotdogs sold considering the day of the week and if the day
has an event (orange bars) or not (blue bars). The bar plot shows that most hotdogs were sold
during the weekend.
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Day
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Figure 2.4: Count of hotdogs sold on an event in day feature.

Season Temperature Event Holiday Day Price Quantity

Season

Temperature

Event

Holiday

Day

Price

Quantity

1 -0.24 -0.0035 0.0013 -0.0017 -0.0014 -0.0018

-0.24 1 0.0046 -0.0032 0.0033 0.0075 -0.0056

-0.0035 0.0046 1 0.19 -0.029 -0.0035 0.42

0.0013 -0.0032 0.19 1 -0.023 -0.0023 0.29

-0.0017 0.0033 -0.029 -0.023 1 0.0038 -0.12

-0.0014 0.0075 -0.0035 -0.0023 0.0038 1 -0.002

-0.0018 -0.0056 0.42 0.29 -0.12 -0.002 1
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.5: Results of statistical correlation measure.

2.4.2 Correlation Analysis

We use the well-known Pearson correlation coefficient, which is a statistical measure that cal-
culates the linear relationship between two variables.
It is a number between −1 and 1 that measures the strength and direction of the relationship
between two variables.

Figure 2.5 shows a heatmap where x-axis and y-axis present all the variables of the dataset.
The values in the heatmap cells indicate the Pearson correlation coefficient between the corre-
sponding variables. Values range from −1 to 1, with 1 indicating a perfect positive correlation,
−1 indicating a perfect negative correlation, and 0 indicating no correlation. The heatmap re-
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MAE MSE RMSE
Model
Tl 123.78 27386.16 165.48
To 123.13 26988.00 164.27
LightGBM 108.02 19806.64 140.73

Table 2.2: Model Performance Metrics for Predicting hotdog Sales.

veals a positive correlation between quantity and event features with a correlation coefficient of
0.42 while the correlation is weaker between quantity and the holiday variable (0.29). Finally,
the correlation between quantity and season or temperature seems close to 0.

2.4.3 Experiments
In this section, we describe the experiments conducted to predict the number of hotdogs sold
using two different machine learning models: Decision Tree and LightGBM. The objective of
these experiments is to compare the performance of the models in predicting hotdog sales based
on various features present in the dataset.

2.4.3.1 Experiment Environment

The experiments were conducted on a computer equipped with an Intel ® CoreTM i9-10900 CPU
running at 2.80GHz, with 20 cores, and 64 GB of RAM. The environment was set up using the
conda environment and Python 3.11.

2.4.3.2 Experimental procedure and evaluation metrics

To evaluate the performance of the models, we employed k-fold cross-validation with k=10. K-
fold cross-validation is a technique where a dataset is divided into k subsets, with each subset
serving as a test set once while the remaining k− 1 subsets serve as the training set to evaluate
the performance of a machine learning model. This process was repeated ten times, ensuring
each fold served as training and validation data. For model evaluation, we used metrics presented
in the last section: MAE and RMSE.

2.4.3.3 Results

Table 2.2 summarizes the results of the experiments for both the Decision Tree and LightGBM
models presenting the average performance metrics over the 10 iterations of cross-validation.

The first column lists the model names:

• Tl corresponds to a decision tree with the usage of label encoding for categorical values.
• To corresponds to a decision tree with the usage of one hot encoding for categorical values.
• LightGBM corresponds to a LightGBM model with all default values maintained.

The presented table displays the average values of the evaluation metrics, namely MAE,
MSE and RMSE, computed across the 10 iterations of cross-validation. The results show that
the LightGBM model consistently outperformed both Decision Tree models across all three
metrics.
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2.4.4 Explanations
This section uses SHAP to interpret the Hotdog Sales Model. We use the training dataset, the
testing dataset, and the model produced by the first iteration of the cross-validation. However,
similar figures can be produced for the other iterations7.

100 0 100 200 300
SHAP value (impact on model output)

Season

Price

Temperature

Holiday

Event

Day

Low

High

Fe
at

ur
e 

va
lu

e

Figure 2.6: Summary plot of SHAP values for hotdog sales model.

Each feature in Figure 2.6, is represented by a horizontal bar on the chart. The position of the
bar along the x-axis indicates the magnitude of the feature’s impact on the model’s predictions.
The bar’s color reflects the value of the corresponding feature, with blue representing lower
feature values and red indicating higher values. For example, a lower value (i.e., the Boolean
value 0) for the feature Event impacts the model output negatively while a high value for the
feature Holiday (i.e., the Boolean value 1) impacts the model output positively. Finally, the
SHAP values largely confirm the coefficients of Pearson from section 2.4.2 and the importance
of the impact of the Event and Holiday variables.

Season Temperature Event Holiday Day Price Quantity ŷ Error
Winter 3.5 0 0 Saturday 4.25 1111 515.805646 595.194354
Winter 6.0 0 0 Wednesday 4.25 136 135.992558 0.007442

Table 2.3: Instances with the minimal and maximal error.

Table 2.3 presents two examples. The first row represents the example with the maximal
error, while the second row represents the example with the minimal error.
Figures 2.7 and 2.8 offer a more granular view of the Hotdog Sales model’s predictions for
examples with minimal error (resp. maximal error). Figure 2.7 shows the impact of each
feature on the model output, for instance, the first row on Table 2.3. The mapping between
the categorical feature Day and this integer code uses the lexicographic order of the Day (e.g.,
Friday = 0, Monday = 1, Saturday = 2, . . . , Wednesday = 6). The starting point is the model’s
average prediction on the training set (336.658). Each bar represents the contribution of a
particular feature to the prediction. If we sum the model’s average prediction with each bar
value, we obtain the model output (135.993). Figure 2.8 is similar to Figure 2.7 but for the
example with the maximal error.

7Recall that these experiments can be accessed on Gitlab ( )
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Figure 2.7: Waterfall plot for the instance with the minimal error.
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Figure 2.8: Waterfall plot for the instance with the maximal error.

2.4.5 Conclusion

The hotdog sales example is a practical and relatable demonstration of the processes and method-
ologies associated with machine learning that will be used in this document. It presents a fictive
scenario where predictive analytics can be applied while ensuring comprehensive coverage of key
steps in data analytics, from exploratory data analysis and correlation investigation to model
experimentation and interpretation.

2.5 Machine Learning Usage at Airport

In the context of airports, artificial intelligence (AI) can be utilized to address various important
issues, such as optimization (see Chapter 1), simulation, and prediction.
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2.5.1 Forecasting and simulation

AI-powered solutions, such as Veovo and Amorph.aero, have been adopted by several airports to
conduct forecasts and simulations for various scenarios and situations. These simulations help to
anticipate potential management challenges and allow for proactive measures. Simulations are
especially advantageous in addressing a crucial challenge: managing passenger flow, particularly
within large airports and hubs. The primary goal is to prevent congestion, reduce queue delays,
and enhance the overall passenger experience.

Airport simulations involve exploring various scenarios and assessing their outcomes regard-
ing congestion, delays, and other factors. These simulations can be as simple as predicting
passenger flow patterns for a given day or simulating queues with different numbers of open
lines at security checkpoints, various authorities (police controls, customs, and immigration),
and check-in counters. Additionally, “what-if” scenarios are simulated to understand the po-
tential impact of specific changes or events. Various AI techniques, including machine learning
and planning tools, are employed for these simulations, utilizing real historical and simulation
data [SMMFPMM21].

2.5.2 Passengers flight prediction

Predicting passenger flow, also known as Short-Term Traffic Prediction, is a critical aspect
not only in airport transport [LHC03, MJB+20, BDFS22, LLL+23] but also in domains like Bus
Transport [LC17, KKS+19, NGSH22]. Deep learning approaches have been proposed to consider
the temporal features and seasonality of the data to make accurate predictions [LEJ+21].

In airport transport, predicting various types of information is crucial for optimizing costs
and reducing waiting times. This includes predicting the number of Passenger (PAX) on a
flight, which is sometimes not readily shared by airlines, and the number of Passengers with
Reduced Mobility (PRM) for better treatment and to avoid delays. Additionally, predicting the
presentation curve of passengers at security checkpoints is vital for efficient airport operations.

2.5.3 Flight delays

Flight delays have long been a significant concern for airlines and airports. Several studies have
explored different models to predict flight delays, such as support vector machines, random
forests, and logistic regression [NMBS18, NG17]. Some studies focus on predicting departure
flight delays, while others tackle arrival delays [VAA+17]. In [IEM21a], the authors compared
different machine-learning methods (random forest, logistic regression, Bayesian naive clas-
sifier, and decision trees) for delay prediction on arrival. In [Tan21], seven binary models are
compared. In [YZL+21], the authors have proposed several stacked approaches for the Boston
Logan International Airport flight with data from January to December 2019.

Factors affecting flight delays have also been extensively examined. Weather conditions play
a crucial role and some studies have concentrated on weather data as the primary feature for
predicting delays [YDS+20], for instance, at Frankfurt airport [MHRS08]. Additionally, the
impact of flight connections and other factors has been investigated [WSW03].

In [EM20], a support vector machine (SVM) model is used. Based on 20 days, this latter
study examines some causes of air traffic delays at the three major airports in New York City.
The survey in [CLFZ22] proposes a deep learning approach for flight delay prediction consid-
ering a multi-airport scenario. Regarding regression-based processes, the authors [RB14] have
proposed methods based on classification and regression with random forests for US airports.
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Notably, only one study has attempted to predict takeoff delay with a regression model,
specifically for the Maastricht Upper Area Control Centre (MUAC). This study utilized static
and dynamic variables, including variables, to capture congestion levels at departure airports
by representing the number of delayed flights in the periods leading up to a flight’s departure
[CBN+19]. Thus, they have a variable representing the number of delayed flights 60, 30, and
15 minutes before flight departure. The comparison of different models has shown that certain
approaches, such as the LightGBM model [KMF+17], exhibit marginally better performance
compared to Recurrent Neural Network (RNN) models like Long Short Time Memory (LSTM)
[HS97] for flight delay prediction.

2.6 Machine learning usage at Paris Airports

Paris Airports developed a complex process, called Airport Operation Plan (AOP), to estimate
presentation curves at critical resources such as security checkpoints. AOP collects informa-
tion about each flight and its progress from operational applications like Airport Operational
Database (AODB), Root Mean Squared Error (RMSE) that assigns the resource check-in desk,
stand) to the flight for the boarding or unboarding process, and Baggage Reconciliation System
(BRS) that checks if the luggage is on the same flight as its owner passenger. It also collects
data from METEO France (weather conditions), GOOGLE (road access time to the platform),
and sensors deployed in the airport.

Concerning sensors, there are, for example, XOVIS to measure waiting times in specific ar-
eas and FLUXPAX8. AOP consumes FLUXPAX data from scans at different milestones to obtain
information on the number of passengers seen, namely:

• Number of passengers seen at the check-in desk.
• Number of passengers seen at security checkpoint.
• Number of passengers on board.
• Proportion of passengers observed in fast-track.

Every minute, the flight information is updated from the data warehouse and sensors. Not
all data are present all the time. The information on a flight tends to be more accurate as we
approach its departure (or arrival). AOP fills in the hole in the data using different ML models,
described in the following. Each of these models uses the FastTree model from the ML.net
library [AAB+19]. It is an implementation of the DART algorithm [RG15].

The objective of the AOP is to predict how resources will be consumed. To do this, the AOP
computes how each flight consumes a resource for each slot of 5 minutes. AOP aggregates the
consumption of each slot and generates the consumption curves. There are 288 slots by day.

We first presented each model of AOP, and in chapters 6 and 7, we will present our main
contributions to AOP.

2.6.1 Room

The first step is to determine the boarding or unboarding room. If the room is known when the
AOP retrieves the information, it is considered reliable; else, a ML model based on the last 400
days determines the room.

8FLUXPAX is a system for scanning passenger tickets.
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2.6.2 PAX
Before attempting to predict the presentation curves of passengers over time at the security
checkpoint, we must first determine the number of passengers (PAX) on the flights. However,
passenger behavior varies; they only go through the check-in desk if they have luggage. Thus, the
number of passengers checking in at a desk cannot accurately indicate the number of passengers.
Nonetheless, obtaining this number is crucial for predicting the passenger presentation curve at
the security checkpoint, which helps to determine the number of lines that should be opened and
reduce waiting time. This is why if the information on the number of passengers on the flight is
not considered reliable (i.e., from the airline) then a machine learning model based on a flight
history similar to the previous model (400 days) is used to determine the number of passengers
on the flight.

2.6.3 CNX PAX
Knowing the CNX PAX is not sufficient to determine the presentation of the passenger of the
resources of type transit. For each departing flight, it is necessary to know the origin of the PAX
by terminal/unboarding hall and the type of customs circuit. In symmetry, for each arriving
flight, the destination of the PAX by terminal/boarding hall and type of customs circuit must
be known. The AOP manipulates groups of PAX composed of the following information:

• a source terminal
• a provenance room
• a destination terminal
• a destination room
• a custom circuit
• the number of PAX in the group

If the correspondence information is known, the groups of PAX can be easily formed consid-
ering the terminal, the hall, the custom circuit, and this rotation.
Otherwise, a prediction calculates how each flight distributes the connection circuits.

2.6.4 Estimating the shape of PAX presentation curves
Security checkpoints are categorized into three types, based on the passengers going through
them: those for local flights, connecting flights, and both. At Paris Airports, managing human
resources at the checkpoints involves two levels. The first strategic level predicts passenger
flows at the checkpoints 45 days beforehand to determine the necessary number of agents.
Minor adjustments can be made 20 days before, and minor changes are possible until the week
preceding the flight. However, the later the change is made, the costlier it is. The second level,
the tactical level, involves distributing agents in real-time at the checkpoint [MJB+20].

When a PAX presents himself at a resource, his presentation time will depend on the nature
of the resource and possibly on his status/behavior. For local departure passengers, their ap-
pearance follows a “bell-shaped” curve in the hours leading up to the official departure time
(SOBT). The characteristics of this curve, including its slopes and spread, are determined by
flight data such as flight type, destination, and airline processes. To estimate this curve, AOP
employs ML based on FLUXPAX records from the previous 400 days. For arrival passengers, their
presence is quickly detected after the actual landing time, plus a period depending on the length
of the unboarding circuit. After this, the presentation of passengers is usually evenly spread out
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over a fixed period. For connecting passengers, they primarily follow the behavior of an arrival
passenger or, in some cases, a departure passenger if the rotation is longer.

2.6.5 PAX presentation
From all the flight and pax data collected and learned, the AOP can determine the passenger
presentation at each resource at any point in time. This involves calculating the number of
passengers presenting themselves per time slot at each resource for a particular day.

From the previous section, we dispose of the following data:

• The number of PAX (real or estimated).
• The groups of connecting pax (real or estimated).
• The shape of the curves for each potential resource (estimated).
• The terminal and the hall.

However, the missing information is regarding the passenger movement through the different
resources. There are three types of passengers to consider:

• Local departure passengers: For these passengers, it is necessary to know which security
checkpoint resource they use, if any, as well as which border police checkpoint.

• Arrival local passengers: Similarly, for arrival local passengers with an arrival terminal, an
arrival hall, and an arrival circuit which border police checkpoint is used, if any.

• Correspondence passengers: For correspondence passengers coming in on a terminal, a
hall, and an arriving customs route and departing on a specific terminal and hall and
with a specific custom route, the security checkpoint resource and border police checkpoint,
if any.

It is impossible to learn this information through the captured data, as there are no inbound
scans and no distinction made between local passengers and correspondence passengers.
Thus, the AOP employs a parameter table to describe the circuits as presented in Table 2.4.

Arr Site Arr Circ Dep Site Dep Circ FT Status Res Prev Res Type Ratio Pres Curve

C2EK dom * T2EN2 D 1
C2EK schen * T2EN2 D 1
C2EK int * T2EN2 T2ED D 1

C2EK int C2EK * * T2EN2 A 1 0,0,1,1,1,1,1,1,1

Table 2.4: An example of circuit configuration for AOP.

Each line of the Table 2.4 describes a group of passengers and is composed of the following
columns:

• Arr site: an arrival terminal and an arrival hall.
• Arr cir: the custom circuit of the arrival passengers.
• Dep site: a departure terminal and a departure hall.
• Dep cir: the custom circuit of the departure passengers.
• FastTrack status: yes, no, or whatever.
• Res: the name of the resource (e.g., security checkpoint or ̀border control police checkpoint).
• Prev Res: the name of the previous resource, if any.
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• Type: type of curve (e.g., arrival curve or departure curve).
• Ratio: the ratio of passengers following this circuit.
• Pres Curve: if present a manual suite of values representing the curve.

For example, the first line indicates that all the passengers (ratio of 100%) boarding at the
hall K of terminal 2E, whatever their customs or fast-track status, pass by the security checkpoint
T2EN2. Moreover, international passengers first pass through the departure border police T2ED.
Next, the passengers follow the learning departing curves for the security checkpoint T2EN2.
However, international passengers from terminal 2E, hall K and departing on a flight of any
customs status pass through the security checkpoint T2EN2. They follow a curve based on
arrival flight (A) described in the last column. The first two zeros indicate two steps without
passengers (i.e.,10 minutes without passengers) followed by a constant flow of passengers. The
ratio column expresses that, in some cases, connecting passengers do not necessarily follow the
planned connecting circuit. For example, we can indicate that 80% of passengers follow the
connecting circuit and that the remaining 20% exit at the arrival resources and then return to
the departure resources.

Now, from the previous tables and all data (real or estimated), we can produce the curve of
any resource at any time by summing the local curves for each flight on each resource the flight
consumes to form the overall curve for the day.
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Figure 2.9: Evolution of real and predicted presentation for C2-S3N1.

Figures 2.9 and 2.10 show the predicted curves and the actual curve for two security check-
points of Terminal 2. As we can see, the predicted curve is relatively close to the actual curve.
AOP offers an efficient prediction of airport users’ consumption of airport resources.

2.7 Conclusion
This chapter explores the concepts around ML and its application at Paris Airports. Machine
learning algorithms can make predictions and draw insights by analyzing vast amounts of flight
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Figure 2.10: Evolution of real and predicted presentation for C2-S3N2.

and passenger data. The AOP system at Paris Airports is an excellent example of this applica-
tion, as it employs machine learning to calculate passenger presentations at each resource for a
given day.

Chapter 6 presents a new application introduced in AOP that involves predicting passengers
with reduced mobility to better allocate resources and facilitate their travel experience. The
second use case, presented in Chapter 7 focuses on predicting offblock delays to minimize the
impact on passengers and airline operations.
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Optimization of airport resources
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Chapter 3

Modeling of the Airport check-in
desk assignment problem
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3.1 Introduction
In the world of air travel, airports are crucial for connecting passengers and flights to their
desired destinations. As air travel becomes more widespread, optimizing airport operations is
crucial. One of the challenges airports face is assigning check-in desks to airlines and flights,
which is crucial for efficient passenger handling. This task is complex due to various constraints
and objectives, such as passenger wait times, resource utilization, and airline satisfaction. As for
the previous chapter, the application of COP offers a promising solution to address this problem.
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This chapter presents different modeling for this problem with different methods and
solvers. We start by formally describing the model developed for the Check-in Desk Allocation
Problem (CDAP) in a higher ‘mathematical" form. Next, we presentexperimental environ-
ments‘ used for all this part of the manuscript. Finally, we present experiments on different
environments.

3.2 Modeling
For modeling CNO, (COP), several modeling languages or libraries exist such as, e.g., OPL [P. 99],
MiniZinc [NSB+07, SBF10], Essence [FGJ+07] and PyCSP3 [LS20]. Our choice is the recently
developed Python library PyCSP3 that permits to generate specific instances (after providing
ad hoc data) in XCSP3 format [BLAP16, BLAP20], which is recognized by some well-known
CP solvers such as ACE (AbsCon Essence) [Lec23], OscaR [Osc12], Choco [PFL16], and Picat-
SAT [ZKF17].

Subsequently, we employ the data itself (for example, ρ) to serve as both the data and their
corresponding indexes. Additionally, we adopt the notation a[i, b] or a[i][b] interchangeably to
access the cells within a matrix denoted as a. Lastly, we employ the notation ntask(ρ) to
retrieve the count of tasks associated with the rotation ρ (aeronautical term. 2, page. 14).

Table 3.1 recalls all the notations for the problem of check-in desk allocation presented in
Section 1.5 (page. 5).

Category Notation Description

Check-in c Check-in desk.
CD The set of all check-in desks.

Zones z A zone of check-in desks (i.e., a group of check-in desks)
Z The set of all zones.

Registration
ρ A registration.
R The set of all registrations.
ar and dr The registration’s start and end times.

Tasks

tρ,i ith task of a registration ρ.
T Set of tasks.
Tρ Tasks of the registration ρ
CDt The set of compatible check-in desks for the task t.

Constraints

P The set of pre-assignment.
Eρ The set of excluded check-in desks for a registration ρ.
U The set of unavailable rules.
F The set of forbidden overlaps.
OR The set of overlapping rules.
MC The affinity matrix.

Table 3.1: Notations for the check-in desk allocation problem.

Second, we proceed with the introduction of variables in our model. Each registration
must utilize check-in desks following its specific strategy. Instead of considering domains
encompassing all possible banks, we initially restrict the domains only to include the banks
that align with the strategy associated with each registration. These reduced domains for
check-in desks compatible with the registration’s strategy are denoted as Dx,ρ for each reg-
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istration ρ. Similarly, the domains for variables representing rewards for airlines are also
restricted to values corresponding to the permissible check-in desks. We denote this domain for
each registration ρ as Dr,ρ. Additionally, we introduce a fictive bank f with a reward value of 0.

We need two (2-dimensional) arrays of variables to represent assigned registration and
associated rewards:

• x is a matrix of |R|× ν variables having the set of values Dx,ρ; x[ρ][j] represents the index
(code) of the check-in desk assigned to the jth task of the registration ρ.

• r is a matrix of |R| × ν variables having the set of values Dr,ρ; r[ρ][j] represents the
satisfaction of the airline for the jth task of the registration ρ.

Third, we need to introduce the constraints in our model. Given the nature of the problem
(and data), it is natural to post so-called extensional constraints, which explicitly enumerate
either the allowed tuples (positive table) or the disallowed tuples (negative table) for a
sequence of variables (representing the scope of a constraint). Over the last decade, efficient al-
gorithms have been developed to handle such table constraints [Lec11, LLY15, DHL+16, VLS17].

3.2.1 A first COP formulation
3.2.1.1 Common constraints

Let us consider the variables previously introduced, the problem of check-in desk allocation can
be formulated as follows:

x[ρ, j] = c, ∀(ρ, j, c) ∈ P (C1)

(x[ρ, j] = x[ρ, j+1]−1) ∨ (x[ρ, j] = f ∧ x[ρ, j+1] = f), ∀ρ ∈ R, ∀j ∈ ntask(ρ) (C2)

(x[ρ1, i] 6= x[ρ2, j]) ∨ (x[ρ2, j] = f), ∀ρ1, ρ2 ∈ F , ∀i ∈ ntask(ρ1), ∀j ∈ ntask(ρ2) (C3)

x[ρ, t], r[ρ, t] ∈ {(c,mt,c), ∀(c,mt,c) ∈MC, ∀t ∈ Tρ, ∀ρ ∈ R} ∪ {f, 0} (C4)

Modelization 1 (Common constraints )

Constraints C1 ensure that each pre-assignment of P is respected. Constraints C2 ensure
that the chosen check-in desks for registration are consecutive or use the fictive check-in desk
for each registration task (see Rule 5, page. 25). The introduction of holes in the domains (e.g.,
useless check-in desks) makes it possible to manage this by imposing that a task must be equal
to the following task minus one and not including useless check-in desks in the domain. In this
way, we insert a hole representing the zone’s separation. Constraints C3 prevent two overlapping
registrations from being assigned to the same check-in desk (as presented by Rule 7, page. 25).
Constraints C4 use table constraint to map the check-in desk with this weight. We use the
affinity matrix defined previously.
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Example 19
Consider a set of five registrations, represented as R = {ρ1, . . . , ρ5}, and a group

of eight check-in desks, denoted as CD = {c1, . . . , c8}.
Two zones are identified: z1 contains desks from c1 to c4, and z2 encompasses

desks from c5 to c8 (Z = {z1, z2}).
For ρ1 and ρ2, we have three tasks, whereas for ρ3, ρ4, and ρ5, there are two tasks.

The associated time windows for each registration are visualized in Figure 3.1. The
affinity matrix is provided in Table 3.2.

Based on the given data, we introduce:

• The matrix x of dimension 5 × 3. Here, five signifies the total registrations,
and three represents the maximum number of tasks in a given registration. Each
variable has a consistent domain: Dx = {1, . . . , 9, 10}. The initial values, ranging
from 1 to 4, correspond to desks c1 through c4. The value 5 is a gap between
the zones z1 and z2. Subsequent values, 6 through 9, map to desks c5 to c8. The
value 10 designates an auxiliary check-in desk.

• The matrix r has identical dimensions, with a domain ranging from 0 to 100,
represented as Dr = {0, . . . , 100}.

Considering a pre-assignment P for ρ1, and adhering to the constraints from Mod-
eling 1, we have:

x[ρ1, 1] = 1

x[ρ1, 2] = 2

x[ρ1, 3] = 3

Incorporating the constraint C2 for registration ρ1, we derive:

(x[ρ1, 1] = x[ρ1, 2]− 1) ∨ (x[ρ1, 1] = 10 ∧ x[ρ1, 2] = 10)

(x[ρ1, 2] = x[ρ1, 3]− 1) ∨ (x[ρ1, 2] = 10 ∧ x[ρ1, 3] = 10)

For other registrations, the same procedure is applied. Given the overlap between
tasks of ρ1 with those of ρ2 and ρ4, additional constraints are stipulated:

(x[ρ1, 1] 6= x[ρ2, 1]) ∧ (x[ρ1, 2] 6= x[ρ2, 1]) ∧ (x[ρ1, 3] 6= x[ρ2, 1])∧
(x[ρ1, 1] 6= x[ρ2, 2]) ∧ (x[ρ1, 2] 6= x[ρ2, 2]) ∧ (x[ρ1, 3] 6= x[ρ2, 2])∧

(x[ρ1, 1] 6= x[ρ2, 3]) ∧ (x[ρ1, 2] 6= x[ρ2, 3]) ∧ (x[ρ1, 3] 6= x[ρ2, 3])∧
(x[ρ1, 1] 6= x[ρ4, 1]) ∧ (x[ρ1, 2] 6= x[ρ4, 1]) ∧ (x[ρ1, 3] 6= x[ρ4, 1])∧
(x[ρ1, 1] 6= x[ρ4, 2]) ∧ (x[ρ1, 2] 6= x[ρ4, 2]) ∧ (x[ρ1, 3] 6= x[ρ4, 2])
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Finally, using the constraint C4 and referring to the affinity matrix from Table 3.2,
we post:

x[ρ1, 1], r[ρ1, 1] ∈ {(1, 90), (2, 80), (3, 70), (4, 20), (6, 20), (7, 20), (8, 20), (9, 20), (10, 0)}

8 10 12 14 16 18

ρ1

ρ2

ρ3

ρ4

ρ5

Figure 3.1: Time intervals for check-in desk allocation example.

ρ1 ρ2 ρ3 ρ4 ρ5

c1 90 20 85 65 10
c2 80 20 75 60 10
c3 70 20 55 50 20
c4 20 80 35 60 30
c5 20 60 40 35 45
c6 20 55 45 30 60
c7 20 20 30 25 90
c8 20 20 20 20 85
f 0 0 0 0 0

Table 3.2: Rewards for Check-in Desk Assignments

Some constraints and variables are only present if the associated rules are in the data. This is
the case for overlap rules with a limited number of tasks, exclusion constraints, and unavailability
constraints. These constraints are developed in the following sections.

55



Chapter 3. Modeling of the Airport check-in desk assignment problem

3.2.1.2 Overlap rules with a limited number of tasks

od[or, ρ, b, ρ1] = 0⇔
ntasks(ρ1)∧

bb=0

(x[ρ, b] 6= x[n, bb]) ∨ x[ρ, b] = f,

∀or ∈ OR,
∀ρ ∈ R,

∀b ∈ ntask(ρ),
∀ρ1 ∈ Nρ,or

(C5)

Sum({od[or, ρ, b, ρ1] > 0, ∀ρ1 ∈ Nρ,or, ∀b ∈ ntasks(ρ)}) ≤ m,

∀or ∈ OR,
∀ρ ∈ R

(C6)

Modelization 2 (Overlap rules with a limited number of tasks )

As detailed earlier, overlapping rules can be set up to tolerate registrations using the same
check-in desk. There are three methods of implementing these rules for two registrations:

• if no rule exists between these registrations, or if a rule exists but is incompatible with the
overlap period, then overlap is prohibited using a non-overlap constraint (see Rule C3).

• if a rule exists as a pair (i.e., without specifying the m in the rules), overlapping is tolerated,
and no constraint is added.

• if a rule exists as a triplet, specific constraints are added to represent this particular case.

We add a new matrix of |OR| × |R| × |ν| × |n| variables called od. n is the maximum num-
ber of possible neighbors (i.e., max ({|Nρ,or|, ∀or ∈ OR, ∀ρ ∈ Ror})). The domain of a variable
od[or, ρ, b, ρ1] is a binary domain composed of the value 0 and the overlapping duration between
the registration ρ and ρ1 considering the rule or.

Constraints C5 ensure that the overlap time between a registration ρ and one of its neigh-
boring registration n is equal to 0 if and only if the two tasks use different check-in desks or
one of them uses the dummy bank. Based on the assignment in the x matrix, this constraint is
used to determine whether two registrations overlap or not. We now must introduce constraints
considering the maximum number of overlaps possible on a registration.

In Constraint C6, od[or, ρ, b, ρ1] > 0 is true when the registrations ρ and ρ1 overlap on task
b of ρ. We ensure that the sum of these booleans for each task b of a registration ρ and the set
of tasks of these neighbors is less than or equal to m from the or rule.
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Suppose we have overlapping rules, denoted as or, that allow a maximum overlap of 2
hours between two tasks from registrations ρ2 and ρ4. This rule can be represented as
the triplet or = (ρ2, ρ4, 120, 2). Here, the set ρ2, ρ4 indicates the registrations subject
to this overlapping rule. To express this rule in the context of our initial overlapping
constraint definition, we can form a matrix, od, with dimensions 1× 5× 3× 1:

• The first dimension is 1, signifying the single overlapping rule.
• The second dimension represents the total number of registrations in our exam-

ple, 5.
• The third dimension relates to the maximum number of tasks associated with a

registration.
• Lastly, the fourth dimension indicates the maximum count of neighboring reg-

istrations. In this instance, it is equivalent to max ({|Nρ2,or|}), which equals 1,
given that Nρ2,or, comprises just ρ4.

od[1, 2, 1, 1] = 0⇔
2∧

bb=1

(x[2, 1] 6= x[4, bb]) ∨ x[2, 1] = 10,

od[1, 2, 2, 1] = 0⇔
2∧

bb=1

(x[2, 2] 6= x[4, bb]) ∨ x[2, 2] = 10,

od[1, 2, 3, 1] = 0⇔
2∧

bb=1

(x[2, 3] 6= x[4, bb]) ∨ x[2, 3] = 10,

For the previous constraints :

• They are associated with the first overlapping rule, represented by the index 1
in the matrix od’s first dimension.

• They are related to registration ρ2, signified by the index 2 in od’s second di-
mension.

• Each constraint corresponds to a specific task of ρ2, denoted by an index in the
matrix od’s third dimension.

• The concluding index designates the primary neighbor (index 1) of ρ2, which is
ρ4.

For each task of ρ2 we ensure that the overlap time with each task of ρ4 is equal to 0
if and only if variables for the tasks use different check-in desks or one of them uses
the dummy bank.
Regarding the Constraints C6, we count for each registration of each rule the number
of variables with a value strictly greater than 0, and we ensure that this sum is less
than the value defined by the rule.

Example 20
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Chapter 3. Modeling of the Airport check-in desk assignment problem

3.2.1.3 Exclusion constraints and Unavailability constraints

x[ρ, i] 6∈ Eρ, ∀ρ ∈ R, ∀i ∈ ntasks(ρ) (C7)

Modelization 3 (Exclusion constraints )

x[ρ, i] 6= c, ∀ρ ∈ Uc (C8)

Modelization 4 (Unavailability constraints )

In Constraint C7, we post for each task of each registration a negative table that excluded
the check-in desk from Eρ. For Constraint C8, we introduce the set of registrations that overlap
with an unavailability rule u (e.g., Uc = {ρ, ∀ρ ∈ R | overlap(ρ, u)}). For each created set, we
add an inequality between each registration task and the rule’s check-in desk.

Building upon our preceding example, let’s consider a scenario where certain check-in
desks are excluded for the registration ρ1, represented by the set Eρ1 .
To encapsulate this, we introduce negative table constraints (see Constraint C7) for
each task associated with ρ1 as follows:

x[ρ1, 1] 6∈ Eρ1
x[ρ1, 2] 6∈ Eρ1
x[ρ1, 3] 6∈ Eρ1

This ensures that the tasks of ρ1 do not get assigned to the restricted check-in desks
listed in Eρ1 .
Now, if check-in desk c1 is unavailable and this unavailability overlaps with ρ4, we can
assert the following constraints:

x[ρ4, 1] 6= 1

x[ρ4, 2] 6= 1

Example 21

3.2.1.4 Objective Function

Finally, we can use the matrix r for posting the objective function that maximizes the satisfaction
of the airlines:
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maximize
∑
ρ∈R

j∈1..ntasks(ρ)

r[ρ, j] (C9)

Modelization 5 (Objective function)

3.2.2 Some refinements
3.2.2.1 Gathering Binary Difference Constraints

We will now strengthen this natural formulation by reformulating the set of constraints (C3)
using the AllDifferentExcept constraint. This latter enforces all variables to take distinct
values, except those assigned to a special (joker) value (here it is our fictive bank f).

AllDifferentExcept({x[ρ1], x[ρ2]}, f) (C10)

For each pair ρ1, ρ2 in the forbidden overlaps F . Note that we used the notation x[ρ1] and
x[ρ2] for a shortcut that integrates the entire second dimension of the matrix into the constraint
(i.e., each task of ρ1 or ρ2). This formulation considerably reduces the number of constraints
about no-overlapping tasks, as the previous formulation needs a quadratic number of not-equal
constraints.

Note that there are several possible representations or propagators in the ACE solver to
manage this constraint:

• AllDifferentExcept can be represented with a Cardinality constraint where each value
(except the excluded value) from the union of the domain of the scope of the constraint
must be present at most once (called Card).

• AllDifferentExcept can be represented by decomposing the constraint into binary con-
straints (called Bin).

• AllDifferentExcept can used a weak propagator that not preserve the arc-consistency
(called ADEWeak)

Building on the scenarios presented in Example 19, we can refine the inequalities and
introduce the subsequent constraints:

AllDifferentExcept({x[ρ1], x[ρ2]}, 10)
AllDifferentExcept({x[ρ1], x[ρ4]}, 10)

Example 22

3.2.2.2 Gathering AllDifferentExcept constraints

Even though the formulation above notably reduces the number of posted constraints, the solver
remains too slow to find acceptable results (bounds) in a reasonable amount of time. We have
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thus gathered all AllDifferentExcept constraints into a unique, pragmatic constraint called
GatherAllDifferentExcept. For this particular constraint, we use a specific fast propagator
(see Algorithm 1) that performs a limited form of filtering (i.e., does not enforce generalized arc
consistency). This is a very pragmatic approach, equivalent to the initial set of binary constraints
but faster (only one constraint being posted). We use a data structure that allows for two
variables x and y to check whether x and y appear conjointly in the same AllDifferentExcept
constraint. When x is assigned, we can thus find easily the variables to filter.

Algorithm 1: Propagator for GatherAllDifferent
Input: x // A variable x to filter.
Output: boolean // Returns false if an inconsistency is detected

1 if dom(x).size() = 1 then
2 v ← x.dom.singleValue()
3 if v = exceptValue then
4 return true
5 end
6 t← neighboursOf(x)
7 if futvars.size() < t.size() then
8 tab← futvars
9 else

10 tab← t
11 end
12 for i = tab.size()− 1 to 0 do
13 y ← tab[i]
14 if (y 6= x) ∧ sharedConstraint(x, y)∧ not y.dom.removeValueIfPresent(v)

then
15 return false
16 end
17 end
18 end
19 return true

3.2.2.3 Refinement of the Overlapping constraint

To reduce the dimensions of the od matrix, an alternative approach involves utilizing not the
cardinality of R for the second dimension, but only the size of the set of registrations governed
by rules. This size is represented by the union of all registrations involved in the rules, denoted
as ROR =

⋃
∀Ror∈ORRor. We can also use a true binary domain (i.e., {0,1}) to avoid the

reification constraint introduced by od[or, ρ, b, ρ1] > 0. Consequently, Constraint C6 can be
reformulated in two ways.

First, in Constraint C11, we exploit the binary domain to sum the variables directly. This
eliminates the need for reification and results in the following form:
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Sum({od[or, ρ, b, ρ1], ∀ρ1 ∈ Nρ,or, ∀b ∈ ntasks(ρ)}) ≤ m,

∀or ∈ OR,
∀ρ ∈ R

(C11)

Modelization 6 (Sum )

Alternatively, in Constraint C12, we make use of a Count constraint along with the binary
domain, taking advantage of the associated propagator.

Count({od[or, ρ, b, ρ1], ∀ρ1 ∈ Nρ,or, ∀b ∈ nt(ρ)}, v = 1) ≤ m,

∀or ∈ OR,
∀ρ ∈ R

(C12)

Modelization 7 (Count )

3.3 Experimental environment

3.3.1 Vocabulary

This section introduces some of the vocabulary used to identify the data manipulated during the
various campaigns in the chapters that follow. A campaign contains all the experimental data
that has been collected and defines the configuration of the solver execution environment
(temporal and spatial boundaries, machine configuration, etc.). During a campaign, solvers
are evaluated. Note that different configurations of the same solver are considered different
solvers. A campaign is characterized by the set of input files used for it. In this context,
all solvers are run on the same set of files. Finally, an experiment corresponds to the execution
of a given solver on a given input file so that the set of experiments correspond to the
Cartesian product of the set of input files and the set of solvers. Each experiment is
characterized by those measurements that are relevant to the analyses to be carried out, such as
execution time or memory used by the solver (and many others, depending on the application).
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Let us consider a campaign in which we want to compare the solvers S1 and S2 on two
instances CarSequencing.xml and RLFAP.xmla. The set of input files comprises
these two files. The experiments for this campaign are as follows:

• The execution of S1 on CarSequencing.xml ;
• The execution of S1 on RLFAP.xml ;
• The execution of S2 on CarSequencing.xml ;
• The execution of S2 on RLFAP.xml ;
aWe will see later what these ‘XML‘ files correspond to.

Example 23

3.3.2 Experiments on HPC
All the campaigns described in this manuscript are executed on the same conditions. We dispose
of a cluster of computers equipped with 128 GB of RAM and two quad-core Intel XEON E5-2637
(3.5 GHz); for a specific node, only one experiment is run at a time. When we used instances
from the XCSP library, the time limit was set at 2400 seconds (time commonly used in XCSP
competitions [BLAP20]), otherwise the time is set to 300 seconds, the time limit fixed by Paris
Airports. When the associated campaign is presented, a description of the instances used will

be provided. The experiments executed on the cluster are illustrated by the logo .

3.3.3 Experiments on Paris Airport information system
Concerning the campaigns executed on the Paris Airports Information System, we dispose of
a server equipped with 64 GB of RAM and two 10-core Intel Xeon Silver 4210R (2.40GHz).
Except in the case of experiments designed to test load, each experiment was run alone on the
server (i.e., without any other parallel resolution). Note that the solver is stopped when no more
improvement has been made for 5 seconds (since the last solution was found). Since the choice
of stopping the solver after 5 seconds makes it non-deterministic, we run each experiment 10
times.

3.3.4 Analysis and reproducibility
In the context of computer science research (and more generally, in any field requiring the design
of software programs), it is necessary to carry out experiments to ensure that the produced pro-
grams work as intended. In particular, one needs to ensure that its resources remain reasonable.
To do so, software solutions such as run solver [Rou11] have been developed to measure and
limit the consumption of the temporal and spatial resources of the program under test. How-
ever, more than respecting these limits is generally required to assess the program’s behavior.
Collecting additional statistics, usually provided by the program (e.g., via software logs) or tools
such as runsolver is often necessary. The collected data must then be aggregated to evaluate
the quality of the program’s results through a statistical analysis.

Statistics provide many mathematical tools, and choosing one over another may introduce
biases in the results or their analysis. Thus, many erroneous analyses have been identified over
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the years. One of the most famous such analyses is an article on economics by Reinhart and
Rogoff [RR10], for which analytical errors were detected only three years later [HAP14]. As a
countermeasure to such errors, the principles of transparent science and reproducible results are
increasingly being applied. They have been the subject of an OECD recommendation [PF07],
and scientists have introduced many approaches favoring reproducibility in the context of com-
puter experiments [FFR16, KPD18]. Towards this direction, it is recommended to open the
source of the software program (or, at least, provide its binaries) and to make available the
data used to evaluate it (e.g., using software forges). It is also important to analyze the results
reproducible, which can be done using tools such as RMarkdown9 or Jupyter Notebooks10.

In the research community of problem solving (e.g., in the SATisfiability Problem (SAT),
Pseudo-Boolean (PB), Constraint Programming (CP) or Quantified Boolean Formula (QBF)
communities), there is not a significant difference between how the different solvers are executed.
Indeed, solvers are often required to provide Command Line Interface (CLI) that meet the
environment requirements in which they are being executed (e.g., during competitions). As
such, the main difference between these programs is their actual implementation. Also, most
of the data collected when running the solvers remains almost the same (e.g., runtime, memory
usage, etc.). In this context, the creation of a tool that can run the program, collect the
data it produces, and analyze it would have multiple advantages: testing new features is more
straightforward, both in terms of execution and analysis, and the reproducibility of the results
is automatically ensured.

Based on these observations, we have developed Metrics [FWW21] (mETRICS stands for
rEproducible sofTware peRformance analysIs in perfeCt Simplicity), a Python library aiming to
unify and make easier the analysis of solver experiments. Metrics aims to provide a complete
toolchain from the execution of the solver to the analysis of its performance. Currently, this
library contains two main components: scalpel (sCAlPEL stands for extraCting dAta of exPer-
iments from softwarE Logs) and wallet (wALLET stands for Automated tooL for expLoiting
Experimental resulTs). On the one hand, scalpel, is designed to simplify the retrieval of exper-
imental data. It can handle a wide variety of inputs, including CSV, XML, JSON files or even the
solver’s output, thanks to a description file provided by the user. This makes the tool easy to
configure and highly flexible. On the other hand, wallet provides a nice interface for drawing
commonly used plots (such as scatter or cactus plots) and computing statistics about the exe-
cution of the different solvers (in particular, their score using classical performance measures).
The design of wallet makes easier the integration of the analysis in Jupyter Notebooks, which
can easily be shared online (for instance, GitHub or Gitlab can render such files), which also
favors the reproducibility of the analysis.

In the upcoming chapters, statistics, tables, or graphs produced for each campaign are accom-
panied by a clickable logo that directs to the corresponding campaign analysis. A campaign
includes all the information required to enable the reader to replicate the experiments, data
extraction, analysis and production of the figures presented in this thesis. Moreover, we use the
open-source tool RunSolver11 to control the resources used by our solvers or models.

9https://rmarkdown.rstudio.com/
10https://jupyter.org/
11http://www.cril.univ-artois.fr/~roussel/runsolver/
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3.4 Experiments
Within this section, we undertake a variety of experiments to compare the proposed models and
explore various configurations for the ACE solver.

3.4.1 Instances

Airport Terminals Date #Flights #Tasks #OR #OR Nbmax
ORY 1,2,3,4 2023-05-08 2023-05-14 2285 3903 21 21
ORY 1,2,3,4 2023-06-19 2023-06-25 1559 2966 22 22
ORY 1,2,3,4 2023-06-26 2023-07-02 1669 3212 22 22
ORY 1,2,3,4 2023-07-03 2023-07-09 1686 3267 22 22
CDG T2B T2D 2023-07-03 2023-07-09 767 1672 0 0
CDG T1 2023-07-03 2023-07-09 647 2120 8 8
CDG T1,T2,T3 2023-08-21 2023-08-27 1811 5077 13 0
CDG T1,T2,T3 2023-09-11 2023-09-17 4274 10298 14 0
CDG T1,T2,T3 2023-09-18 2023-09-24 4278 10216 14 0

Table 3.3: General information about the check-in planning.

Table 3.3 presents some factual information about the different planning used for these ex-
periments. The first two columns indicate the area of the planning (i.e., Airport and Terminals
concerning the planning). The third column gives the date of the planning. Finally, the last
two columns display the number of flights and tasks. For each planning, we have created three
families of problems:

• no-overlapping: This family does not contain overlapping rules. Therefore, the con-
straints presented in Section 3.2.1.2 are absent.

• overlapping: In this family, there are overlapping rules without a maximum number
of tasks. This family will be similar to the no-overlapping family but with fewer
AllDifferentExcept constraints.

• overlapping-nbmax: The overlapping rules contain a maximum number of tasks in this
family. Note that this family contains the various models proposed for the constraint
overlapping with a limited number of tasks (i.e., modeling 2, 6 and 7).

For our experiments, we also compare three types of decomposition. The first type of de-
composition is no-decomposition, which gathers all the planning in a unique instance. The
second decomposition is partial-decomposition, which keeps terminals together and decom-
poses by day. Finally, the third decomposition decomposes by terminals and by day and is
called full-decomposition. For decompose by day, we exploit the strategy rules (i.e., air-
line satisfaction). By default, terminals are separated but grouped if a strategy covers several
terminals.

The first set of instances I1 is composed of all families of instances and represents 1541
instances: {

Ift

∣∣∣∣ f ∈ {no− overlapping, overlapping, overlapping− nbmax}
t ∈ {checkin}

}
(I1)
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3.4.2 Comparison between ACE and ACEURANCETOURIX

For technical reasons, we do not use ACE directly in the Paris Airport environment, but
its JUniverse12 adapter, ACEURANCETOURIX13. The main difference between ACE and
ACEURANCETOURIX is how to read the XCSP file. This first campaign compares ACE and
ACEURANCETOURIX to show that the cost of using ACEURANCETOURIX is negligible and used the
solver configurations defined by the set Ψ1. Note that we have activated the annotation for
each configuration to guide which variables must be assigned first.Svalhvarh

∣∣∣∣∣∣
S ∈ {ACE, ACEURANCETOURIX}
varh ∈ {Frba}
valh ∈ {First}

 (Ψ1)

I1

Ψ1

5 minutes

32 GB

Linux CentOS Stream 8.3

Two quadcore Intel XEON E5-2637 (3.5 GHz)

128 GB

Summary of the experiments 1 (ACE vs ACEURANCETOURIX - , )

Figures 3.2 and 3.3 show scatter plots comparing the value of the first bound found and the
time to found first bound between ACE and ACEURANCETOURIX respectively. These scatter plots
show that ACEURANCETOURIX found precisely the same first bound as ACE with an often better
time. Next, we will only use ACEURANCETOURIX.

3.4.3 Modelizations and solver configurations
This section introduces experiments that evaluated our proposed model using various solver
configurations. Because the different families are not comparable, we separate each analysis of
each family into a specific section.
We shall primarily utilize tables for these experiments to display the initial (respectively, final)
bound and the corresponding time for each configuration and instance. Upon decomposing the
instances, it becomes imperative to aggregate each sub-problem’s bounds to ascertain the entire
problem’s bound. Using the illustration provided in Figure 3.4, if seven solvers produce bounds
at different times (black point), and the fourth solver is the last to generate a bound, and we

12https://github.com/crillab/juniverse
13https://github.com/crillab/aceurancetourix
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Figure 3.2: Comparison of first bound found by ACE and ACEURANCETOURIX.
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Figure 3.3: Comparison of the time to find the first bound between ACE and ACEURANCETOURIX.

accumulate the final bounds produced by each solver up to, or just before, the moment when
the fourth solver’s bound is established (red point).
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Time

Solver 1

Solver 2

Solver 3

Solver 4

Solver 5

Solver 6

Solver 7

Figure 3.4: Example of the aggregation of bounds to find the global bound when the problem
is decomposed.

For these experiments, we use the set of solvers defined as follows:decompo− ade− alevarh
valh

∣∣∣∣∣∣∣∣∣∣
decompo ∈ {Full, Part, None}
ade ∈ {Card, Bin, ADEWeak, Gather}
ale ∈ {i2e, ∅}
varh ∈ {Frba, Wdeg}
valh ∈ {First, SO, Bivs, Bivs+ SO}

 (Ψ2)

Where decompo is the decomposition used for solving the instance, ade corresponds to the
algorithm for the AllDifferentExcept constraint. i2e for ale indicates that intension con-
straints have been converted to extension constraints (when this is the case, the maximum arity
of converted constraints is 4). varh is the variable order heuristic used by the solver (see Sec-
tion 1.3.3.1, page. 13). Finally, valh is the value order heuristic used by the solver, First and
Bivs [FP17] are the heuristics described in Section 1.3.3.2, page. 13. The designation SO stands
for Static Order, a specialized value order heuristic wherein the check-in desk is sequenced ac-
cording to this weight from strategy. The term Bivs+ SO illustrates a fusion of both Bivs and
SO.

3.4.4 Scoring

To select the best solvers presented, we define a score that allows us to keep only the best. Recall
that all results are available online. First, we present the different notations we use to evaluate
experimental results. Given a set I of instances and a set Ψ of solvers,

bis,t

corresponds to the best bound obtained by solver s ∈ Ψ on instance i ∈ I in t second(s), where
t ∈ [0, . . . , T ] and T is the timeout. Note that we consider only the time for each solver of the
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first bound (tf ) and the last bound tl. We use a similar notation to refer to the time taken by
solver s to produce its first bound (resp. last bound) on instance i:

tis

We can now define the value corresponding to the largest (best) bounds obtained by a set of
solvers Ψ on a given instance i at time t where t is equal to tf or tl.

maxbit = max
s∈Ψ

bis,t

We also define the notation for the minimum time taken by a set of solvers Ψ to find the
first solution of an instance i.

mintit = min
s∈Ψ

tis

We can now present the score obtained by a solver s ∈ Ψ on an instance i ∈ I at time t
where t is equal to tf or tl:

ni
s,t =


1, if bis,t = maxbit ∧ tis = mintit
0.5, if bis,t = maxbit
0 else

Finally, the score obtained by the solvers is defined as follows:

ns =
∑
i∈I

ni
s,tf

+
∑
i∈I

ni
s,tl

(3.1)

3.4.5 No-overlapping family

This section concerns experiments on the family of instances no− overlapping. We define a
new set of instances for this family noted I2, a subset of I1. It is important to note that the
results are for the instances presented in the Table 3.3, and that we are therefore applying the
aggregation procedure (when we have decomposed the instance) described in Section 3.4.3.

{
Icheckin

no−overlapping
}

(I2)
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I2

Ψ2

5 minutes

32 GB

Linux CentOS Stream 8.3

Two quadcore Intel XEON E5-2637 (3.5 GHz)

128 GB

Summary of the experiments 2 (no− overlapping - , )

Solver Score
Part− GatherFrba

SO 2.5
Full− GatherWdeg

SO 2.0
Full− ADEWeak− i2e

Wdeg
SO 1.5

Full− Bin− i2e
Wdeg
SO 1.5

None− ADEWeak− i2eFrba
SO 1.0

None− Bin− i2eFrba
SO 1.0

None− Card− i2eFrba
SO 1.0

None− Gather− i2eFrba
First 1.0

Part− ADEWeakWdeg
SO 1.0

Full− Card− i2e
Wdeg
SO 0.5

Part− Bin− i2eFrba
Bivs 0.5

Part− Card− i2eFrba
First 0.5

Table 3.4: Ranking of the solvers for no− overlapping family.

Table 3.4 displays the scores derived from equation 3.1 for each solver, emphasizing the
optimal pairs formed by decomposition and the AllDifferent algorithm configurations. Con-
sequently, each AllDifferent algorithm appears thrice, once for every decomposition.

We can notice that the 2 solvers occupying the first places are based on the Gather method
for AllDiffExcept constraint presented in Section 3.2.2.2. Comprehensive details of each solver
can be further explored in Table 3.5. This table presents, for every instance and solver, the initial
and final bounds, along with the time required to obtain these bounds. The Part− GatherFrba

SO
configuration seems to falter with specific instances, notably CDG T1,2,3 during the period of
August 21-27 2023. However, generally, the Gather configurations always allow you to obtain a
bound, distinguishing themselves from configurations based on Card, Bin, or ADEWeak.

It is noteworthy to highlight the efficacy of the Full−GatherWdeg
SO configuration. It excels by

rapidly procuring the best initial solutions for instances 3, 4, and 6 (as sequenced in the table)
when utilizing the full decomposition. Additionally, it achieves the best final bound for instance
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2. Yet, its efficacy seems somewhat diminished for the Orly airport scenarios, as evident from
the outcomes for instances 7, 8, and 9.

Term Period Solver First B (Time (s)) Last B (Time (s))

CDG T1 0703-0709 Part − GatherFrba
SO 23,465,000 (6.43s) 23,550,000 (7.38s)

CDG T1 0703-0709 Part − ADEWeakWdeg
SO 23,450,000 (6.58s) 23,550,000 (7.87s)

CDG T1 0703-0709 None − ADEWeak − i2eFrba
SO 23,120,000 (8.37s) 23,550,000 (80.14s)

CDG T1 0703-0709 None − Card − i2eFrba
SO 23,120,000 (11.97s) 23,550,000 (129.4s)

CDG T1 0703-0709 None − Bin − i2eFrba
SO 23,120,000 (17.26s) 23,550,000 (57.1s)

CDG T1 0703-0709 Part − Bin − i2eFrba
Bivs 22,830,000 (11.61s) 23,510,000 (254.37s)

CDG T1 0703-0709 Part − Card − i2eFrba
First 19,625,000 (9.66s) 23,550,000 (32.15s)

CDG T1 0703-0709 None − Gather − i2eFrba
First 15,895,000 (6.76s) 23,550,000 (195.27s)

CDG T1,2,3 0821-0827 Full − Bin − i2e
Wdeg
SO 20,779,400 (10.26s) 20,941,500 (76.8s)

CDG T1,2,3 0821-0827 Full − ADEWeak − i2e
Wdeg
SO 20,501,000 (6.22s) 20,941,500 (57.77s)

CDG T1,2,3 0821-0827 Full − GatherWdeg
SO 20,478,300 (6.21s) 20,941,500 (51.25s)

CDG T1,2,3 0821-0827 Full − Card − i2e
Wdeg
SO TO TO

CDG T1,2,3 0821-0827 Part − Bin − i2eFrba
Bivs 18,273,900 (24.17s) 19,143,600 (299.17s)

CDG T1,2,3 0821-0827 Part − ADEWeakWdeg
SO 17,802,500 (9.19s) 19,022,100 (282.91s)

CDG T1,2,3 0821-0827 Part − GatherFrba
SO 17,202,400 (4.85s) 19,272,700 (82.22s)

CDG T1,2,3 0821-0827 None − ADEWeak − i2eFrba
SO 17,138,900 (30.98s) 17,152,500 (280.27s)

CDG T1,2,3 0821-0827 None − Bin − i2eFrba
SO 17,138,900 (53.4s) 17,732,800 (297.86s)

CDG T1,2,3 0821-0827 None − Gather − i2eFrba
First 10,926,000 (15.22s) 13,183,900 (297.0s)

CDG T1,2,3 0821-0827 Part − Card − i2eFrba
First TO TO

CDG T1,2,3 0821-0827 None − Card − i2eFrba
SO TO TO

CDG T1,2,3 0911-0917 Full − GatherWdeg
SO 61,802,700 (12.38s) 61,908,700 (231.76s)

CDG T1,2,3 0911-0917 Full − ADEWeak − i2e
Wdeg
SO 61,802,700 (13.93s) 61,944,700 (243.01s)

CDG T1,2,3 0911-0917 Full − Bin − i2e
Wdeg
SO 61,802,700 (111.37s) 61,802,700 (111.37s)

CDG T1,2,3 0911-0917 Part − ADEWeakWdeg
SO 60,018,100 (18.49s) 60,483,600 (241.98s)

CDG T1,2,3 0911-0917 Part − GatherFrba
SO 55,270,000 (15.33s) 57,689,400 (288.85s)

CDG T1,2,3 0911-0917 None − Gather − i2eFrba
First 48,654,700 (27.32s) 48,654,700 (27.32s)

CDG T1,2,3 0911-0917 Full − Card − i2e
Wdeg
SO TO TO

CDG T1,2,3 0911-0917 Part − Card − i2eFrba
First TO TO

CDG T1,2,3 0911-0917 Part − Bin − i2eFrba
Bivs TO TO

CDG T1,2,3 0911-0917 None − Card − i2eFrba
SO TO TO

CDG T1,2,3 0911-0917 None − Bin − i2eFrba
SO TO TO

CDG T1,2,3 0911-0917 None − ADEWeak − i2eFrba
SO TO TO

CDG T1,2,3 0918-0924 Full − GatherWdeg
SO 61,677,400 (11.65s) 61,727,400 (246.09s)

CDG T1,2,3 0918-0924 Full − Bin − i2e
Wdeg
SO 61,677,400 (121.21s) 61,677,400 (121.21s)

CDG T1,2,3 0918-0924 Full − ADEWeak − i2e
Wdeg
SO 61,671,400 (11.14s) 61,733,400 (264.55s)

CDG T1,2,3 0918-0924 Part − ADEWeakWdeg
SO 59,863,500 (21.15s) 60,332,700 (289.24s)

CDG T1,2,3 0918-0924 Part − GatherFrba
SO 55,440,000 (13.53s) 57,761,900 (283.9s)

CDG T1,2,3 0918-0924 None − Gather − i2eFrba
First 48,710,100 (35.64s) 48,710,100 (35.64s)

CDG T1,2,3 0918-0924 Full − Card − i2e
Wdeg
SO TO TO

CDG T1,2,3 0918-0924 Part − Card − i2eFrba
First TO TO

CDG T1,2,3 0918-0924 Part − Bin − i2eFrba
Bivs TO TO

CDG T1,2,3 0918-0924 None − Card − i2eFrba
SO TO TO

CDG T1,2,3 0918-0924 None − Bin − i2eFrba
SO TO TO

CDG T1,2,3 0918-0924 None − ADEWeak − i2eFrba
SO TO TO

CDG T2BD 0703-0709 Full − ADEWeak − i2e
Wdeg
SO 19,149,020 (6.2s) 19,149,020 (6.2s)

CDG T2BD 0703-0709 Full − Card − i2e
Wdeg
SO 19,149,020 (7.47s) 19,149,020 (7.47s)

CDG T2BD 0703-0709 Part − ADEWeakWdeg
SO 19,149,020 (7.61s) 19,149,020 (7.61s)

CDG T2BD 0703-0709 Full − GatherWdeg
SO 19,129,020 (5.85s) 19,149,020 (6.52s)

CDG T2BD 0703-0709 Full − Bin − i2e
Wdeg
SO 19,129,020 (8.59s) 19,149,020 (9.59s)

CDG T2BD 0703-0709 Part − GatherFrba
SO 19,059,020 (6.83s) 19,149,020 (7.78s)

CDG T2BD 0703-0709 None − Card − i2eFrba
SO 18,959,020 (13.89s) 19,219,020 (179.22s)

CDG T2BD 0703-0709 None − ADEWeak − i2eFrba
SO 18,959,020 (17.63s) 19,219,020 (114.99s)

CDG T2BD 0703-0709 None − Bin − i2eFrba
SO 18,959,020 (25.7s) 19,219,020 (89.55s)

CDG T2BD 0703-0709 Part − Bin − i2eFrba
Bivs 18,719,020 (11.84s) 19,149,020 (107.02s)

CDG T2BD 0703-0709 Part − Card − i2eFrba
First 13,419,629 (9.12s) 19,149,020 (84.11s)

Continued on next page
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Term Period Solver First B (Time (s)) Last B (Time (s))

CDG T2BD 0703-0709 None − Gather − i2eFrba
First 12,619,755 (12.09s) 19,219,020 (286.29s)

ORY 0508-0514 Full − GatherWdeg
SO 40,693,200 (7.74s) 41,993,600 (299.79s)

ORY 0508-0514 Full − ADEWeak − i2e
Wdeg
SO 40,450,200 (6.93s) 41,965,200 (248.13s)

ORY 0508-0514 Full − Bin − i2e
Wdeg
SO 40,373,500 (10.67s) 41,853,400 (288.15s)

ORY 0508-0514 Part − GatherFrba
SO 40,192,400 (9.66s) 41,846,700 (253.73s)

ORY 0508-0514 Part − ADEWeakWdeg
SO 39,604,200 (11.18s) 41,536,000 (295.32s)

ORY 0508-0514 Full − Card − i2e
Wdeg
SO 39,580,600 (11.64s) 41,637,000 (294.19s)

ORY 0508-0514 Part − Bin − i2eFrba
Bivs 39,557,200 (28.89s) 40,619,100 (297.22s)

ORY 0508-0514 None − ADEWeak − i2eFrba
SO 39,518,900 (26.71s) 39,519,200 (297.1s)

ORY 0508-0514 None − Bin − i2eFrba
SO 39,518,900 (48.88s) 39,581,600 (294.31s)

ORY 0508-0514 None − Card − i2eFrba
SO 39,518,900 (100.36s) 39,518,900 (100.36s)

ORY 0508-0514 Part − Card − i2eFrba
First 34,299,700 (26.86s) 39,306,600 (299.98s)

ORY 0508-0514 None − Gather − i2eFrba
First 34,010,700 (14.88s) 34,736,700 (298.67s)

ORY 0619-0625 Part − Bin − i2eFrba
Bivs 28,728,414 (22.57s) 29,186,279 (281.61s)

ORY 0619-0625 Part − GatherFrba
SO 28,408,874 (4.49s) 29,596,588 (292.85s)

ORY 0619-0625 None − ADEWeak − i2eFrba
SO 28,386,081 (16.45s) 28,450,581 (297.51s)

ORY 0619-0625 None − Bin − i2eFrba
SO 28,386,081 (33.77s) 28,583,781 (294.07s)

ORY 0619-0625 None − Card − i2eFrba
SO 28,386,081 (64.93s) 28,388,381 (296.73s)

ORY 0619-0625 Part − ADEWeakWdeg
SO 28,138,018 (8.22s) 29,458,052 (262.75s)

ORY 0619-0625 Full − GatherWdeg
SO 26,899,903 (7.91s) 27,705,238 (298.28s)

ORY 0619-0625 Full − Bin − i2e
Wdeg
SO 26,731,207 (13.59s) 27,698,141 (286.09s)

ORY 0619-0625 Full − ADEWeak − i2e
Wdeg
SO 26,564,490 (7.59s) 27,690,838 (237.92s)

ORY 0619-0625 Part − Card − i2eFrba
First 25,564,544 (11.31s) 29,077,973 (289.32s)

ORY 0619-0625 None − Gather − i2eFrba
First 25,548,051 (9.84s) 26,692,886 (299.95s)

ORY 0619-0625 Full − Card − i2e
Wdeg
SO TO TO

ORY 0626-0702 Part − GatherFrba
SO 30,418,573 (8.64s) 31,144,690 (294.97s)

ORY 0626-0702 Part − Bin − i2eFrba
Bivs 30,265,997 (23.49s) 30,776,981 (299.11s)

ORY 0626-0702 None − ADEWeak − i2eFrba
SO 29,889,358 (18.79s) 29,914,458 (277.4s)

ORY 0626-0702 None − Card − i2eFrba
SO 29,889,358 (44.32s) 29,897,558 (131.52s)

ORY 0626-0702 None − Bin − i2eFrba
SO 29,889,358 (59.0s) 30,035,958 (293.54s)

ORY 0626-0702 Part − ADEWeakWdeg
SO 29,607,819 (8.74s) 30,993,466 (293.89s)

ORY 0626-0702 Full − GatherWdeg
SO 28,011,791 (7.11s) 29,155,236 (267.2s)

ORY 0626-0702 Full − ADEWeak − i2e
Wdeg
SO 27,655,885 (6.39s) 29,161,343 (298.09s)

ORY 0626-0702 Full − Bin − i2e
Wdeg
SO 27,629,682 (13.89s) 29,022,830 (273.92s)

ORY 0626-0702 Part − Card − i2eFrba
First 27,140,765 (16.68s) 30,437,262 (299.94s)

ORY 0626-0702 None − Gather − i2eFrba
First 26,965,458 (20.31s) 27,787,658 (299.49s)

ORY 0626-0702 Full − Card − i2e
Wdeg
SO TO TO

ORY 0703-0709 Part − GatherFrba
SO 30,338,194 (7.78s) 31,355,600 (237.55s)

ORY 0703-0709 Part − Bin − i2eFrba
Bivs 30,287,419 (21.35s) 30,964,399 (297.16s)

ORY 0703-0709 None − ADEWeak − i2eFrba
SO 30,115,897 (29.81s) 30,161,797 (276.36s)

ORY 0703-0709 None − Card − i2eFrba
SO 30,115,897 (44.44s) 30,148,797 (290.04s)

ORY 0703-0709 None − Bin − i2eFrba
SO 30,115,897 (55.2s) 30,302,397 (297.37s)

ORY 0703-0709 Part − ADEWeakWdeg
SO 29,681,127 (8.55s) 31,225,383 (242.41s)

ORY 0703-0709 Full − GatherWdeg
SO 28,068,100 (7.11s) 29,235,350 (257.21s)

ORY 0703-0709 Full − Bin − i2e
Wdeg
SO 27,946,300 (14.28s) 29,118,736 (284.97s)

ORY 0703-0709 Full − ADEWeak − i2e
Wdeg
SO 27,725,879 (7.02s) 29,243,660 (287.32s)

ORY 0703-0709 Part − Card − i2eFrba
First 27,609,302 (18.6s) 30,578,464 (298.47s)

ORY 0703-0709 None − Gather − i2eFrba
First 27,492,302 (11.32s) 28,392,602 (299.41s)

ORY 0703-0709 Full − Card − i2e
Wdeg
SO TO TO

Table 3.5: Results for no-overlapping family.

3.4.6 Overlapping family
This section concerns experiments on the family of instances overlapping. We define a new set
of instances for this family noted I3, a subset of I1. This family contains all the instances from
Table 3.3 except the instance that concerns the terminal T2B and D because this scenario does
not contain overlapping rules.
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{
Icheckin

overlapping
}

(I3)

I3

Ψ2

5 minutes

32 GB

Linux CentOS Stream 8.3

Two quadcore Intel XEON E5-2637 (3.5 GHz)

128 GB

Summary of the experiments 3 (overlapping - , )

Solver Score

Full − ADEWeak − i2eFrba
Bivs+SO 3.5

Full − BinFrba
Bivs+SO 3.5

Full − Gather − i2eWdeg
Bivs+SO 3.5

Full − Card − i2eFrba
Bivs+SO 3.0

Part − Gather − i2eWdeg
Bivs 2.5

Part − ADEWeak − i2eWdeg
SO 1.5

Part − Bin − i2eFrba
Bivs+SO 1.0

Part − Card − i2eFrba
Bivs+SO 1.0

None − ADEWeak − i2eFrba
Bivs+SO 0.5

None − Bin − i2eFrba
Bivs+SO 0.5

None − Card − i2eFrba
Bivs+SO 0.5

None − Gather − i2eFrba
Bivs+SO 0.5

Table 3.6: Ranking of the solvers for overlapping family.

Like the previous section, Table 3.7 presents for each instance and each solver the first bound
(resp. last) and the time for obtaining this bound. Gather based configurations are in more
difficulty on this family but still contribute the 4 best first bounds and always get a bound,
unlike the Card approach, which is in timeout with full decomposition for the last two instances.

72

https://gitlab.com/productions-tfalque/optimization-passenger-flows-resource-management-through-ml-cp-techniques/experiments/-/tree/main/Chap3/Global
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Term Period Solver First B (Time (s)) Last B (Time (s))

CDG T1 0703-0709 Part − Gather − i2e
Wdeg
Bivs 27,675,000 (5.65s) 27,675,000 (5.65s)

CDG T1 0703-0709 Part − Card − i2eFrba
Bivs+SO 27,675,000 (10.28s) 27,675,000 (10.28s)

CDG T1 0703-0709 Part − Bin − i2eFrba
Bivs+SO 27,675,000 (11.23s) 27,675,000 (11.23s)

CDG T1 0703-0709 Part − ADEWeak − i2e
Wdeg
SO 27,660,000 (7.54s) 27,675,000 (8.18s)

CDG T1 0703-0709 None − Gather − i2eFrba
Bivs+SO 27,655,000 (7.75s) 27,675,000 (41.73s)

CDG T1 0703-0709 None − Card − i2eFrba
Bivs+SO 27,655,000 (18.07s) 27,675,000 (167.12s)

CDG T1 0703-0709 None − ADEWeak − i2eFrba
Bivs+SO 27,655,000 (18.23s) 27,675,000 (83.32s)

CDG T1 0703-0709 None − Bin − i2eFrba
Bivs+SO 27,655,000 (18.44s) 27,675,000 (150.58s)

CDG T1,T2,T3 0821-0827 Full − BinFrba
Bivs+SO 29,397,000 (5.4s) 29,397,000 (5.4s)

CDG T1,T2,T3 0821-0827 Full − Gather − i2e
Wdeg
Bivs+SO 29,397,000 (6.33s) 29,397,000 (6.33s)

CDG T1,T2,T3 0821-0827 Full − Card − i2eFrba
Bivs+SO 29,397,000 (6.4s) 29,397,000 (6.4s)

CDG T1,T2,T3 0821-0827 Full − ADEWeak − i2eFrba
Bivs+SO 29,397,000 (6.48s) 29,397,000 (6.48s)

CDG T1,T2,T3 0821-0827 None − Bin − i2eFrba
Bivs+SO 28,028,300 (16.73s) 28,028,300 (16.73s)

CDG T1,T2,T3 0821-0827 None − ADEWeak − i2eFrba
Bivs+SO 28,028,300 (17.04s) 28,028,300 (17.04s)

CDG T1,T2,T3 0821-0827 None − Card − i2eFrba
Bivs+SO 28,028,300 (17.44s) 28,028,300 (17.44s)

CDG T1,T2,T3 0821-0827 None − Gather − i2eFrba
Bivs+SO 28,028,300 (17.99s) 28,028,300 (17.99s)

CDG T1,T2,T3 0821-0827 Part − Gather − i2e
Wdeg
Bivs 28,018,300 (7.15s) 28,018,300 (7.15s)

CDG T1,T2,T3 0821-0827 Part − Card − i2eFrba
Bivs+SO 28,018,300 (8.21s) 28,018,300 (8.21s)

CDG T1,T2,T3 0821-0827 Part − Bin − i2eFrba
Bivs+SO 28,018,300 (8.95s) 28,018,300 (8.95s)

CDG T1,T2,T3 0821-0827 Part − ADEWeak − i2e
Wdeg
SO 25,324,800 (4.56s) 28,018,300 (8.17s)

CDG T1,T2,T3 0911-0917 Full − Card − i2eFrba
Bivs+SO 94,281,600 (11.11s) 94,281,600 (11.11s)

CDG T1,T2,T3 0911-0917 Full − ADEWeak − i2eFrba
Bivs+SO 94,281,600 (11.44s) 94,281,600 (11.44s)

CDG T1,T2,T3 0911-0917 Full − BinFrba
Bivs+SO 94,281,600 (12.3s) 94,281,600 (12.3s)

CDG T1,T2,T3 0911-0917 Full − Gather − i2e
Wdeg
Bivs+SO 94,281,600 (12.57s) 94,281,600 (12.57s)

CDG T1,T2,T3 0911-0917 Part − Bin − i2eFrba
Bivs+SO 92,925,300 (13.2s) 92,925,300 (13.2s)

CDG T1,T2,T3 0911-0917 Part − Card − i2eFrba
Bivs+SO 92,925,300 (15.47s) 92,925,300 (15.47s)

CDG T1,T2,T3 0911-0917 None − ADEWeak − i2eFrba
Bivs+SO 92,925,300 (122.5s) 92,925,300 (122.5s)

CDG T1,T2,T3 0911-0917 None − Card − i2eFrba
Bivs+SO 92,925,300 (152.94s) 92,925,300 (152.94s)

CDG T1,T2,T3 0911-0917 None − Bin − i2eFrba
Bivs+SO 92,925,300 (154.13s) 92,925,300 (154.13s)

CDG T1,T2,T3 0911-0917 None − Gather − i2eFrba
Bivs+SO 92,925,300 (160.36s) 92,925,300 (160.36s)

CDG T1,T2,T3 0911-0917 Part − ADEWeak − i2e
Wdeg
SO 92,826,300 (9.22s) 92,925,300 (15.85s)

CDG T1,T2,T3 0918-0924 Full − ADEWeak − i2eFrba
Bivs+SO 93,895,800 (7.02s) 93,895,800 (7.02s)

CDG T1,T2,T3 0918-0924 Full − Gather − i2e
Wdeg
Bivs+SO 93,895,800 (10.57s) 93,895,800 (10.57s)

CDG T1,T2,T3 0918-0924 Full − Card − i2eFrba
Bivs+SO 93,895,800 (11.47s) 93,895,800 (11.47s)

CDG T1,T2,T3 0918-0924 Full − BinFrba
Bivs+SO 93,895,800 (12.78s) 93,895,800 (12.78s)

CDG T1,T2,T3 0918-0924 Part − Gather − i2e
Wdeg
Bivs 92,575,000 (13.03s) 92,575,000 (13.03s)

CDG T1,T2,T3 0918-0924 Part − Card − i2eFrba
Bivs+SO 92,575,000 (13.85s) 92,575,000 (13.85s)

CDG T1,T2,T3 0918-0924 Part − Bin − i2eFrba
Bivs+SO 92,575,000 (14.27s) 92,575,000 (14.27s)

CDG T1,T2,T3 0918-0924 None − ADEWeak − i2eFrba
Bivs+SO 92,575,000 (146.55s) 92,575,000 (146.55s)

CDG T1,T2,T3 0918-0924 None − Card − i2eFrba
Bivs+SO 92,575,000 (153.01s) 92,575,000 (153.01s)

CDG T1,T2,T3 0918-0924 None − Gather − i2eFrba
Bivs+SO 92,575,000 (153.67s) 92,575,000 (153.67s)

CDG T1,T2,T3 0918-0924 None − Bin − i2eFrba
Bivs+SO 92,575,000 (160.5s) 92,575,000 (160.5s)

CDG T1,T2,T3 0918-0924 Part − ADEWeak − i2e
Wdeg
SO 92,404,000 (8.9s) 92,575,000 (21.76s)

ORY 0508-0514 Full − Gather − i2e
Wdeg
Bivs+SO 45,080,700 (7.57s) 45,760,300 (294.2s)

ORY 0508-0514 Part − Gather − i2e
Wdeg
Bivs 44,782,000 (9.3s) 45,522,500 (296.62s)

ORY 0508-0514 Full − BinFrba
Bivs+SO 44,241,300 (13.95s) 45,535,000 (298.93s)

ORY 0508-0514 Full − ADEWeak − i2eFrba
Bivs+SO 44,237,800 (8.59s) 45,650,000 (291.81s)

ORY 0508-0514 Full − Card − i2eFrba
Bivs+SO 44,173,300 (21.38s) 45,185,300 (299.41s)

ORY 0508-0514 Part − Bin − i2eFrba
Bivs+SO 43,960,500 (25.97s) 44,955,800 (295.39s)

ORY 0508-0514 Part − Card − i2eFrba
Bivs+SO 43,927,800 (67.37s) 44,220,200 (291.41s)

ORY 0508-0514 None − Gather − i2eFrba
Bivs+SO 43,924,300 (16.23s) 43,987,800 (279.05s)

ORY 0508-0514 None − Bin − i2eFrba
Bivs+SO 43,924,300 (78.59s) 43,958,300 (292.36s)

ORY 0508-0514 None − ADEWeak − i2eFrba
Bivs+SO 43,924,300 (155.74s) 43,927,800 (286.65s)

ORY 0508-0514 Part − ADEWeak − i2e
Wdeg
SO 43,668,100 (9.56s) 45,739,700 (282.01s)

ORY 0508-0514 None − Card − i2eFrba
Bivs+SO TO TO

ORY 0619-0625 Part − Gather − i2e
Wdeg
Bivs 32,359,753 (8.89s) 32,697,569 (298.68s)

ORY 0619-0625 Part − Bin − i2eFrba
Bivs+SO 32,246,332 (15.79s) 32,477,257 (298.36s)

Continued on next page
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Term Period Solver First B (Time (s)) Last B (Time (s))

ORY 0619-0625 Part − Card − i2eFrba
Bivs+SO 32,195,732 (29.66s) 32,355,857 (296.22s)

ORY 0619-0625 None − Gather − i2eFrba
Bivs+SO 32,178,032 (12.91s) 32,288,732 (298.29s)

ORY 0619-0625 None − ADEWeak − i2eFrba
Bivs+SO 32,178,032 (60.12s) 32,199,532 (273.07s)

ORY 0619-0625 None − Bin − i2eFrba
Bivs+SO 32,178,032 (63.89s) 32,251,532 (294.19s)

ORY 0619-0625 None − Card − i2eFrba
Bivs+SO 32,178,032 (222.87s) 32,178,132 (249.84s)

ORY 0619-0625 Part − ADEWeak − i2e
Wdeg
SO 31,808,957 (8.61s) 32,833,969 (266.73s)

ORY 0619-0625 Full − Gather − i2e
Wdeg
Bivs+SO 29,094,850 (7.15s) 29,501,666 (248.71s)

ORY 0619-0625 Full − BinFrba
Bivs+SO 29,042,154 (16.07s) 29,334,254 (293.52s)

ORY 0619-0625 Full − ADEWeak − i2eFrba
Bivs+SO 29,030,954 (8.38s) 29,366,554 (298.82s)

ORY 0619-0625 Full − Card − i2eFrba
Bivs+SO TO TO

ORY 0626-0702 Part − Bin − i2eFrba
Bivs+SO 34,034,441 (19.93s) 34,264,416 (288.25s)

ORY 0626-0702 Part − Card − i2eFrba
Bivs+SO 33,926,041 (35.76s) 34,194,491 (287.51s)

ORY 0626-0702 None − Gather − i2eFrba
Bivs+SO 33,923,641 (12.82s) 34,010,741 (271.01s)

ORY 0626-0702 None − Bin − i2eFrba
Bivs+SO 33,923,641 (56.88s) 33,997,641 (291.91s)

ORY 0626-0702 None − ADEWeak − i2eFrba
Bivs+SO 33,923,641 (73.2s) 33,940,941 (267.72s)

ORY 0626-0702 None − Card − i2eFrba
Bivs+SO 33,923,641 (224.23s) 33,923,741 (283.24s)

ORY 0626-0702 Part − Gather − i2e
Wdeg
Bivs 33,882,869 (8.34s) 34,542,394 (292.68s)

ORY 0626-0702 Part − ADEWeak − i2e
Wdeg
SO 33,345,559 (4.89s) 34,674,500 (294.63s)

ORY 0626-0702 Full − ADEWeak − i2eFrba
Bivs+SO 30,768,488 (9.16s) 31,192,488 (278.73s)

ORY 0626-0702 Full − BinFrba
Bivs+SO 30,695,888 (12.76s) 31,143,288 (298.64s)

ORY 0626-0702 Full − Gather − i2e
Wdeg
Bivs+SO 30,597,871 (7.87s) 31,242,091 (298.68s)

ORY 0626-0702 Full − Card − i2eFrba
Bivs+SO TO TO

ORY 0703-0709 Part − Gather − i2e
Wdeg
Bivs 34,265,778 (8.4s) 34,726,489 (179.51s)

ORY 0703-0709 Part − Bin − i2eFrba
Bivs+SO 34,032,158 (21.0s) 34,475,983 (292.12s)

ORY 0703-0709 None − Gather − i2eFrba
Bivs+SO 34,024,258 (13.67s) 34,168,558 (293.58s)

ORY 0703-0709 None − ADEWeak − i2eFrba
Bivs+SO 34,024,258 (64.59s) 34,035,658 (287.31s)

ORY 0703-0709 None − Bin − i2eFrba
Bivs+SO 34,024,258 (75.03s) 34,137,658 (297.52s)

ORY 0703-0709 None − Card − i2eFrba
Bivs+SO 34,024,258 (236.94s) 34,024,258 (236.94s)

ORY 0703-0709 Part − Card − i2eFrba
Bivs+SO 33,954,858 (41.11s) 34,296,783 (289.48s)

ORY 0703-0709 Part − ADEWeak − i2e
Wdeg
SO 33,669,264 (8.87s) 34,836,995 (294.46s)

ORY 0703-0709 Full − Gather − i2e
Wdeg
Bivs+SO 30,766,270 (7.92s) 31,338,086 (298.57s)

ORY 0703-0709 Full − BinFrba
Bivs+SO 30,730,880 (17.55s) 31,154,280 (298.43s)

ORY 0703-0709 Full − ADEWeak − i2eFrba
Bivs+SO 30,721,480 (9.07s) 31,204,280 (291.87s)

ORY 0703-0709 Full − Card − i2eFrba
Bivs+SO TO TO

Table 3.7: Results for overlapping family.
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3.4.7 Overlapping with a limited number of tasks family
This section concerns experiments on the family of instances overlapping− nbmax. We define a
new set of instances for this family noted I4, a subset of I1. Like the previous section, this family
contains only instances from Table 3.3 contains overlapping rules with a limited number of tasks.
Each instance of this family has been modeled with 3 variants. The variant Sum corresponds to
the modeling from model 2. The second variant minod corresponds to modeling 6, and finally
the last variant minod− count corresponds to modeling 7.{

Ioverlapping−nbmax
checkin

}
(I4)

I4

Ψ2

5 minutes

32 GB

Linux CentOS Stream 8.3

Two quadcore Intel XEON E5-2637 (3.5 GHz)

128 GB

Summary of the experiments 4 (overlapping− nbmax - , )

Table 3.8 presents scores on the same principle as the previous sections. Once again, for
this family, we note that Gather configurations contribute to obtaining the best first bound. (2
times) and best last bound (3 times). The configuration Part− BinFrba

Bivs+SO contributes thrice to
the best first bound but never obtain both the best first and best last bound. The ADEWeak and
Card approaches can lead to timeouts. Concerning the modeling, we notice that the first solver
is always (except once) a solver using one of the proposed refinements of Constraint C6: minod
or minod− count.
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Solver Model Score
Part− GatherFrba

SO sum 1.5
Part− GatherFrba

SO minod-count 1.5
Full− GatherFrba

SO minod-count 1.0
Part− ADEWeak− i2eFrba

Bivs+SO minod 0.5
Part− ADEWeak− i2eFrba

Bivs+SO minod-count 0.5
Part− ADEWeak− i2eFrba

Bivs+SO sum 0.5
Full− GatherFrba

SO sum 0.5
Full− GatherFrba

SO minod 0.5
Part− BinFrba

Bivs+SO sum 0.5
Part− GatherFrba

SO minod 0.5
Part− BinFrba

Bivs+SO minod-count 0.0
None− Card− i2eFrba

Bivs+SO sum 0.0
Part− Card− i2eFrba

Bivs+SO minod 0.0
Part− BinFrba

Bivs+SO minod 0.0
Part− Card− i2eFrba

Bivs+SO minod-count 0.0
Part− Card− i2eFrba

Bivs+SO sum 0.0
None− Gather− i2eFrba

Bivs+SO sum 0.0
None− Gather− i2eFrba

Bivs+SO minod-count 0.0
None− Gather− i2eFrba

Bivs+SO minod 0.0
Full− ADEWeak− i2eFrba

Bivs+SO minod 0.0
None− Card− i2eFrba

Bivs+SO minod-count 0.0
Full− ADEWeak− i2eFrba

Bivs+SO minod-count 0.0
None− Bin− i2eFrba

Bivs+SO sum 0.0
None− Bin− i2eFrba

Bivs+SO minod-count 0.0
None− Bin− i2eFrba

Bivs+SO minod 0.0
None− ADEWeak− i2eFrba

Bivs+SO sum 0.0
None− ADEWeak− i2eFrba

Bivs+SO minod-count 0.0
None− ADEWeak− i2eFrba

Bivs+SO minod 0.0
Full− Card− i2eFrba

Bivs+SO sum 0.0
Full− Card− i2eFrba

Bivs+SO minod-count 0.0
Full− Card− i2eFrba

Bivs+SO minod 0.0
Full− Bin− i2eFrba

Bivs+SO sum 0.0
Full− Bin− i2eFrba

Bivs+SO minod-count 0.0
Full− Bin− i2eFrba

Bivs+SO minod 0.0
Full− ADEWeak− i2eFrba

Bivs+SO sum 0.0
None− Card− i2eFrba

Bivs+SO minod 0.0

Table 3.8: Ranking of the solvers for family overlapping− nbmax.
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Term Period Solver Model First B (Time (s)) Last B (Time (s))

CDG T1 0703-0709 Part − BinFrba
Bivs+SO minod-count 23,975,000 (14.13s) 24,255,000 (243.59s)

CDG T1 0703-0709 Part − ADEWeak − i2eFrba
Bivs+SO sum 23,955,000 (10.56s) 24,305,000 (121.85s)

CDG T1 0703-0709 Part − GatherFrba
SO minod 23,945,000 (9.41s) 24,275,000 (21.12s)

CDG T1 0703-0709 Part − BinFrba
Bivs+SO minod 23,945,000 (13.06s) 24,255,000 (245.19s)

CDG T1 0703-0709 Part − ADEWeak − i2eFrba
Bivs+SO minod 23,935,000 (9.42s) 24,305,000 (117.87s)

CDG T1 0703-0709 Part − BinFrba
Bivs+SO sum 23,905,000 (13.46s) 24,255,000 (267.92s)

CDG T1 0703-0709 Part − ADEWeak − i2eFrba
Bivs+SO minod-count 23,880,000 (9.43s) 24,305,000 (102.05s)

CDG T1 0703-0709 Part − Card − i2eFrba
Bivs+SO minod 23,865,000 (11.22s) 24,195,000 (280.39s)

CDG T1 0703-0709 Part − Card − i2eFrba
Bivs+SO sum 23,850,000 (12.17s) 24,145,000 (243.84s)

CDG T1 0703-0709 Part − Card − i2eFrba
Bivs+SO minod-count 23,835,000 (11.89s) 24,195,000 (277.17s)

CDG T1 0703-0709 None − Gather − i2eFrba
Bivs+SO minod 23,760,000 (13.06s) 24,005,000 (295.14s)

CDG T1 0703-0709 None − Gather − i2eFrba
Bivs+SO sum 23,760,000 (14.62s) 23,995,000 (261.53s)

CDG T1 0703-0709 None − ADEWeak − i2eFrba
Bivs+SO minod-count 23,760,000 (17.27s) 23,955,000 (82.81s)

CDG T1 0703-0709 None − ADEWeak − i2eFrba
Bivs+SO minod 23,760,000 (19.44s) 23,955,000 (84.84s)

CDG T1 0703-0709 None − Gather − i2eFrba
Bivs+SO minod-count 23,760,000 (19.93s) 23,995,000 (249.34s)

CDG T1 0703-0709 None − Bin − i2eFrba
Bivs+SO minod-count 23,760,000 (23.12s) 23,955,000 (83.01s)

CDG T1 0703-0709 None − Bin − i2eFrba
Bivs+SO minod 23,760,000 (24.65s) 23,955,000 (84.76s)

CDG T1 0703-0709 None − Card − i2eFrba
Bivs+SO minod 23,760,000 (25.72s) 23,955,000 (182.94s)

CDG T1 0703-0709 None − Bin − i2eFrba
Bivs+SO sum 23,760,000 (26.06s) 23,955,000 (93.18s)

CDG T1 0703-0709 None − Card − i2eFrba
Bivs+SO sum 23,760,000 (28.85s) 23,955,000 (208.16s)

CDG T1 0703-0709 None − ADEWeak − i2eFrba
Bivs+SO sum 23,760,000 (30.35s) 23,955,000 (127.44s)

CDG T1 0703-0709 None − Card − i2eFrba
Bivs+SO minod-count 23,760,000 (37.92s) 23,955,000 (199.87s)

CDG T1 0703-0709 Part − GatherFrba
SO minod-count 23,755,000 (8.98s) 24,275,000 (19.38s)

CDG T1 0703-0709 Part − GatherFrba
SO sum 23,610,000 (8.4s) 24,275,000 (17.26s)

ORY 0508-0514 Full − GatherFrba
SO minod-count 43,232,500 (32.41s) 43,788,200 (293.06s)

ORY 0508-0514 Full − GatherFrba
SO minod 43,219,800 (34.64s) 43,786,000 (286.24s)

ORY 0508-0514 Full − GatherFrba
SO sum 43,082,500 (16.82s) 43,786,400 (298.86s)

ORY 0508-0514 Full − Bin − i2eFrba
Bivs+SO minod 42,992,600 (44.35s) 43,356,500 (298.9s)

ORY 0508-0514 Full − ADEWeak − i2eFrba
Bivs+SO minod 42,936,500 (39.58s) 43,456,300 (287.57s)

ORY 0508-0514 Full − ADEWeak − i2eFrba
Bivs+SO minod-count 42,930,900 (46.37s) 43,461,700 (299.98s)

ORY 0508-0514 Full − ADEWeak − i2eFrba
Bivs+SO sum 42,870,900 (30.59s) 43,433,100 (299.55s)

ORY 0508-0514 Full − Bin − i2eFrba
Bivs+SO minod-count 42,864,200 (44.05s) 43,356,100 (271.06s)

ORY 0508-0514 Full − Bin − i2eFrba
Bivs+SO sum 42,813,300 (37.45s) 43,356,000 (293.43s)

ORY 0508-0514 Full − Card − i2eFrba
Bivs+SO minod-count 42,163,400 (49.43s) 43,155,900 (291.41s)

ORY 0508-0514 Full − Card − i2eFrba
Bivs+SO minod 42,111,700 (52.09s) 43,125,900 (269.58s)

ORY 0508-0514 Part − GatherFrba
SO minod-count 42,071,100 (47.79s) 43,593,900 (299.92s)

ORY 0508-0514 Full − Card − i2eFrba
Bivs+SO sum 42,017,600 (40.84s) 43,083,300 (276.04s)

ORY 0508-0514 Part − BinFrba
Bivs+SO minod-count 41,844,300 (62.31s) 42,739,900 (282.22s)

ORY 0508-0514 Part − BinFrba
Bivs+SO minod 41,822,700 (61.4s) 42,779,600 (297.56s)

ORY 0508-0514 Part − ADEWeak − i2eFrba
Bivs+SO minod 41,687,600 (67.69s) 42,820,400 (293.8s)

ORY 0508-0514 Part − ADEWeak − i2eFrba
Bivs+SO minod-count 41,685,900 (57.31s) 42,834,900 (290.86s)

ORY 0508-0514 Part − BinFrba
Bivs+SO sum 41,671,600 (40.02s) 42,779,900 (298.23s)

ORY 0508-0514 Part − Card − i2eFrba
Bivs+SO minod 41,655,300 (123.04s) 41,827,100 (299.98s)

ORY 0508-0514 Part − Card − i2eFrba
Bivs+SO sum 41,648,200 (111.55s) 41,778,000 (297.95s)

ORY 0508-0514 Part − ADEWeak − i2eFrba
Bivs+SO sum 41,648,100 (43.01s) 42,598,500 (298.28s)

ORY 0508-0514 Part − Card − i2eFrba
Bivs+SO minod-count 41,646,900 (108.49s) 41,806,900 (289.74s)

ORY 0508-0514 Part − GatherFrba
SO minod 41,632,600 (48.03s) 43,587,800 (298.1s)

ORY 0508-0514 None − Gather − i2eFrba
Bivs+SO minod-count 41,626,300 (137.47s) 41,627,000 (285.84s)

ORY 0508-0514 None − Gather − i2eFrba
Bivs+SO minod 41,626,300 (182.33s) 41,626,800 (268.04s)

ORY 0508-0514 None − Bin − i2eFrba
Bivs+SO minod 41,626,300 (242.98s) TO

ORY 0508-0514 None − Bin − i2eFrba
Bivs+SO minod-count 41,626,300 (246.32s) 41,626,600 (292.84s)

ORY 0508-0514 Part − GatherFrba
SO sum 41,286,700 (16.09s) 43,597,800 (294.74s)

ORY 0508-0514 None − Card − i2eFrba
Bivs+SO minod TO TO

ORY 0508-0514 None − ADEWeak − i2eFrba
Bivs+SO minod TO TO

ORY 0508-0514 None − Card − i2eFrba
Bivs+SO minod-count TO TO

ORY 0508-0514 None − ADEWeak − i2eFrba
Bivs+SO minod-count TO TO

ORY 0508-0514 None − Card − i2eFrba
Bivs+SO sum TO TO

ORY 0508-0514 None − Bin − i2eFrba
Bivs+SO sum TO TO

ORY 0508-0514 None − ADEWeak − i2eFrba
Bivs+SO sum TO TO

ORY 0508-0514 None − Gather − i2eFrba
Bivs+SO sum TO TO

Continued on next page
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Term Period Solver Model First B (Time (s)) Last B (Time (s))

ORY 0619-0625 Part − BinFrba
Bivs+SO minod 31,068,885 (53.73s) 31,186,296 (298.94s)

ORY 0619-0625 Part − ADEWeak − i2eFrba
Bivs+SO minod 31,045,985 (48.75s) 31,296,298 (298.47s)

ORY 0619-0625 Part − ADEWeak − i2eFrba
Bivs+SO minod-count 31,036,289 (50.65s) 31,243,794 (299.41s)

ORY 0619-0625 Part − BinFrba
Bivs+SO sum 30,944,419 (32.93s) 31,185,896 (298.56s)

ORY 0619-0625 Part − BinFrba
Bivs+SO minod-count 30,940,919 (40.91s) 31,186,396 (298.59s)

ORY 0619-0625 Part − ADEWeak − i2eFrba
Bivs+SO sum 30,888,319 (33.14s) 31,217,294 (295.26s)

ORY 0619-0625 Part − Card − i2eFrba
Bivs+SO minod 30,887,519 (74.51s) 31,099,981 (273.03s)

ORY 0619-0625 None − Gather − i2eFrba
Bivs+SO minod 30,864,719 (65.74s) 30,917,319 (294.45s)

ORY 0619-0625 None − Gather − i2eFrba
Bivs+SO minod-count 30,864,719 (67.48s) 30,915,319 (291.03s)

ORY 0619-0625 None − Gather − i2eFrba
Bivs+SO sum 30,864,719 (86.57s) 30,877,419 (299.95s)

ORY 0619-0625 None − Bin − i2eFrba
Bivs+SO minod 30,864,719 (103.67s) 30,898,219 (298.22s)

ORY 0619-0625 None − Bin − i2eFrba
Bivs+SO sum 30,864,719 (126.81s) 30,867,919 (295.02s)

ORY 0619-0625 None − Bin − i2eFrba
Bivs+SO minod-count 30,864,719 (140.81s) 30,883,419 (281.55s)

ORY 0619-0625 None − ADEWeak − i2eFrba
Bivs+SO minod-count 30,864,719 (173.22s) 30,866,419 (273.74s)

ORY 0619-0625 None − ADEWeak − i2eFrba
Bivs+SO minod 30,864,719 (210.59s) 30,866,119 (268.11s)

ORY 0619-0625 Part − Card − i2eFrba
Bivs+SO minod-count 30,860,919 (52.33s) 31,100,481 (275.4s)

ORY 0619-0625 Part − GatherFrba
SO minod 30,854,897 (37.29s) 31,610,865 (297.32s)

ORY 0619-0625 Part − Card − i2eFrba
Bivs+SO sum 30,851,219 (48.39s) 31,099,981 (294.05s)

ORY 0619-0625 Part − GatherFrba
SO minod-count 30,833,460 (30.33s) 31,624,665 (299.84s)

ORY 0619-0625 Part − GatherFrba
SO sum 30,303,466 (15.11s) 31,607,265 (276.91s)

ORY 0619-0625 Full − Bin − i2eFrba
Bivs+SO minod-count 28,583,212 (41.63s) 28,838,202 (299.82s)

ORY 0619-0625 Full − Bin − i2eFrba
Bivs+SO minod 28,580,112 (40.2s) 28,830,802 (295.76s)

ORY 0619-0625 Full − ADEWeak − i2eFrba
Bivs+SO minod-count 28,553,916 (33.23s) 28,860,794 (299.57s)

ORY 0619-0625 Full − ADEWeak − i2eFrba
Bivs+SO minod 28,546,416 (37.81s) 28,856,894 (285.31s)

ORY 0619-0625 Full − Bin − i2eFrba
Bivs+SO sum 28,528,736 (36.15s) 28,820,807 (295.9s)

ORY 0619-0625 Full − GatherFrba
SO minod 28,489,131 (32.01s) 29,199,542 (295.13s)

ORY 0619-0625 Full − GatherFrba
SO minod-count 28,434,728 (25.71s) 29,205,642 (285.68s)

ORY 0619-0625 Full − ADEWeak − i2eFrba
Bivs+SO sum 28,419,436 (22.36s) 28,821,599 (296.25s)

ORY 0619-0625 Full − GatherFrba
SO sum 28,063,114 (11.3s) 29,205,442 (296.94s)

ORY 0619-0625 Full − Card − i2eFrba
Bivs+SO minod TO TO

ORY 0619-0625 Full − Card − i2eFrba
Bivs+SO minod-count TO TO

ORY 0619-0625 Full − Card − i2eFrba
Bivs+SO sum TO TO

ORY 0619-0625 None − Card − i2eFrba
Bivs+SO minod TO TO

ORY 0619-0625 None − Card − i2eFrba
Bivs+SO minod-count TO TO

ORY 0619-0625 None − Card − i2eFrba
Bivs+SO sum TO TO

ORY 0619-0625 None − ADEWeak − i2eFrba
Bivs+SO sum TO TO

ORY 0626-0702 Part − GatherFrba
SO minod-count 32,836,794 (42.6s) 33,450,226 (291.84s)

ORY 0626-0702 Part − ADEWeak − i2eFrba
Bivs+SO minod-count 32,763,085 (45.15s) 33,100,300 (298.42s)

ORY 0626-0702 Part − ADEWeak − i2eFrba
Bivs+SO minod 32,748,894 (49.73s) 33,091,100 (297.52s)

ORY 0626-0702 Part − BinFrba
Bivs+SO minod 32,741,250 (51.61s) 33,048,700 (287.73s)

ORY 0626-0702 Part − BinFrba
Bivs+SO sum 32,702,165 (28.88s) 33,052,700 (289.14s)

ORY 0626-0702 Part − BinFrba
Bivs+SO minod-count 32,698,565 (37.49s) 33,052,700 (289.95s)

ORY 0626-0702 Part − ADEWeak − i2eFrba
Bivs+SO sum 32,661,765 (32.41s) 33,065,900 (299.6s)

ORY 0626-0702 Part − Card − i2eFrba
Bivs+SO minod-count 32,651,965 (61.9s) 32,860,591 (298.71s)

ORY 0626-0702 Part − Card − i2eFrba
Bivs+SO sum 32,651,565 (58.25s) 32,833,091 (294.33s)

ORY 0626-0702 Part − Card − i2eFrba
Bivs+SO minod 32,651,465 (69.36s) 32,846,091 (282.78s)

ORY 0626-0702 None − Gather − i2eFrba
Bivs+SO minod 32,647,165 (71.69s) 32,685,865 (266.39s)

ORY 0626-0702 None − Gather − i2eFrba
Bivs+SO minod-count 32,647,165 (91.72s) 32,685,865 (269.84s)

ORY 0626-0702 None − Gather − i2eFrba
Bivs+SO sum 32,647,165 (93.8s) 32,657,565 (291.86s)

ORY 0626-0702 None − Bin − i2eFrba
Bivs+SO sum 32,647,165 (140.09s) 32,656,065 (294.09s)

ORY 0626-0702 None − Bin − i2eFrba
Bivs+SO minod-count 32,647,165 (150.93s) 32,671,665 (296.24s)

ORY 0626-0702 None − Bin − i2eFrba
Bivs+SO minod 32,647,165 (152.56s) 32,671,665 (299.12s)

ORY 0626-0702 None − ADEWeak − i2eFrba
Bivs+SO minod 32,647,165 (160.99s) 32,647,265 (238.15s)

ORY 0626-0702 None − ADEWeak − i2eFrba
Bivs+SO minod-count 32,647,165 (193.75s) 32,647,265 (278.93s)

ORY 0626-0702 Part − GatherFrba
SO minod 32,633,991 (37.64s) 33,449,331 (287.21s)

ORY 0626-0702 Part − GatherFrba
SO sum 32,103,070 (13.58s) 33,450,226 (292.27s)

ORY 0626-0702 Full − GatherFrba
SO minod-count 30,384,797 (34.46s) 30,896,186 (293.08s)

ORY 0626-0702 Full − Bin − i2eFrba
Bivs+SO minod-count 30,182,236 (48.69s) 30,525,845 (272.61s)

ORY 0626-0702 Full − GatherFrba
SO minod 30,161,682 (31.0s) 30,896,186 (299.05s)

ORY 0626-0702 Full − ADEWeak − i2eFrba
Bivs+SO minod 30,120,457 (36.85s) 30,568,135 (299.77s)

ORY 0626-0702 Full − Bin − i2eFrba
Bivs+SO minod 30,057,457 (43.31s) 30,525,845 (290.66s)

Continued on next page
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Term Period Solver Model First B (Time (s)) Last B (Time (s))

ORY 0626-0702 Full − Bin − i2eFrba
Bivs+SO sum 30,053,461 (32.92s) 30,523,145 (299.27s)

ORY 0626-0702 Full − ADEWeak − i2eFrba
Bivs+SO minod-count 30,048,261 (38.44s) 30,534,341 (296.71s)

ORY 0626-0702 Full − ADEWeak − i2eFrba
Bivs+SO sum 30,027,561 (28.2s) 30,523,045 (299.78s)

ORY 0626-0702 Full − GatherFrba
SO sum 29,730,470 (13.38s) 30,895,486 (296.88s)

ORY 0626-0702 Full − Card − i2eFrba
Bivs+SO minod TO TO

ORY 0626-0702 Full − Card − i2eFrba
Bivs+SO minod-count TO TO

ORY 0626-0702 Full − Card − i2eFrba
Bivs+SO sum TO TO

ORY 0626-0702 None − Card − i2eFrba
Bivs+SO minod TO TO

ORY 0626-0702 None − Card − i2eFrba
Bivs+SO minod-count TO TO

ORY 0626-0702 None − Card − i2eFrba
Bivs+SO sum TO TO

ORY 0626-0702 None − ADEWeak − i2eFrba
Bivs+SO sum TO TO

ORY 0703-0709 Part − BinFrba
Bivs+SO minod 32,679,591 (58.39s) 32,939,296 (299.9s)

ORY 0703-0709 Part − GatherFrba
SO minod 32,674,125 (41.67s) 33,481,322 (298.45s)

ORY 0703-0709 Part − BinFrba
Bivs+SO minod-count 32,663,697 (44.72s) 32,967,696 (298.38s)

ORY 0703-0709 Part − ADEWeak − i2eFrba
Bivs+SO minod 32,658,397 (38.91s) 33,052,096 (297.65s)

ORY 0703-0709 Part − BinFrba
Bivs+SO sum 32,648,897 (29.49s) 32,967,596 (297.58s)

ORY 0703-0709 Part − ADEWeak − i2eFrba
Bivs+SO minod-count 32,635,502 (53.21s) 33,019,496 (298.88s)

ORY 0703-0709 None − Gather − i2eFrba
Bivs+SO minod 32,560,697 (70.77s) 32,652,797 (286.03s)

ORY 0703-0709 None − Gather − i2eFrba
Bivs+SO sum 32,560,697 (87.08s) 32,590,897 (295.06s)

ORY 0703-0709 None − Gather − i2eFrba
Bivs+SO minod-count 32,560,697 (96.08s) 32,638,597 (282.04s)

ORY 0703-0709 None − Bin − i2eFrba
Bivs+SO minod 32,560,697 (111.88s) 32,629,997 (290.62s)

ORY 0703-0709 None − Bin − i2eFrba
Bivs+SO minod-count 32,560,697 (114.06s) 32,629,997 (292.74s)

ORY 0703-0709 None − Bin − i2eFrba
Bivs+SO sum 32,560,697 (142.22s) 32,561,697 (293.63s)

ORY 0703-0709 None − ADEWeak − i2eFrba
Bivs+SO minod-count 32,560,697 (193.18s) 32,560,797 (274.56s)

ORY 0703-0709 None − ADEWeak − i2eFrba
Bivs+SO minod 32,560,697 (199.15s) 32,560,797 (282.01s)

ORY 0703-0709 Part − Card − i2eFrba
Bivs+SO minod 32,555,397 (69.27s) 32,860,296 (295.61s)

ORY 0703-0709 Part − Card − i2eFrba
Bivs+SO minod-count 32,540,697 (64.72s) 32,858,196 (298.48s)

ORY 0703-0709 Part − Card − i2eFrba
Bivs+SO sum 32,538,997 (52.46s) 32,826,196 (293.83s)

ORY 0703-0709 Part − ADEWeak − i2eFrba
Bivs+SO sum 32,514,897 (30.23s) 32,955,196 (298.55s)

ORY 0703-0709 Part − GatherFrba
SO minod-count 32,397,314 (30.92s) 33,488,122 (290.05s)

ORY 0703-0709 Part − GatherFrba
SO sum 32,008,203 (16.03s) 33,464,822 (299.6s)

ORY 0703-0709 Full − GatherFrba
SO minod-count 30,044,177 (32.67s) 30,794,757 (296.17s)

ORY 0703-0709 Full − Bin − i2eFrba
Bivs+SO minod 30,007,646 (52.55s) 30,380,652 (299.85s)

ORY 0703-0709 Full − GatherFrba
SO minod 30,004,975 (29.73s) 30,793,057 (297.55s)

ORY 0703-0709 Full − ADEWeak − i2eFrba
Bivs+SO minod 29,989,643 (40.24s) 30,457,148 (295.19s)

ORY 0703-0709 Full − ADEWeak − i2eFrba
Bivs+SO minod-count 29,975,042 (35.42s) 30,459,648 (291.55s)

ORY 0703-0709 Full − Bin − i2eFrba
Bivs+SO minod-count 29,974,651 (42.21s) 30,390,552 (299.15s)

ORY 0703-0709 Full − Bin − i2eFrba
Bivs+SO sum 29,870,052 (35.0s) 30,352,252 (287.89s)

ORY 0703-0709 Full − ADEWeak − i2eFrba
Bivs+SO sum 29,803,152 (19.77s) 30,368,652 (299.52s)

ORY 0703-0709 Full − GatherFrba
SO sum 29,465,253 (12.49s) 30,785,557 (296.14s)

ORY 0703-0709 Full − Card − i2eFrba
Bivs+SO minod-count TO TO

ORY 0703-0709 Full − Card − i2eFrba
Bivs+SO minod TO TO

ORY 0703-0709 Full − Card − i2eFrba
Bivs+SO sum TO TO

ORY 0703-0709 None − Card − i2eFrba
Bivs+SO minod TO TO

ORY 0703-0709 None − Card − i2eFrba
Bivs+SO minod-count TO TO

ORY 0703-0709 None − Card − i2eFrba
Bivs+SO sum TO TO

ORY 0703-0709 None − ADEWeak − i2eFrba
Bivs+SO sum TO TO

Table 3.9: Results for overlapping-nbmax family.
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3.4.8 Comparison with the ADP algorithm
In this section, we compare our top-performing methods (i.e., the methods that have the best
score in Tables 3.4, 3.6 and 3.8) against the ADP algorithm. ADP algorithm is a linear method
that sequences flights based on descending task count and chronologically by day. It initially
employs the resource with the maximum weight. If that resource is unavailable and cannot be
overlapped, the algorithm then resorts to the resource with the subsequent lower weight, and so
on. This algorithm does not apply swap or backtrack operations.
This algorithm is applied to each scheduled day, applying a similar approach to our partial
decomposition. We call this algorithm ADP.

Figures 3.5 comprises three sub-figures, each corresponding to one of the families explored in
this chapter for the ORY instance spanning May 8th to May 14th, 2023. Each graph captures
the performance of solvers across different decompositions. Individual solvers are depicted by
curves, which illustrate the progression of their bounds from the initial to the final values. If a
solver requires more than 5 minutes to enhance its first bound, only a single point is depicted.
Additionally, the bounds found by the ADP algorithm are also shown.

Figure 3.5a shows all configurations from Table 3.4. Here, one can discern the difficulty
encountered by two specific methods, namely Part−Card−i2eFrba

First and None−Gather−i2eFrba
First,

in achieving bounds that are greater than the ADP algorithm. Figures 3.5b and 3.5c clearly
show that the solver approach outperforms the ADP approach. However, it is worth noting that
Figure 3.5c omits methods without decomposition due to their poor performance—a score of 0.
This can be explained by the size of the instance to be solved.

Figures 3.6 are similar but for an instance of CDG from August 21st to 27th 2023. For this
latter, Figure 3.6a shows that the full decomposition approaches are the only ones that find a
better bound than the ADP algorithm. However, the full decomposition approach that uses the
Card algorithm (original approach from ACE for AllDiffExcept) is not able to obtain a better
bound than ADP. Finally, Figure 3.6b shows that when the ADP approach outperforms the
solvers approach, the results are relatively close.
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Figure 3.5: Comparison of our best approaches with ADP algorithm on each family, for instance
ORY, from May 8 to 14th 2023 (1/2).
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3.5 Conclusion
In this chapter, various models addressing the check-in desk allocation problem have been in-
troduced. We put forward three distinct formulations of the problem: one without overlapping,
another with overlapping, and the third, which considers overlapping rules that have a limited
number of tasks. We presented an initial model for the third type, followed by two refined ver-
sions that utilize sum and count constraints. Additionally, to efficiently manage the multitude
of AllDifferentExcept constraints, we integrated them into a single constraint and introduced
a corresponding propagator. Subsequently, we conducted an exhaustive analysis of different
configurations for the ACE solver, pinpointing the most optimal setups to benchmark against the
ADP algorithm.

A recurring theme throughout the chapter was the consistent top-tier performance of the
Gather method for the AllDiffExcept constraint. Regardless of the instance family, solvers
employing this method were frequently found at the top of tables.

However, it was about more than just the efficacy of a single method. The chapter illuminated
the intricacies and nuances of various solver configurations. While one configuration may excel
in a specific scenario, it might falter in another. This variability underlines the importance of
understanding problem instances deeply and choosing solver configurations that align with their
specific challenges.

Moreover, our comparison with the ADP algorithm served a dual purpose. First, it acted
as a reference to validate the performance of our approaches. Second, it highlighted that while
simpler algorithms can provide solutions, there is significant value in employing generic solvers
regarding performance, the solution’s quality, and the system’s evolution.

The modeling variants introduced for the overlapping with a limited number of tasks family
further demonstrated the importance of problem representation. How a problem is modeled
can profoundly impact solver performance, making investing time and thought into modeling
decisions crucial.

This work is currently being deployed in preview and will be in production by January 2024.
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4.1 Introduction
Airports serve as vital hubs in the aviation sector, bridging passengers with their intended flights
and destinations. With the surge in air travel, refining airport procedures becomes indispensable.
A significant challenge lies in allocating aircraft stands to specific airlines and their respective
flights, given myriad constraints and goals, including the satisfaction of airlines.
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This chapter presents different modeling approaches for the stand allocation problem. Like
the previous chapter, we start by formally describing the model developed for the Stand Alloca-
tion Problem (SAP) in a higher “mathematical” form.

Subsequently, it juxtaposes diverse approaches and solver configurations against the existing
methods employed by ADP. The analysis of all experimental findings, facilitated by Metrics, is
accessible online.

4.2 Modeling of the Stand Allocation Problem

Table 4.5 recall the notation for the stand allocation problem presented for this problem in
Section 1.4.2 (page. 5).

Category Notation Description

Stand p Stand.
PK The set of all aircraft stands.

Rotations

ϕ A registration.
Φ The set of all rotations.
Φn The set of all rotations with n tasks.
ai and di The registration’s start and end times.

Tasks

ϕi ith task (operation) of a rotation ϕ.
T Set of all operations.
Tϕ Set of tasks of the registration ϕ
PKi or PKϕ The set of compatible aircraft stands for the task i or rotation ϕ.
Oi or Oϕ,i The set of operations overlapping with either task i or task i of ϕ.

Constraints
Q The set of shading constraints.
D The set of reductions constraints.
MP The affinity matrix.

Table 4.1: Notations for the stand allocation problem.

Firstly, we need to introduce the variables of our model. Actually, in addition to a stand-alone
variable used to count the number of rotations that are not broken, we need two (2-dimensional)
arrays of variables to represent assigned stand and associated rewards:

• p is a matrix of |Φ|×3 variables having the set of values {0, ..., |PK|−1} as domain; p[ϕ, j]
represents the index (code) of the stand assigned to the jth task of the rotation ϕ.

• r is a matrix of |Φ| × 3 variables having the set of values {0, ..., 100} as domain; r[ϕ, j]
represents the satisfaction of the company for the jth task of the rotation ϕ.

Note that, for simplicity, we constantly introduce three variables in p and r for each rotation,
even if only one task (or two tasks) is involved. We introduce equality constraints to deal with
such cases, forcing some variables to take the same value. In practice, one could avoid introducing
such redundant variables.

We now introduce constraints for this problem. An illustration is provided to facilitate
understanding of the model’s various constraints.
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Let us consider an example with a set of 5 rotations {ϕ1, ..., ϕ5}, and a set of 4 stands
{p1, ..., p4}. where p3 and p4 are assumed to be remote stand; so, we have PKrt =
{p4, p5}. Information concerning rotations is given in Table 4.6. Figure 4.3 displays
information given in Table 4.6 using an intervall chart.

Example 24

Rot. airline ntasks kind aϕ dϕ

ϕ1 a1 1 k1 8h 10h
ϕ2 a2 2 k2 8h 12h
ϕ3 a2 2 k2 12h 16h
ϕ4 a3 3 k3 9h 15h
ϕ5 a3 3 k4 12h 18h

Table 4.2: Data about Rotations

Pkg Capacity
p1 {k1, k2}
p2 {k2, k3}
p3 {k1, k2, k3}
p4 {k1, k2, k3, k4}
p5 {k1, k2, k3, k4}

Table 4.3: Capacity

8 10 12 14 16 18

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

Figure 4.1: Time intervals from Table 4.6
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4.2.1 Classical variant

p[ϕ, 1] = p[ϕ, 2] = p[ϕ, 3], ∀ϕ ∈ Φ1 (C13)

p[ϕ, 2] = p[ϕ, 3], ∀ϕ ∈ Φ2 (C14)

p[ϕ, 2] ∈ PKremote, ∀ϕ ∈ Φ3 (C15)

〈p[ϕ, j]〉 ∈ PKϕ, ∀ϕ ∈ Φ, ∀j ∈ 1..3, (C16)

〈p[ϕ1, i], p[ϕ2, j]〉 /∈ {(p1, p2, ), ∀(p1, p2, tϕ1,i, tϕ2,j) ∈ Q} (C17)

〈p[ϕ, i], p[ϕ′, j]〉 /∈ {(p1, p2, ) | p2 ∈ ϕ},
∀ϕ ∈ Φ, ∀i ∈ 1..ntasks(ϕ),
∀〈k, p, k′, ϕ〉 ∈ D | k = kind(ϕ),
∀(ϕ′, j) ∈ Oϕ,i | k′ 6= kind(ϕ′)

(C18)

〈p[ϕ, j], r[ϕ, j]〉 ∈ {(p1, r
p1
ϕ,j) | p1 ∈ PKϕ}, ∀ϕ ∈ ϕ, ∀j ∈ 1..ntasks(ϕ) (C19)

Modelization 8 (Classical variant )

First, we need to introduce some stand constraints concerning the rotation tasks. When
splitting a rotation into two or three tasks cannot be done (because rotation time is not large
enough), we need to ensure that the plane remains on the same stand (because, for simplicity,
as already mentioned, we always have three variables being introduced for each rotation). When
three tasks are required, the second stand (for the second task) must be a remote one.

Constraint C20 forces all three variables of ϕ to be assigned to the same parking (because
the rotation involves only one task). Constraint C21 forces the second and third variables of
ϕ to be assigned to the same parking (because the rotation involves only two tasks). Finally,
Constraint C22 forces the middle parking to be remote.
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For our example :

• Φ1 = {ϕ1}
• Φ2 = {ϕ2, ϕ3}
• Φ3 = {ϕ4, ϕ5}

So we must post the following constraints:

• p[ϕ1, 1] = p[ϕ1, 2] = p[ϕ1, 3]
• p[ϕ2, 2] = p[ϕ2, 3]
• p[ϕ3, 2] = p[ϕ3, 3]
• p[ϕ4, 2] ∈ PKremote

• p[ϕ5, 2] ∈ PKremote

Example 25

Capacity rules were described in Section 1.4.2 (page. 5). To enforce them, we can post unary
constraints (see Constraint C23).

Table 4.7 provides each parking capacity for our example. Based on this Table, we
must post the following unary constraints:

• p[ϕ1, j] ∈ {p1, p3, p4, p5}, ∀j ∈ 1..3
• p[ϕ2, j] ∈ {p1, p3, p4, p5}, ∀j ∈ 1..3
• p[ϕ3, j] ∈ {p1, p3, p4, p5}, ∀j ∈ 1..3
• p[ϕ4, j] ∈ {p2, p3, p4, p5}, ∀j ∈ 1..3
• p[ϕ5, j] ∈ {p2, p4, p5}, ∀j ∈ 1..3

Example 26

Let us recall that when a parking p1 is shaded by a parking p2 then these two values cannot
be assigned together to any pair of overlapping tasks. This leads to binary negative table
constraints. Although not explicitly shown below, assigning the same value twice for any pair
of overlapping tasks is also forbidden (see Constraint C24).

The last subset is the constraint reduction and is defined with binary negative tables (see
Constraint C25).
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For our example, a reduction constraint exists between the stands p1 and p2. Suppose
that D = {(k1, p1, k3, {p2}), (k2, p1, k4, {p2})}. We also have Oϕ1,1 = {(ϕ2, 1), (ϕ4, 1)}
and PKϕ1 = {p1, p3, p4}.
Task 1 from rotation ϕ2 overlap tack 1 of the rotation ϕ2. Recall that kind(ϕ2) = k2.
So, for the reduction ϕ1, we add the constraint that forbidden the pair of values (p1, p2)
for the pair of variable 〈p[ϕ1, 1], p[ϕ2, 1]〉. In other words, it is fobridden to use p2 with
the rotation ϕ2 because ϕ2 does not have the allowed kind by p2 after placing ϕ1 on
p1 (its capacity is reduced).

〈p[ϕ1, 1], p[ϕ2, 1]〉 /∈ {(p1, p2)}

Although ϕ1 also overlaps with ϕ4, there are no restrictions to consider with ϕ1 as ϕ4

has a capacity of type k3 (see Table 4.6) which is allowed in relation to the reduction.

Example 27

According to the airlines preferences from affinity matrix MP , we can post binary table
constraints to “compute” rewards when filtering such constraints (see Constraint C26).

Airline / Parking p1 p2 p3 p4 p5
a1 75 75 100 50 50
a2 60 0 100 50 50
a3 0 100 80 50 50

Table 4.4: Affinity matrix

For our example, let us assume that rewards are given by the matrix 4.8.
From the data in this table, we post the following constraint for the first rotation (the
same principle is adopted for the other rotations):

〈p[ϕ1, j], r[ϕ1, j]〉 ∈ {(p1, 75), (p2, 75), (p3, 100), (p4, 50), (p5, 50)}, ∀j ∈ 1..ntasks(ϕ1)

Example 28

Considering the reward variables we can express the objective function as follows:

maximize
∑
ϕ∈Φ

j∈1..ntasks(ϕ)

wϕ,j × r[ϕ, j]

4.2.2 AllDifferent variant
In this variant, we propose to modify the shading constraint by posting Alldifferent con-
straints in addition to the table constraints already proposed. Note that for this constraint, it is
tempting to want to use an AllDifferent constraint as already proposed in the state-of-the-art
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[Sim07, DS91]. In these approaches, an AllDifferent constraint is added between all overlap-
ping pairs of tasks, but this cannot work here, as it would be less restrictive than the shadow
constraint. Indeed, an AllDifferent constraint would force two operations p[ϕ, i] and p[ϕ′, j]
to be different. However, by setting p1 and p2 as values for these two variables, the constraint
would be respected but would violate the shadow constraint if p1 shaded p2.

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

Figure 4.2: Interval graph based on data from Table 4.6.

Nevertheless, it is possible to use AllDifferent constraints with an interval graph. Each
vertex of the graph represents a task (the task’s time interval) and is connected by an edge to
another vertex if and only if there is an overlap between the two intervals. Figure 4.4 represents
an interval graph G for our example, each vertex represents an interval and an edge between
intervals whose intervals intersect. From this graph, we need to post an AllDifferent constraint
for each maximum clique in the graph.

A maximum clique of G has the greatest number of vertices, which is maximal for the
cardinal. We note CG the set of all maximum cliques.

Definition 43 (Maximum clique)

For the set of maximum cliques, we can post the following AllDifferent constraints:

allDifferent({p[ϕ, i], ∀(ϕ, i) ∈ c}), ∀c ∈ CG (4.1)

For our example and based on our interval graph (Figure 4.4), the maximum cliques are:
{ϕ1, ϕ2, ϕ4} and {ϕ3, ϕ4, ϕ5}.

4.2.3 not-break variant

This variant of the problem considers that moving an aircraft from one parking lot to another
has a specific cost. For this reason, the number of stands used for one rotation (with 2 or 3
tasks) must be minimized. To do that, ADP uses a post-treatment algorithm to join flights
with a break (i.e., break in 2 or 3 tasks). Because ACE does not support the multi-objectives, we
propose integrating this feature directly into the objective function. # Modeling of the Airport
stand allocation problem
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4.3 Introduction
Airports serve as vital hubs in the aviation sector, bridging passengers with their intended flights
and destinations. With the surge in air travel, refining airport procedures becomes indispensable.
A significant challenge lies in allocating aircraft stands to specific airlines and their respective
flights, given myriad constraints and goals, including the satisfaction of airlines.

This chapter presents different modeling approaches for the stand allocation problem. Like
the previous chapter, we start by formally describing the model developed for the Stand Alloca-
tion Problem (SAP) in a higher “mathematical” form.

Subsequently, it juxtaposes diverse approaches and solver configurations against the existing
methods employed by ADP. The analysis of all experimental findings, facilitated by Metrics, is
accessible online.

4.4 Modeling of the Stand Allocation Problem
Table 4.5 recall the notation for the stand allocation problem presented for this problem in
Section 1.4.2 (page. 5).

Category Notation Description

Stand p Stand.
PK The set of all aircraft stands.

Rotations

ϕ A registration.
Φ The set of all rotations.
Φn The set of all rotations with n tasks.
ai and di The registration’s start and end times.

Tasks

ϕi ith task (operation) of a rotation ϕ.
T Set of all operations.
Tϕ Set of tasks of the registration ϕ
PKi or PKϕ The set of compatible aircraft stands for the task i or rotation ϕ.
Oi or Oϕ,i The set of operations overlapping with either task i or task i of ϕ.

Constraints
Q The set of shading constraints.
D The set of reductions constraints.
MP The affinity matrix.

Table 4.5: Notations for the stand allocation problem.

Firstly, we need to introduce the variables of our model. Actually, in addition to a stand-alone
variable used to count the number of rotations that are not broken, we need two (2-dimensional)
arrays of variables to represent assigned stand and associated rewards:

• p is a matrix of |Φ|×3 variables having the set of values {0, ..., |PK|−1} as domain; p[ϕ, j]
represents the index (code) of the stand assigned to the jth task of the rotation ϕ.

• r is a matrix of |Φ| × 3 variables having the set of values {0, ..., 100} as domain; r[ϕ, j]
represents the satisfaction of the company for the jth task of the rotation ϕ.

Note that, for simplicity, we always introduce three variables in p and r for each rotation,
even if only one task (or two tasks) is involved. We introduce equality constraints to deal
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4.4. Modeling of the Stand Allocation Problem

with such cases, forcing some variables to take the same value. In practice, one could avoid
introducing such redundant variables.

We now introduce constraints for this problem. An illustration is now given to facilitate the
understanding of the various constraints of the model.

Let us consider an example with a set of 5 rotations {ϕ1, ..., ϕ5}, and a set of 4 stands
{p1, ..., p4}. where p3 and p4 are assumed to be remote stand; so, we have PKrt =
{p4, p5}. Information concerning rotations is given in Table 4.6. Figure 4.3 displays
information given in Table 4.6 using an intervall chart.

Example 29

Rot. airline ntasks kind aϕ dϕ

ϕ1 a1 1 k1 8h 10h
ϕ2 a2 2 k2 8h 12h
ϕ3 a2 2 k2 12h 16h
ϕ4 a3 3 k3 9h 15h
ϕ5 a3 3 k4 12h 18h

Table 4.6: Data about Rotations

Pkg Capacity
p1 {k1, k2}
p2 {k2, k3}
p3 {k1, k2, k3}
p4 {k1, k2, k3, k4}
p5 {k1, k2, k3, k4}

Table 4.7: Capacity

8 10 12 14 16 18

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

Figure 4.3: Time intervals from Table 4.6
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4.4.1 Classical variant

p[ϕ, 1] = p[ϕ, 2] = p[ϕ, 3], ∀ϕ ∈ Φ1 (C20)

p[ϕ, 2] = p[ϕ, 3], ∀ϕ ∈ Φ2 (C21)

p[ϕ, 2] ∈ PKremote, ∀ϕ ∈ Φ3 (C22)

〈p[ϕ, j]〉 ∈ PKϕ, ∀ϕ ∈ Φ, ∀j ∈ 1..3, (C23)

〈p[ϕ1, i], p[ϕ2, j]〉 /∈ {(p1, p2, ), ∀(p1, p2, tϕ1,i, tϕ2,j) ∈ Q} (C24)

〈p[ϕ, i], p[ϕ′, j]〉 /∈ {(p1, p2, ) | p2 ∈ ϕ},
∀ϕ ∈ Φ, ∀i ∈ 1..ntasks(ϕ),
∀〈k, p, k′, ϕ〉 ∈ D | k = kind(ϕ),
∀(ϕ′, j) ∈ Oϕ,i | k′ 6= kind(ϕ′)

(C25)

〈p[ϕ, j], r[ϕ, j]〉 ∈ {(p1, r
p1
ϕ,j) | p1 ∈ PKϕ}, ∀ϕ ∈ ϕ, ∀j ∈ 1..ntasks(ϕ) (C26)

Modelization 9 (Classical variant )

First, we need to introduce some stand constraints concerning the rotation tasks. When
splitting a rotation into two or three tasks cannot be done (because rotation time is not large
enough), we need to ensure that the plane remains on the same stand (because, for simplicity,
as already mentioned, we always have three variables being introduced for each rotation). When
three tasks are required, the second stand (for the second task) must be a remote one.

Constraint C20 forces all three variables of ϕ to be assigned to the same parking (because
the rotation involves only one task). Constraint C21 forces the second and third variables of
ϕ to be assigned to the same parking (because the rotation involves only two tasks). Finally,
Constraint C22 forces the middle parking to be remote.
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For our example :

• Φ1 = {ϕ1}
• Φ2 = {ϕ2, ϕ3}
• Φ3 = {ϕ4, ϕ5}

So we must post the following constraints:

• p[ϕ1, 1] = p[ϕ1, 2] = p[ϕ1, 3]
• p[ϕ2, 2] = p[ϕ2, 3]
• p[ϕ3, 2] = p[ϕ3, 3]
• p[ϕ4, 2] ∈ PKremote

• p[ϕ5, 2] ∈ PKremote

Example 30

Capacity rules were described in Section 1.4.2 (page. 5). To enforce them, we can post unary
constraints (see Constraint C23).

Table 4.7 provides each parking capacity for our example. Based on this Table, we
must post the following unary constraints:

• p[ϕ1, j] ∈ {p1, p3, p4, p5}, ∀j ∈ 1..3
• p[ϕ2, j] ∈ {p1, p3, p4, p5}, ∀j ∈ 1..3
• p[ϕ3, j] ∈ {p1, p3, p4, p5}, ∀j ∈ 1..3
• p[ϕ4, j] ∈ {p2, p3, p4, p5}, ∀j ∈ 1..3
• p[ϕ5, j] ∈ {p2, p4, p5}, ∀j ∈ 1..3

Example 31

Let us recall that when a parking p1 is shaded by a parking p2 then these two values cannot
be assigned together to any pair of overlapping tasks. This leads to binary negative table
constraints. Although not explicitly shown below, assigning the same value twice for any pair
of overlapping tasks is also forbidden (see Constraint C24).

The last subset is the constraint reduction and is defined with binary negative tables (see
Constraint C25).
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For our example, a reduction constraint exists between the stands p1 and p2. Suppose
that D = {(k1, p1, k3, {p2}), (k2, p1, k4, {p2})}. We also have Oϕ1,1 = {(ϕ2, 1), (ϕ4, 1)}
and PKϕ1 = {p1, p3, p4}.
Task 1 from rotation ϕ2 overlap tack 1 of the rotation ϕ2. Recall that kind(ϕ2) = k2.
So, for the reduction ϕ1, we add the constraint that forbidden the pair of values (p1, p2)
for the pair of variable 〈p[ϕ1, 1], p[ϕ2, 1]〉. In other words, it is fobridden to use p2 with
the rotation ϕ2 because ϕ2 does not have the allowed kind by p2 after placing ϕ1 on
p1 (its capacity is reduced).

〈p[ϕ1, 1], p[ϕ2, 1]〉 /∈ {(p1, p2)}

Although ϕ1 also overlaps with ϕ4, there are no restrictions to consider with ϕ1 as ϕ4

has a capacity of type k3 (see Table 4.6) which is allowed in relation to the reduction.

Example 32

According to the airlines preferences from affinity matrix MP , we can post binary table
constraints to “compute” rewards when filtering such constraints (see Constraint C26).

Airline / Parking p1 p2 p3 p4 p5
a1 75 75 100 50 50
a2 60 0 100 50 50
a3 0 100 80 50 50

Table 4.8: Affinity matrix

For our example, let us assume that rewards are given by the matrix 4.8.
From the data in this table, we post the following constraint for the first rotation (the
same principle is adopted for the other rotations):

〈p[ϕ1, j], r[ϕ1, j]〉 ∈ {(p1, 75), (p2, 75), (p3, 100), (p4, 50), (p5, 50)}, ∀j ∈ 1..ntasks(ϕ1)

Example 33

Considering the reward variables we can express the objective function as follows:

maximize
∑
ϕ∈Φ

j∈1..ntasks(ϕ)

wϕ,j × r[ϕ, j]

4.4.2 AllDifferent variant
In this variant, we propose to modify the shading constraint by posting Alldifferent con-
straints in addition to the table constraints already proposed. Note that for this constraint, it is
tempting to want to use an AllDifferent constraint as already proposed in the state-of-the-art
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[Sim07, DS91]. In these approaches, an AllDifferent constraint is added between all overlap-
ping pairs of tasks, but this cannot work here, as it would be less restrictive than the shadow
constraint. Indeed, an AllDifferent constraint would force two operations p[ϕ, i] and p[ϕ′, j]
to be different. However, by setting p1 and p2 as values for these two variables, the constraint
would be respected but would violate the shadow constraint if p1 shaded p2.

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

Figure 4.4: Interval graph based on data from Table 4.6.

Nevertheless, it is possible to use AllDifferent constraints with an interval graph. Each
vertex of the graph represents a task (the task’s time interval) and is connected by an edge to
another vertex if and only if there is an overlap between the two intervals. Figure 4.4 represents
an interval graph G for our example, each vertex represents an interval and an edge between
intervals whose intervals intersect. From this graph, we need to post an AllDifferent constraint
for each maximum clique in the graph.

A maximum clique of G has the greatest number of vertices, which is maximal for the
cardinal. We note CG the set of all maximum cliques.

Definition 44 (Maximum clique)

For the set of maximum cliques, we can post the following AllDifferent constraints:

allDifferent({p[ϕ, i], ∀(ϕ, i) ∈ c}), ∀c ∈ CG (4.2)

For our example and based on our interval graph (Figure 4.4), the maximum cliques are:
{ϕ1, ϕ2, ϕ4} and {ϕ3, ϕ4, ϕ5}.

4.4.3 not-break variant
This variant of the problem considers that moving an aircraft from one parking lot to another
has a specific cost. For this reason, the number of stands used for one rotation (with 2 or 3
tasks) must be minimized. To do that, ADP uses a post-treatment algorithm to join flights
with a break (i.e., break in 2 or 3 tasks). Because ACE does not support the multi-objectives, we
propose integrating this feature directly into the objective function. We add to our model nb a
stand-alone variable with domain {0, ..., |Φ|} counting the number of not broken rotations.

We must add the following constraint for counting the number of rotations without a break:

nb =
∑
ϕ∈Φ2

sϕ,1=ϕ,2 +
∑
ϕ∈Φ3

sϕ,1=ϕ,2=ϕ,3 (4.3)
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where sϕ,1=ϕ,2 is a Boolean variable, which is true if the same stand has been assigned for
the first and third tasks in the ϕ rotation, and where sϕ,1=ϕ,2=ϕ,3 is true if all tasks in the ϕ
rotation have been assigned to the same stand. The new objective function is defined as follows:

maximize
∑
ϕ∈Φ

j∈1..ntasks(ϕ)

wϕ,j × r[ϕ, j] + nb (4.4)

4.5 Experiments

4.5.1 Instances

Airport Terminals Date #Rotations
CDG T2B T2D 2023-07-17 2023-07-23 755
CDG T2B T2D 2023-09-11 2023-09-17 757
CDG T2B T2D 2023-09-18 2023-09-24 765

Table 4.9: General information about the parking planning.

Table 4.11 presents some factual information about the different planning used for these ex-
periments. The first two columns indicate the area of the planning (i.e., Airport and Terminals
concerning the planning). The third column gives the date of the planning. Finally, the last
column displays the number of rotations. For each planning, we have created two families of
problems:

• classical: This family does contain the constraints as modeling 9.
• alldiff: In this family, we add the allDifferent constraint based on the maximum

cliques (see Section 4.4.2).
• notbreak: We change the objective function for integrating the minimization of aircraft

movements (see Section 4.4.3).

We use the same set of solvers, noted Ψ4, for these experiments based on some variations of
ACEX.

{
ACEXvalhvarh

∣∣∣∣ varh ∈ {Frba/dom, Wdeg}
valh ∈ {first, Bivs}

}
(Ψ3)

4.5.2 classical vs alldiff modeling

We start by comparing the classical and the alldiff modeling. We create a first set of
instances I6 composed of instances from Table 4.11.

{
Ifparking

∣∣∣ f ∈ {classical, alldiff}
}

(I5)
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I6

Ψ4

5 minutes

64 GB

Linux CentOS Stream 8.3

Two quadcore Intel XEON E5-2637 (3.5 GHz)

128 GB

Summary of the experiments 5 (classical vs alldiff modeling - , )

Figure 4.11, 4.12 and 4.16 illustrate the progression of the bounds identified by the solver
for each of the tested instances. The x-axis represents time, and the y-axis denotes the bound.
The blue dashed line corresponds to the bounds established by the previous system of ADP.
For every instance, we consistently achieved a superior bound compared to ADP. However, it
is worth noting that the optimal bound might be identified later in the process. We can also
observe that the alldiff approach (noted alldiff+extension on the figure) is very close to
the classical approach.
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Figure 4.5: CDG T2BD - 2023-07-17 2023-07-23
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0 50 100 150 200 250 300

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3
1e8

classicalBivs
Wdeg

allDiff + extensionBivs
Wdeg

allDiff + extensionFirst
Wdeg

classicalFirst
Wdeg

allDiff + extensionFirst
FraOnDom

classicalFirst
FraOnDom

allDiff + extensionBivs
FraOnDom

classicalBivs
FraOnDom

ADP

Figure 4.6: CDG T2BD - 2023-09-11 2023-09-17
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Figure 4.7: CDG T2BD - 2023-09-18 2023-09-24

4.5.3 not-break modeling

Remember, ADP employs a post-processing algorithm to restore rotations without compromising
the gains. Instead of this post-treatment, we have embedded this mechanism directly into our
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objective function. This section aims to contrast the boundaries acquired after applying both
the ADP algorithm and our methodology. Given that the value tied to the count of intact
flights is very small, the bounds can be compared to the prior section’s method. Consistent with
the previous section’s findings, every configuration we tested yielded a bound superior to that
determined by ADP. Table 4.12 displays the count of rotations that have been reconstructed.
In all instances, our configuration enhances the number of reconstructions.
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Figure 4.8: CDG T2BD - 2023-07-17 2023-07-23

input ADP notBreakFirst
Wdeg notBreakBivs

Wdeg notBreakBivs
FraOnDom notBreakFirst

FraOnDom

CDG S23 WE37 T2BD 3 16 16 16 11
CDG S23 WE38 T2BD 3 8 8 11 7
CDG S23 WE29 T2BD 5 7 6 7 7

Table 4.10: Number of flights reconstitute by each solver and ADP algorithm.
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Figure 4.9: CDG T2BD - 2023-09-11 2023-09-17
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Figure 4.10: CDG T2BD - 2023-09-18 2023-09-24
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4.6 Conclusion
In this chapter, various models addressing the stand allocation problem have been introduced.
This problem is a fundamental aspect of airport operations that has implications for both ef-
ficiency and airline satisfaction. We put forward three distinct formulations of the problem:
the classical variant which mainly uses extension constraints, allDifferent variant, which
add allDifferent constraints for each maximum clique of the interval graph formed from
overlapping tasks, and finally, the notBreak variant, which seeks not only to maximize airline
satisfaction but also to reduce the number of aircraft movements.

Subsequently, we analyzed different configurations for the ACE solver and compared the
results with the actual ADP method. The value heuristic order Bivs shows excellent performance
and always obtains a better bound than that found by ADP.

It is crucial to note that this chapter represents a proof of concept work. While it provides
valuable foundational understanding and initial methodologies, there is a pressing need for
further optimization. We add to our model nb a stand-alone variable with domain {0, ..., |Φ|}
counting the number of not broken rotations.

We must add the following constraint for counting the number of rotations without a break:

nb =
∑
ϕ∈Φ2

sϕ,1=ϕ,2 +
∑
ϕ∈Φ3

sϕ,1=ϕ,2=ϕ,3 (4.5)

where sϕ,1=ϕ,2 is a Boolean variable which is true if the same stand has been assigned for the
first and third tasks in the ϕ rotation, and where sϕ,1=ϕ,2=ϕ,3 is true if all tasks in the ϕ rotation
have been assigned to the same stand. The new objective function is defined as follows:

maximize
∑
ϕ∈Φ

j∈1..ntasks(ϕ)

wϕ,j × r[ϕ, j] + nb (4.6)

4.7 Experiments
4.7.1 Instances

Airport Terminals Date #Rotations
CDG T2B T2D 2023-07-17 2023-07-23 755
CDG T2B T2D 2023-09-11 2023-09-17 757
CDG T2B T2D 2023-09-18 2023-09-24 765

Table 4.11: General information about the parking planning.

Table 4.11 presents some factual information about the different planning used for these ex-
periments. The first two columns indicate the area of the planning (i.e., Airport and Terminals
concerning the planning). The third column gives the date of the planning. Finally, the last
column displays the number of rotations. For each planning, we have created two families of
problems:

• classical: This family does contain the constraints as modeling 9.
• alldiff: In this family, we add the allDifferent constraint based on the maximum

cliques (see Section 4.4.2).
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• notbreak: We change the objective function for integrating the minimization of aircraft
movements (see Section 4.4.3).

We use the same set of solvers, noted Ψ4, for these experiments based on some variations of
ACEX. {

ACEXvalhvarh

∣∣∣∣ varh ∈ {Frba/dom, Wdeg}
valh ∈ {first, Bivs}

}
(Ψ4)

4.7.2 classical vs alldiff modeling
We start by comparing the classical and the alldiff modeling. We create a first set of
instances I6 composed of instances from Table 4.11.{

Ifparking
∣∣∣ f ∈ {classical, alldiff}

}
(I6)

I6

Ψ4

5 minutes

64 GB

Linux CentOS Stream 8.3

Two quadcore Intel XEON E5-2637 (3.5 GHz)

128 GB

Summary of the experiments 6 (classical vs alldiff modeling - , )

Figure 4.11, 4.12 and 4.16 illustrate the progression of the bounds identified by the solver
for each of the tested instances. The x-axis represents time, and the y-axis denotes the bound.
The blue dashed line corresponds to the bounds established by the previous system of ADP.
For every instance, we consistently achieved a superior bound compared to ADP. However, it
is worth noting that the optimal bound might be identified later in the process. We can also
observe that the alldiff approach (noted alldiff+extension on the figure) is very close to
the classical approach.

4.7.3 not-break modeling
Remember, ADP employs a post-processing algorithm to restore rotations without compromising
the gains. Instead of this post-treatment, we have embedded this mechanism directly into our
objective function. This section aims to contrast the boundaries acquired after applying both
the ADP algorithm and our methodology. Given that the value tied to the count of unbroken
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Figure 4.11: CDG T2BD - 2023-07-17 2023-07-23
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Figure 4.12: CDG T2BD - 2023-09-11 2023-09-17

flights is very small, the bounds can be compared to the prior section’s method. Consistent with
the previous section’s findings, every configuration we tested yielded a bound superior to that
determined by ADP. Table 4.12 displays the count of rotations that have been reconstructed.
In all instances, our configuration enhances the number of reconstructions.
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Figure 4.13: CDG T2BD - 2023-09-18 2023-09-24
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Figure 4.14: CDG T2BD - 2023-07-17 2023-07-23

input ADP notBreakFirst
Wdeg notBreakBivs

Wdeg notBreakBivs
FraOnDom notBreakFirst

FraOnDom

CDG S23 WE37 T2BD 3 16 16 16 11
CDG S23 WE38 T2BD 3 8 8 11 7
CDG S23 WE29 T2BD 5 7 6 7 7

Table 4.12: Number of flights reconstitute by each solver and ADP algorithm.
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4.8 Conclusion
In this chapter, various models addressing the stand allocation problem have been introduced.
This problem is a fundamental aspect of airport operations that has implications for both ef-
ficiency and airline satisfaction. We put forward three distinct formulations of the problem:
the classical variant which mainly uses extension constraints, allDifferent variant which
adds allDifferent constraints for each maximum clique of the interval graph formed from
overlapping tasks, and finally, the notBreak variant, which seeks not only to maximize airline
satisfaction but also to reduce the number of aircraft movements.

Subsequently, we analyzed different configurations for the ACE solver and compared the
results with the actual ADP method. The value heuristic order Bivs shows excellent performance
and always obtains a better bound than that found by ADP.

It is crucial to note that this chapter represents a proof of concept work. While it provides
valuable foundational understanding and initial methodologies, there is a pressing need for
further optimization.

108



Chapter 5

Contributions to Resolution
Methods of Constraint Programming

Problems

Contents
5.1 Aggressive Bound Descent . . . . . . . . . . . . . . . . . . . . . . . 110

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.1.2 ABD Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.1.3 Simple ABD Implementation . . . . . . . . . . . . . . . . . . . . . . 111
5.1.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 113
5.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Pseudo-Boolean Encodings . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.3 Purely PB Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 Parallel solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.2 Architecture of our Framework . . . . . . . . . . . . . . . . . . . . . 134
5.3.3 EPS approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 140
5.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

This chapter unfolds three novel resolution methods, each aiming to bolster the efficiency
and adaptability of solving Constraint Programming problems.

The first section introduces a method called Aggressive Bound Descent for reducing the
number of bounds found by the solver and accelerating the search. The second section explores
the use of Pseudo-Boolean solvers as the underlying solver. Finally, the last section proposes a
new strategy for parallel solving.
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5.1 Aggressive Bound Descent
5.1.1 Introduction
When solving a COP instance, the bound descent is defined as the sequence B = 〈B1, B2, . . . 〉
of successive bounds identified by the search algorithm. At an extreme, this sequence contains
only one value, the optimal bound. At another extreme, it contains a large sequence of values,
each one being close to the previous one: the bound descent is said to be slow. This is the case
when the mean value of the derived sequence of bound gains (or gaps) G = 〈B1−B2, B2−B3, . . . 〉
is small (close to 1).

Indeed, a slow bound descent indicates that there is some room for improvement in the way
the backtrack search is conducted. Indeed, enumerating a lot of close solutions before reaching
optimality involves solving many derived satisfaction problem instances, always on different,
although related, backgrounds (objective constraint limits), and this may be penalizing. This
is why we propose an aggressive14 policy of bound descent, ABD (policy) in short [FLMW21,
FLMW22]. Instead of setting the strict objective constraint limit to B when a new solution of
cost B is found, we propose setting it to a lower value, B′.

A first and simple ABD policy could be to use a static difference between B and B′: B′ =
B−∆ where ∆ is a fixed positive integer value. However, this static policy suffers from a lack
of adaptability, and besides, setting the correct value for ∆ may be problem-dependent and not
very easy to achieve. This is why we propose some dynamic ABD policies inspired by studies
concerning the sequences used by restart policies.

We first introduce a few general sequences of strictly positive integers to define dynamic
ABD policies, i.e., functions abd : N+ → N+. Although detailed later, the parameter i ≥ 1 of
these sequences corresponds to the number of successive successful limit updates, i.e., successive
aggressive updates of the objective constraint limit while keeping satisfiability.

Specifically, four integer sequences are used in our study:

exp(i) = 2i−1 (5.1)

rexp(i) =

{
2k−1, if i = k(k+1)

2

2i−
k(k+1)

2
−1, if k(k+1)

2 < i < (k+1)(k+2)
2

(5.2)

luby(i) =
{

2k−1, if i = 2k − 1
luby(i− 2k−1 + 1), if 2k−1 ≤ i < 2k − 1

(5.3)

prev(i) =
{

1, if i = 1
Gi−1 × 2, else (5.4)

where, in Equation 5.4, Gi is the ith value of the sequence of bound gains, as defined earlier.
Equation 5.1 corresponds to the classical exponential function exp (using base 2). De-

rived from this simple exponential progression, rexp in Equation 5.2 corresponds to a regularly
reinitialized exp sequence. The first values of this sequence are: 1, 1, 2, 1, 2, 4, . . . When only con-
sidering the highest numbers produced by the first term (condition) of the equation, we obtain
a slightly slower progression than the previous one: O(2

√
i). Another sequence commonly used

in restart policies is the Luby sequence [LSZ93], given by Equation 5.3. The first values of the
Luby sequence are: 1, 1, 2, 1, 1, 2, 4, . . . When considering again the highest numbers produced

14This work was carried out with another CRIL PhD student: Hugues Wattez.
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by the first term, we can observe that the progression is in O(i). Finally, the last sequence,
given by Equation 5.4, is based on the sequence of bound gains and also follows an exponential
progression.

Each sequence in Ψ = {exp, rexp, luby, prev} allows us to define an eponymous ABD policy
as follows.

5.1.2 ABD Policy
Let T be the current search tree built by the search algorithm (i.e., during the current run).
Let B be the bound descent produced since the beginning of the current run, and let abd ∈ Ψ.

The current run can meet three distinct situations:

1. the current run is stopped because the cutoff value is reached,
2. the current run is stopped because the search algorithm indicates that no better solution

exists,
3. a new solution S is found.

First, we discuss the most interesting case: the third one. The ABD policy states that when a
new solution S of cost B is found, B is appended to B, and the limit of the objective constraint
is set to B + 1 − abd(i), where i = |D|. In other words, the objective constraint becomes:
obj < B+1−abd(i); note that 1 is added to B because abd functions only return values greater
than or equal to 1. Now, we give a general precise description (handling in particular the two
first situations above) of how an ABD policy can be implemented within a backtrack search.

5.1.3 Simple ABD Implementation
The function solve, Algorithm 2, aims at solving the specified CNO P while using the specified
aggressive bound descent policy abd.

Algorithm 2: solve(P, abd)
Output: BP ..BP , runStatus

1 BP ..BP ← −∞..+∞;
2 do
3 P, runStatus← run(P, abd) ;
4 while runStatus = CONTINUE;
5 return (BP ..BP , runStatus);

First of all, the lower and upper bounds, denoted by BP and BP , of the objective function of
P are respectively initialized to −∞ and +∞ (or any relevant values that can be pre-computed).
These bounds will be updated during the search (but for the sake of simplicity, this will not
be explicitly shown in the pseudo-code). At line 2, the sequence of runs (restarts) is launched.
Each time a new run is terminated, it returns the constraint network (possibly updated with
some constraints or nogoods that have been learned; this will be discussed in more detail later)
and status information. The status takes one of the following values: CONTINUE if the solver
is allowed to continue with a new run; COMPLETE if the last run has exhaustively explored
the solution space; INCOMPLETE if the solver has reached the timeout limit without entirely
exploring the search space. Finally, the function returns the best-found bounds (in case the
optimality has been proved, we have BP = BP ) and the final status of the search.
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The function run, Algorithm 3, performs a search run, following the restarts and abd policies.
Before going further, we need to introduce the notion of safe/unsafe run solving: when the
solver is asked to decrease its objective limit aggressively, we may enter a part of the search
space that is UNSAT. If unsatisfiability is proved during the current run, this may be due to our
aggressive approach, and consequently, we have to address this issue. This is discussed below.

Algorithm 3: run(P, abd)
Output: (P, status)

1 i← 1;
2 Σi ← ∅;
3 do
4 ∆← abd(i);
5 i← i+ 1;
6 Σi, status← search_next_sol(P,Σi−1,∆);
7 while status = SAT;
8 safe← ∆ = 1;
9 if status = TIMEOUT then

10 return (P, INCOMPLETE)
11 if status = UNSAT & safe then
12 return (P,COMPLETE);
13 if status = UNSAT & ¬safe then
14 return (P ⊕ nld(Σi−1),CONTINUE);
15 if status = CUTOFF_REACHED & ¬safe then
16 return (P ⊕ nld(Σi−1),CONTINUE);
17 if status = CUTOFF_REACHED & safe then
18 return (P ⊕ nld(Σi),CONTINUE);

The function starts by initializing a counter i to 1. It corresponds to the number of times we
have tried to find a new solution during the current run. At Line 2, Σi is the sequence of decisions
taken along the rightmost branch of the current run, just before starting the next attempt to
find a new solution; this way, we can keep searching from the very same place (in practice, we
resume search after it was stopped). Initially, we start from no decisions taken at all (and so, Σ1

is the empty set). From a practical point of view, as we shall see, only the two last sequences Σi

and Σi−1 will be helpful to (to deal with the safe and unsafe solving cases). Then, the algorithm
iteratively performs runs as long as new solutions can be found. At each loop turn, the next
bound gap ∆ is computed by soliciting the abd policy, i is incremented, and the new upper
bound is set (lines 4 and 5). To perform a part of the search, the function search_next_sol
is called while considering the specified sequence of decisions to start from and the specified
bound gap. The gap ∆ is used by search_next_sol to compute a temporarily upper bound
B′ which replaces the current upper bound BP : we have B′ = BP − ∆ + 1, forcing then the
objective constraint to be f < B′ during this call to search_next_sol. If a new solution of cost
B (necessarily, B < B′) is found by search_next_sol, the call is stopped, and the objective
constraint is updated to become f < B safely. Otherwise, the call is stopped (because the cutoff
or timeout limits are reached), and the objective constraint is updated to f < BP (getting back
the previous safe upper bound). To summarize, this function implicitly updates the optimization
bounds before returning the new sequence of decisions (the exact place where the search has
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stopped) and a (local) status. The local status is either SAT, in which case the run can be
continued with a new loop iteration, or a value among UNSAT, CUTOFF_REACHED, and
TIMEOUT.

The current run necessarily executes some statements starting from line 8. At this line, a
Boolean is set, informing us whether the current run was safe or not regarding the last computed
∆ value. When the global timeout limit is reached, the constraint network and the status
INCOMPLETE are returned (lines 9 and 10). When the local status notifies UNSAT, we
have two cases to consider. If the current search was performed in safe mode, COMPLETE
can be returned because the search space is guaranteed to have been thoroughly explored.
Otherwise, CONTINUE is returned with the constraint network P , possibly integrating some
new constraints (nogoods). The notation P ⊕ nld(Σi−1) indicates that all nogoods that can be
extracted from the last but one sequence of decisions (see [LSTV09]) are added to P ; this is
valid because this sequence was the one corresponding to the last found solution. When the local
status notifies CUTOFF_REACHED, we can also continue while considering the adjunction of
some restart nogoods, from either Σi or Σi−1.

We conclude this section with two remarks. Firstly, the algorithm is introduced within
the context of a light nogood recording scheme (only nogoods that can be extracted from the
rightmost branch, when the search is temporarily stopped, are considered). However, it is
possible to adapt it to other learning schemes by keeping track of the exact moment when a
nogood (clause) is inferred; this is purely technical. Secondly, there is a specific case concerning
unsatisfiability: if ever we encounter a situation where B′ ≤ BP when trying to set a new
temporary upper bound B′ during the current run, the sequence is reinitialized by forcing back
i = 1 and B′ is recomputed.

5.1.4 Experiments and Results

Our approach has been evaluated on a wide range of optimization problems coming from the
XCSP distribution. To evaluate the performance of our approach, we implemented the ABD
policy in the solver ACE and ran it through ACEURANCETOURIX. We executed different variants
of ACEURANCETOURIX, denoted ACEXrs in the rest of this section, where s is the name of the ABD
policy and r the ratio. We define the set of solvers for this campaign by Ψ5.{

ACEXrs

∣∣∣∣ r ∈ {1.2, 1.4, 1.6, 2}
s ∈ {exp, prev}

}
(Ψ5)

5.1.4.1 Scoring

When evaluating campaigns, our preference leans towards utilizing absolute methods. These
methods assess a solver comprehensively without comparing it with other solvers. Conversely,
evaluating based on commonly solved instances among a group of solvers introduces interdepen-
dencies. This is termed a relative evaluation. While relative evaluations hold value, they are less
desirable since altering the solver set means reevaluating every solver within that set. A leading
solver in one set may lose its position if a new solver is introduced, and the top performer is not
necessarily the latest addition.

In optimization contexts, evaluations often lean towards these relative methods. Diversifying
the relative methods is suggested to derive more meaningful insights from such evaluations.
Absolute evaluation methods exist for optimization campaigns, such as tallying the instances
where a solver confirms optimality or noting the overall resolution time.
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While optimality is vital in evaluating a COP campaign, it does not provide a comprehensive
view. Some relative methods gauge how often a solver dominates a campaign, marking instances
where it outperforms others. Another approach normalizes each solver’s bounds between 0 and
1 at specific intervals, aiming to discern which solvers remain closest to the optimal bound.

We will consider that we only have minimization problems for simplicity’s purpose. We
propose additions based on the different scoring variables defined in Section 3.4.4 that we recall.

Given a set I of instances and a set Ψ of solvers,

bis,t

corresponds to the best bound obtained by solver s ∈ Ψ on instance i ∈ I in t second(s), where
t ∈ [0, . . . , T ] and T is the timeout. We also have the boolean variable:

cis,t (5.5)

where the value is true when the solver s has completed a complete exploration of the search
space of the instance i with a time less than t, false otherwise.

We can now define two values that correspond to the lowest(best) and to the largest (worst)
bounds obtained by a set of solvers Ψ on a given instance i at time t where t ∈ [0, . . . , T ].

minbit = min
s∈Ψ

bis,t

maxbit = max
s∈Ψ

bis,t

We also define the notation for the minimum time taken by a set of solvers Ψ to find the
first solution of an instance i.

mintit = min
s∈Ψ

tis

maxtit = max
s∈Ψ

tis

These previous equations allow us to normalize the bound bis,t based on the min− max oper-
ation.

ni
s,t =


0, if bis,t =∞

1, if bis,t = maxit = minit
maxit−bis,t
maxit−minit

, otherwise

(5.6)

For a solver without a solution, its reward is set to 0. Conversely, if both the lowest and
highest bounds are identical—indicating the solver has identified the sole recognized solution at
a given time t—its reward is 1. The min− max operator is utilized in other scenarios.

Armed with these defined variables, we can lay out the evaluation operators for a campaign
encompassing solvers Ψ applied to a collection of instances I. For a given solver s within Ψ and
at a specific time t, the following are the diverse absolute and relative evaluations applicable to
the instance set I:
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Eopti
s,t =

1

|I|
×
∑
i∈I

1cis,t (5.7)

Edomi
s,t =

1

|I|
×
∑

i ∈ Ibni
s,tc (5.8)

Equali
s,t =

1

|I|
×
∑
i∈I

ni
s,t (5.9)

(5.10)

Where 1α yields 1 if α is true and 0 if not. The evaluation Eopti
s,t offers an absolute method,

representing the frequency the solver s completes its search by timestamp t for the instances
within set I. This optimality rate is gauged relative to the total instances. Conversely, Edomi

s,t

quantifies the instances where solver s determines the best bound (i.e., when ni
s,t = 1) for an

instance i at t, all against the backdrop of set I. This metric is then adjusted in relation to the
instance count, hence depicting the relative dominance of solver s over set I at t. Lastly, the
Equali
s,t metric computes the mean caliber of bounds pinpointed across I by solver s at t.

All the proposed operators are available in the Python library Metrics.

5.1.4.2 ABD for XCSP instances

Our experiments utilized benchmarks from the COP and MiniCOP tracks of the XCSP22 and
XCSP23 competitions. Specifically, set I7 comprises 18 problem families with 296 instances,
while set I8 includes 26 problem families with 405 instances.

ICOP
XCSP22 (I7)

ICOP
XCSP23 (I8)

I7 and I8

Ψ5

40 minutes

64 GB

Linux CentOS Stream 8.3

Two quadcore Intel XEON E5-2637 (3.5 GHz)

128 GB

Summary of the experiments 7 (ABD on XCSP instances - , )
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Figure 5.1: Comparaison between the default solver and ABD policy over I7 and I8 instances.

Figure 5.1 shows the different proposed operators for comparing the default solver ACEX with
different ABD policies. On the left column, there are the results for I7, while the right column
presents the results for I8.
Figures 5.1a and 5.1b show the optimality score. The optimality score of the ABD policy remains
largely consistent. This can be explained by the fact that the ABD policy is aggressive, with
bounds that progress slowly. When approaching the optimal boundary, the search requires a
finer progression to avoid overshooting the boundary and unnecessarily searching on the UNSAT
side of the search space. Figures 5.1a and 5.1b show a fluctuation of just over half a percent,
which is positive. Figure 5.1c shows the dominance score for I7. We can observe a slight
improvement in score over the default solver in the first 50 seconds after the solvers with ABD
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Figure 5.1: Comparaison between the default solver and ABD policy over I7 and I8 instances.
(cont.)

policies bring some disadvantage but which also remains quite small. However, on instances
5.1d ABD policies seem to be more interesting and provide a gain in terms of total resolution
time (see Figure 5.1d). Figures 5.1e and 5.1f confirms the global behaviour.

5.1.4.3 ABD for Airport Problems

We start this section by testing our ABD approach on the check-in desk problem (I1)

I1

Ψ5

5 minutes

64 GB

Linux CentOS Stream 8.3

Two quadcore Intel XEON E5-2637 (3.5 GHz)

128 GB

Summary of the experiments 8 (ABD on Check-in desk instances - , )

Figure 5.3 provides an overview of the results based on the previous scores. It is important
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to highlight that we employed our ABD approach to every instance detailed in I1, without
distinction to decomposition or modeling used. We use a logarithmic scale.

The data presented in Figure 5.2a attests to the stability of the optimality score, indicating
that it remains largely unaltered by the ABD. Moreover, Figure 5.2b underscores the dominance
of the variant labeled as GatherFrba

F irst + prev1.6.
Interestingly, the first variant that uses Bivs as its value heuristic order ranks in the seventh

position. This observation aligns with the insights drawn from Figure 5.2c, which illustrates the
average quality of the solutions.

As for the check-in desk, we test the ABD approach on all the stand allocation approaches
regardless of this modeling using the set of instances I9:{

Ifparking
∣∣∣ f ∈ {classical, alldiff, notBreak}

}
(I9)

I9

Ψ5

5 minutes

32 GB

Linux CentOS Stream 8.3

Two quadcore Intel XEON E5-2637 (3.5 GHz)

128 GB

Summary of the experiments 9 (ABD on Stand Allocation instances - , )

Figure 5.3 illustrates the results of the stand allocation problems.
Initially, it is worth noting that we chose not to display the graph representing the optimality

score. The reason behind this decision is the consistent behavior across all solvers where none
could close the problem; thus, the graph would merely depict a flat line at y = 0.

Moving on to Figure 5.2b, it captures the dominance score associated with each solver.
A striking observation is that no particular solver distinctly outperforms the rest. This phe-
nomenon might be attributed to a couple of factors. Firstly, the configurations and solvers in
play bear a significant resemblance. Secondly, the quantity of instances considered is relatively
modest, which can influence such outcomes.

Lastly, Figure 5.2c sheds light on the average quality of the solutions presented. Notably,
strategies that employ ABD and the Bivs value choice heuristic appear to take the lead. They
are closely trailed by a traditional, unitary solver (i.e., without the ABD policy).

5.1.5 Conclusion
In this section, we introduced the ABD technique, a method that aggressively adjusts the bounds
of objective constraints. By periodically venturing into potentially unsafe areas of the search
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space, this technique can yield notable performance improvements on constraint optimization
problems. While the enhancements presented in this section may appear modest, the compre-
hensive research detailed in [FLMW22] demonstrates a substantial boost in solver efficiency,
with improvements exceeding 10%. The previously mentioned research integrated the ABD
methodology into the PB Sat4j solver. This integration offers a refined safe management sys-
tem, employing selectors to efficiently discard irrelevant information, achieving an impressive
performance improvement of up to 20% over the default Sat4j.

Moving forward, there is potential for further refining ABD. Future endeavors might delve
into leveraging historical data on bound improvements or pinpointing optimal sequences of limit
deviations based on the inherent structure of specific problems.
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Figure 5.2: Comparaison between the default solver and ABD policy over I1 instances.
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Figure 5.3: Comparaison between the default solver and ABD policy over I9 instances.
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5.2 Pseudo-Boolean Encodings
5.2.1 Introduction
As we have seen in previous chapters, it is possible to solve the CSP (resp. COP) problem with
approaches that natively deal with the constraints of the problem, using efficient data structures
to represent both the constraints and the structure of the problem, as it is done, for instance, in
Choco [PFL16], Nacre [Glo18] and ACE15. Another possible approach is to leverage the practical
efficiency of modern SAT solvers, based on the CDCL architecture [MS99, MMZ+01, ES04], to
solve CSPs. As these solvers take as input a propositional formula in Conjunctive Normal Form,
one needs to encode the variables (especially their domains) and the constraints of the original
problem into clauses to use them. In this context, many encodings have been proposed, as those
described in [Wal00, Gav07, DLB08, BKN+09, TTKB09], which often provide good empirical
results.

However, the main weakness of SAT solvers is the resolution proof system they use during
conflict analysis. This proof system has a weak inference power, and some apparently simple
problems cannot be solved efficiently. In particular, SAT solvers are known to perform poorly
on instances requiring the ability to “count”. This is, for example, the case for the well-known
pigeonhole principle problem, which requires an exponential number of resolution steps to derive
the unsatifiability of the input [Hak85]. This observation led to the development of a different
kind of solvers called pseudo-Boolean (PB) solvers [DG02, LBP10, EN18]. These solvers inherit
many features of modern SAT solvers and implement a proof system that is stronger than the
resolution proof system, and which is known as the cutting planes proof system [Gom58, Hoo88,
Nor15]. These solvers can natively deal with PB constraints, i.e., linear equations or inequations
over Boolean variables. This is an interesting observation, as among existing SAT encodings
of CSPs, many of them actually use intermediate PB representations of the constraints before
encoding them into clauses. This step is necessary to use a SAT solver, but it requires both to
introduce additional variables and to increase the number of constraints to give to the solver (a
single PB constraint can represent exponentially many clauses [BSS94]).

In this section, we introduce new encodings for CSPs leveraging both the succinctness of PB
constraints and the inference power of PB solvers. The proposed encodings are based on well-
known representations of variable domains using Boolean variables, such as the direct-encoding,
the log-encoding or the order-encoding, to encode different CSP constraints into PB constraints.

To this end, we first introduce some preliminaries about SAT and PB solving. We then
formally describe the proposed encodings for different constraints and empirically evaluate them
on different sets of instances from the XCSP library and Paris Airports.

5.2.2 Preliminaries
5.2.2.1 SAT Solvers and CSPs

A variable x is Boolean when dom(X) = {0, 1}. We call a literal ℓ a Boolean variable x or its
negation x̄ = 1 − x. A literal ℓ is satisfied when ℓ is assigned to 1, and falsified otherwise. A
clause is a disjunction of literals, requiring at least one of its literals to be satisfied. A problem
is in Conjunctive Normal Form (CNF) when it is a conjunction of clauses. The SATisfiability
problem (SAT) is to determine whether such a conjunction is consistent.

The SAT problem is the first problem proven NP-complete [Coo71]. It is thus possible to
use SAT solvers to solve CSPs using different encodings. In particular, to represent the domain

15https://github.com/xcsp3team/ace
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of a CSP variable X, one can use the so-called direct-encoding (see, e.g., [Wal00]). It defines a
Boolean variable xv for each value v ∈ dom(X). In this case, the value assigned to X may be
retrieved by identifying the (only) Boolean variable xv to be satisfied.

This representation is beneficial in the case where the domain of a variable is an enumerated
set of values. When it is a range of values, another option is to represent the variable using the
log-encoding (see, e.g., [Wal00]), which uses the binary representation of the variable X using
Boolean variables bi representing the bits of X, so that X = min(dom(X)) +

∑⌈log2(X)⌉
i=0 2ibi.

Observe here the use of min(dom(X)), which guarantees that the binary decomposition always
starts at 0.

Finally, another approach is that based on the order-encoding [TTKB09], which defines a
Boolean variable x≥v for each value v ∈ dom(X) \ {min(dom(X))}. This variable is satisfied if
and only if X ≥ v. In this case, the value assigned to X can be retrieved by identifying two
variables x≥v and x≥v+1 such that the former is satisfied and the latter is falsified, in which case
X is assigned to v.

5.2.2.2 Pseudo-Boolean (PB) Constraints

A pseudo-Boolean (PB) constraint is a constraint of the form
∑n

i=1 αiℓi △ δ, where n is a
positive integer, the weights (or coefficients) αi and the degree δ are integers, ℓi are literals and
△∈ {<,≤,=,≥, >}. A PB constraint is said to be normalized when all the coefficients and the
degree of this constraint are positive, and △ is ≥. It is well known that any PB constraint may
be rewritten as a conjunction of normalized PB constraints, which is particularly useful for the
encodings we present later on. A PB cardinality constraint is a normalized PB constraint in
which all the coefficients are equal to 1, and a clause is a PB cardinality constraint with its
degree equal to 1. This definition is equivalent to the definition of clauses as disjunctions of
literals, and shows that PB solvers generalize SAT solvers.

5.2.3 Purely PB Encodings

In this section, we use the direct-encoding, log-encoding and order-encoding to represent the
domains of the variables from a CN and use these representations to encode different common
CSP constraints into PB constraints. In the following, we use the notation (�, k), where � ∈
{<,≤,=, 6=,≥, <,∈, 6∈} and k is an integer, a variable, a set, or an interval.

5.2.3.1 (De)activating PB constraints

To encode both the domain of the variables and the constraints of a CSP into PB constraints
it is often needed to activate (or deactivate) a constraint. To do so, a common practice is
to introduce selectors, i.e., an auxiliary variable s such that its satisfaction entails that of the
considered constraint. In the case of PB constraints, such a selector s could have the following
semantics, using ⇒ to denote material implication: s⇒

∑n
i=1 αiℓi ≥ δ. The particular form of

PB constraints allows to concisely represent such an implication with the (single) PB constraint
δs̄+

∑n
i=1 αiℓi ≥ δ.

Recall that, in this case, the satisfaction of the constraint does not guarantee the satisfaction
of s. If such a guarantee is needed, we must add the reciprocal implication, i.e., s⇐

∑n
i=1 αiℓi ≥

δ, which can be represented using a single PB constraint (
∑n

i=1 αi − δ + 1) s +
∑n

i=1 αiℓ̄i ≥∑n
i=1 αi − δ + 1.
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From now on, we denote by s a selector for which only one implication is defined, and by S
a selector for which both implications are defined (when needed, indices may be added to these
selectors).

To illustrate the use of selectors, let us consider the constraint
∑n

i=1 αiℓi 6= δ. This con-
straint cannot be normalized directly, as 6= is not an allowed operator for a PB constraint.
However, we can observe that this constraint is equivalent to the disjunction of the two con-
straints (

∑n
i=1 αiℓi ≤ δ − 1) and (

∑n
i=1 αiℓi ≥ δ + 1). Let us define two selectors s≤ and s≥, such

that s≤ ⇒
∑n

i=1 αiℓi ≤ δ − 1 and s≥ ⇒
∑n

i=1 αiℓi ≥ δ + 1. These two constraints, combined
with the disjunction s≤ ∨ s≥, allow to represent the constraint above using PB constraints.

5.2.3.2 Variables and Domains

Some constraints must be added to ensure that the encodings of the variables mentioned in
the previous section effectively encode the variables of the original problem. In the case of the
direct-encoding, one simply needs to add the constraint

∑
v∈dom(X) xv = 1 to make sure that the

variable X is assigned exactly one value. It is then possible to represent the variable X using
the equality X =

∑
v∈dom(X) vxv.

In the case of the log-encoding, the value of X is given by the equality X = min(dom(X)) +∑⌈log2(X)⌉
i=0 2ibi. To make sure that the domain of X is correct, one can use the constraint∑⌈log2(X)⌉
i=0 2ibi ≤ max(dom(X))−min(dom(X)) (recall that we only use this encoding to encode

interval domains).
Finally, in the case of the order-encoding, the constraints to add are exactly the same clauses

as those used in [TTKB09]. Thus, for each value v ∈ dom(X) \ {min(dom(X))}, the implication
x≥v ⇒ x≥v−1 is added to the solver. When the domain of X is not an interval, it is possible to
forbid a value v by adding the implication x≥v ⇒ x≥v+1. Additionally, it is possible to represent
the value of X using the equality X = min(dom(X)) +

∑
v∈dom(X)\{min(dom(X))} x≥v. As for the

log-encoding, let us remark the use of min(dom(X)) to make sure that the encoding starts at 0.
Without loss of generality, we can thus always represent a CSP variable X using a weighted sum
of literals, to which a constant µ may be added, giving X = µ+

∑n
i=1 αiℓi.

Additionally, encoding CSP constraints often requires to determine whether a variable X
is assigned to a given value v. In the case of the direct-encoding, one only needs to check the
value of xv. To obtain such a value with the order-encoding, note first that X is assigned to
v if and only if the conjunction x≥v ∧ x≥v+1 is satisfied. To obtain a variable xv equivalent
to that used in the direct-encoding, one just needs to use the constraint xv ⇔ x≥v ∧ x≥v+1,
which can be encoded using PB constraints, as shown in the previous section. Obtaining such
a value is a little bit harder with the log-encoding, as one needs to check the assignment of all
the Boolean variables used in the representation of the variable to know the value of X. In
this case, we thus propose to use a lazy form of the direct-encoding, where X is first encoded
using the log-encoding, and the direct-encoding is used only when xv is required. The constraint∑

v∈dom(X) vxv = min(dom(X)) +
∑⌈log2(X)⌉

i=0 2ibi may be used to make sure that both encodings
encode the same value. It is thus possible to obtain, for each variable X and for each value
v ∈ dom(X), a unique Boolean variable xv representing the assignement X = v.

5.2.3.3 Constraint cardinality

As mentioned before, one of the main advantages of PB solvers compared to SAT solvers is
their ability to count efficiently. To benefit from this advantage, we first propose to encode
cardinality constraints [Rég96].
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A first variant of this constraint is to force bounds on the number of variables among
{X1, . . . , XN} that are assigned a given value v. Let m and M be the minimum and maxi-
mum number of variables Xi that can be assigned to v, respectively, and let xiv be the Boolean
variable representing the assignment Xi = v. Clearly, the number of satisfied xiv must be be-
tween m and M . Thus, this cardinality constraint can be represented with m ≤

∑N
i=1 x

i
v ≤M ,

which can easily be decomposed into two PB constraints. Let us remark that, depending on
the values of m and M , these two constraints may represent an exponential number of clauses
without requiring the use of auxiliary variables [BSS94], as SAT solvers would.

Another variant of the cardinality constraint is to make sure that a variable C is assigned
to the number of variables Xi that are assigned to a given value v. Let µ +

∑n
i=1 αiℓi be the

representation of the variable C. This variable must be equal to the number of satisfied xiv.
So, if we use the same notations as before, this can be encoded using the equality

∑N
i=1 x

i
v =

µ+
∑n

i=1 αiℓi, which is equivalent to the PB constraint
∑N

i=1 x
i
v − µ−

∑n
i=1 αiℓi = 0.

There exist other variants of the constraints described here, where the values are variables Z
instead of constants. To encode them, one simply needs to replace the variables xiv by variables
xiZ , such that xiZ ⇔ (Xi−Z = 0). By representing Xi and Z into weighted sums of literals, this
constraint may be normalized following the procedure described in Section 5.2.3.1.

5.2.3.4 Constraint count

Let us now consider the constraint count, introduced in CHIP [BC94] and Sicstus [COC97],
which ensures that the number of variables in {X1, . . . , XN} which are assigned a value in
{v1, . . . , vM} respects a numerical condition (�, k).

To encode this constraint let xivj be the Boolean variable representing the assignment Xi = vj .
Clearly, the number of satisfied xivj must satisfy the condition (�, k). Thus, the count constraint
can be represented with

∑N
i=1

∑M
j=1 x

i
vj � k, which can easily be represented as a set of PB

constraints.

5.2.3.5 Constraint nValues

The constraint nValues [BHH+06] ensures that the number of distinct values taken by variables
in {X1, . . . , XN} respects a numerical condition (�, k).

To encode this constraint let xivj be the Boolean variable representing the assignment Xi =

vj where vj ∈
⋃N

i=1 dom(Xi). We start by creating a clause for each value vj of the form:∑N
i=1 x

i
vj ≥ 1. For each of these clauses, we define a selector Sj , which is thus true if and only if

the value vj is assigned to one of the Xi. The nValues constraint can then be represented with∑
j Sj � k.

5.2.3.6 Constraint sum

A sum constraint is a constraint of the form
∑N

i=1AiXi � k. It is clear that such a constraint
can easily be represented using PB constraints. Indeed, if each Xi may be written as Xi =
µi +

∑ni
j=1 α

i
jx

i
j , where xij are Boolean variables, then the constraint above is equivalent to∑N

i=1Ai

(
µi +

∑ni
j=1 α

i
jx

i
j

)
� k. which can be developed as a PB constraint (the case of the

operator 6= is treated as in Section 5.2.3.1).
The sum constraint is at the core of many other constraints. For example, we can eas-

ily encode the binPacking, cumulative, knapsack, and noOverlap constraints by using sum
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constraints, and thus PB constraints based on the encoding presented above.

5.2.3.7 Constraint allDifferent

Recall that the global constraint allDifferent enforces that a set of variables are all assigned
to different values We illustrate its encoding following the example allDifferent(X1, . . . , Xn).

Let D =
⋃N

i=1 dom(Xi). The semantics of allDifferent enforces that each value v ∈ D is
used at most once among all variables Xi. Let v ∈ D, and let us note xiv the Boolean variable
representing Xi = v (i ∈ 1..N). We can represent this constraint on v using the PB constraint∑N

i=1
v∈dom(Xi)

xiv ≤ 1. This constraint has to be applied on all values v ∈ D. The operation must

thus be repeated on each possible value.
Let us observe that this encoding is similar to that of the pigeonhole-principle, which is hard

for SAT solvers based on resolution [Hak85]. This encoding allows thus to benefit from the
reasoning power of PB solvers, at least on the subset of constraints encoding allDifferent.

5.2.3.8 Constraint extension with Supports

A support is a constraint that explicitly lists all the possible solutions for a constraint. To
encode supports, let us first remark that a PB constraint of the form

∑n
i=1 ℓi ≥ n represents the

conjunction of the literals ℓi, i.e.,
∧n

i=1 ℓi. Based on this observation, we can encode a (unique)
support of the form (Xi | 1 ≤ i ≤ N) = (vi | 1 ≤ i ≤ N) using the PB constraint

∑N
i=1 x

i
vi ≥ N ,

where xivi is the Boolean variable representing the assignment Xi = vi (i ∈ 1..N). When several
tuples t are allowed in a support, we need to add a selector st to each constraint associated to
a tuple, giving the PB constraint st ⇒

∑N
i=1 x

i
vi ≥ N . Indeed, the set of allowed tuples is a

disjunction, so one of the tuples must be assigned to the associated variables: we thus add the
clause

∨
st to encode the full support.

Finally, let us remark that if the symbol * is used in one of the allowed tuples instead of
a value vi (to represent that the variable Xi can take any value), one just needs to ignore the
literal corresponding to the variable Xi in the constraint above.

5.2.4 Experiments and Results

5.2.4.1 PB encoding for XCSP instances

This section presents some experimental results of the PB encodings presented in the previous
section on different sets of optimization instances. To evaluate the performance of our approach,
we implemented the encodings presented in the previous sections, and we executed different
variants of Sat4j [LBP10], denoted Sat4j + S in the rest of this section, where S is the name
of the considered variant. The set of solver is denoted Ψ6. Unless otherwise specified, the
combination of the direct-encoding and log-encoding is used to represent the domain of the
variables.{

Sat4j+ S
∣∣ S ∈ {Res, SoberBoth, Both, CuttingPlanes, RS, PartialRS} }

(Ψ6)

In the context of our experiments, we used the union of I7 and I8. This set, denoted I10,
comprises 49 families of problems and contains 757 instances.

ICOP
XCSP22,XCSP23 (I10)
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Figure 5.4: Cactus plot of the executed solvers.

Figure 5.4 shows an overview of the solvers we ran on this benchmark. This figure is a so-
called cactus-plot. Each line corresponds to a solver and shows the number of instances solved
(in this context, the instance is considered solved if the solver has performed a context search,
i.e., proved optimality or unsatisfiability) within a given time limit by this solver.

The faster solver is ACE, which solves many more instances than the others. The first PB
solver is Sat4j+SoberBoth, which combines two solvers Sat4j+CuttingPlanes and Sat4j+Res
during 60 seconds and then only Sat4j+Res. This latter PB solver implements a conflict analysis
as classical SAT solvers do, by lazily inferring a clause each time a PB constraint is encountered
during the analysis. The main advantage of this approach is that it allows to combine the
succinctness of PB constraints and the use of efficient data structures of SAT solvers. Yet, the
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efficiency of these solvers is not very good. This may be explained by the fact that (too) many
constraints have to be encoded using clauses in the considered problems, which does not allow
to exploit the full power of the proof system implemented in PB solvers.

5.2.4.2 PB encoding for Airport Problems

In this section, we have tested the pseudo-Boolean encoding on check-in instances. We have run
the same set of solvers as in the previous section (Ψ6).

I2,I3 andI4

Ψ6

5 minutes

32 GB

Linux CentOS Stream 8.3

Two quadcore Intel XEON E5-2637 (3.5 GHz)

128 GB

Summary of the experiments 11 (Sat4j for CDAP - , )

Term Period Decompo Solver First B (Time (s)) Last B (Time (s))

CDG T1 0703-0709 Part Sat4j + both 17,665,000 (13.15s) 20,545,000 (296.53s)
CDG T1 0703-0709 Part Sat4j + res 15,900,000 (4.9s) 17,950,000 (291.36s)
CDG T1 0703-0709 None Sat4j + res 14,845,000 (49.99s) 18,110,000 (181.81s)
CDG T1 0703-0709 None Sat4j + both 14,845,000 (130.63s) 15,955,000 (282.44s)

CDG T1,2,3 0821-0827 Full Sat4j + res 17,540,500 (6.49s) 18,367,200 (268.77s)
CDG T1,2,3 0821-0827 Full Sat4j + cp 16,958,900 (15.31s) 19,644,100 (295.93s)
CDG T1,2,3 0821-0827 Part Sat4j + res 14,928,200 (14.96s) 15,822,700 (18.6s)
CDG T1,2,3 0821-0827 Part Sat4j + both 14,758,000 (26.08s) 15,822,700 (51.67s)
CDG T1,2,3 0821-0827 None Sat4j + res 12,357,200 (155.08s) 13,135,500 (235.07s)
CDG T1,2,3 0821-0827 None Sat4j + both TO TO

CDG T1,2,3 0911-0917 Full Sat4j + cp TO TO
CDG T1,2,3 0911-0917 Full Sat4j + res TO TO
CDG T1,2,3 0911-0917 Part Sat4j + both TO TO
CDG T1,2,3 0911-0917 Part Sat4j + res TO TO
CDG T1,2,3 0911-0917 None Sat4j + both TO TO
CDG T1,2,3 0911-0917 None Sat4j + res TO TO

CDG T1,2,3 0918-0924 Full Sat4j + cp TO TO
CDG T1,2,3 0918-0924 Full Sat4j + res TO TO
CDG T1,2,3 0918-0924 Part Sat4j + both TO TO
CDG T1,2,3 0918-0924 Part Sat4j + res TO TO
CDG T1,2,3 0918-0924 None Sat4j + both TO TO
CDG T1,2,3 0918-0924 None Sat4j + res TO TO

Continued on next page
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Term Period Decompo Solver First B (Time (s)) Last B (Time (s))

CDG T2B T2D 0703-0709 Full Sat4j + res 15,654,200 (6.26s) 18,839,027 (284.8s)
CDG T2B T2D 0703-0709 Full Sat4j + cp 13,844,236 (11.86s) 16,534,242 (256.21s)
CDG T2B T2D 0703-0709 Part Sat4j + both 13,799,362 (15.98s) 14,549,245 (33.1s)
CDG T2B T2D 0703-0709 Part Sat4j + res 13,614,342 (8.6s) 14,659,279 (208.1s)
CDG T2B T2D 0703-0709 None Sat4j + res 11,274,440 (63.47s) 11,274,440 (63.47s)
CDG T2B T2D 0703-0709 None Sat4j + both 11,274,440 (158.46s) 11,274,440 (158.46s)

ORY 0508-0514 Full Sat4j + res 25,948,700 (17.96s) 26,178,500 (25.5s)
ORY 0508-0514 Part Sat4j + res 24,205,300 (43.28s) 26,240,500 (56.79s)
ORY 0508-0514 Part Sat4j + both 22,391,000 (70.34s) 26,240,500 (100.6s)
ORY 0508-0514 Full Sat4j + cp 21,573,000 (48.69s) 24,135,800 (259.37s)
ORY 0508-0514 None Sat4j + both TO TO
ORY 0508-0514 None Sat4j + res TO TO

ORY 0619-0625 Part Sat4j + res 19,815,150 (34.52s) 19,659,309 (46.74s)
ORY 0619-0625 Part Sat4j + both 19,815,150 (69.36s) 19,659,309 (98.42s)
ORY 0619-0625 Full Sat4j + res 17,425,699 (24.8s) 17,522,687 (34.19s)
ORY 0619-0625 Full Sat4j + cp TO TO
ORY 0619-0625 None Sat4j + both TO TO
ORY 0619-0625 None Sat4j + res TO TO

ORY 0626-0702 Part Sat4j + res 18,080,849 (29.63s) 20,210,892 (41.81s)
ORY 0626-0702 Full Sat4j + res 18,027,618 (26.94s) 17,295,989 (30.51s)
ORY 0626-0702 Part Sat4j + both 16,243,025 (54.64s) 20,245,569 (109.4s)
ORY 0626-0702 Full Sat4j + cp TO TO
ORY 0626-0702 None Sat4j + both TO TO
ORY 0626-0702 None Sat4j + res TO TO

ORY 0703-0709 Part Sat4j + both 20,073,634 (74.7s) 20,770,740 (129.96s)
ORY 0703-0709 Full Sat4j + res 18,538,057 (26.09s) 19,272,751 (36.73s)
ORY 0703-0709 Part Sat4j + res 18,104,682 (30.06s) 20,913,738 (46.03s)
ORY 0703-0709 Full Sat4j + cp TO TO
ORY 0703-0709 None Sat4j + both TO TO
ORY 0703-0709 None Sat4j + res TO TO

Table 5.1: Results for No-overlapping family.

Term Period Decompo Solver First B (Time (s)) Last B (Time (s))

CDG T1 0703-0709 Part Sat4j + res 22,530,000 (7.26s) 24,310,000 (123.26s)
CDG T1 0703-0709 Part Sat4j + both 22,155,000 (10.53s) 27,555,000 (132.02s)
CDG T1 0703-0709 None Sat4j + res 19,800,000 (66.13s) 21,415,000 (124.51s)
CDG T1 0703-0709 None Sat4j + both 19,800,000 (135.04s) 21,415,000 (263.17s)

CDG T1,2,3 0821-0827 Full Sat4j + res 24,885,400 (5.76s) 27,301,500 (270.95s)
CDG T1,2,3 0821-0827 Full Sat4j + both 24,067,400 (7.42s) 28,278,800 (275.9s)
CDG T1,2,3 0821-0827 Part Sat4j + res 21,766,200 (12.05s) 22,356,700 (19.5s)
CDG T1,2,3 0821-0827 Part Sat4j + both 20,819,600 (18.72s) 22,714,700 (57.63s)
CDG T1,2,3 0821-0827 None Sat4j + res 20,440,800 (150.01s) 21,512,100 (274.46s)
CDG T1,2,3 0821-0827 None Sat4j + both TO TO

CDG T1,2,3 0911-0917 Full Sat4j + res 88,747,600 (251.85s) 88,747,600 (251.85s)
CDG T1,2,3 0911-0917 Full Sat4j + both TO TO
CDG T1,2,3 0911-0917 None Sat4j + both TO TO
CDG T1,2,3 0911-0917 None Sat4j + res TO TO

CDG T1,2,3 0918-0924 Full Sat4j + res 88,164,200 (213.62s) 88,184,200 (274.59s)
CDG T1,2,3 0918-0924 Part Sat4j + res TO TO
CDG T1,2,3 0918-0924 Full Sat4j + both TO TO
CDG T1,2,3 0918-0924 Part Sat4j + both TO TO
CDG T1,2,3 0918-0924 None Sat4j + both TO TO
CDG T1,2,3 0918-0924 None Sat4j + res TO TO

ORY 0508-0514 Full Sat4j + res 30,469,800 (18.24s) 31,128,500 (25.06s)
ORY 0508-0514 Full Sat4j + both 28,762,000 (32.29s) 31,128,500 (55.78s)

Continued on next page
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Term Period Decompo Solver First B (Time (s)) Last B (Time (s))

ORY 0508-0514 Part Sat4j + res 28,516,800 (47.17s) 28,166,800 (60.95s)
ORY 0508-0514 Part Sat4j + both 27,524,300 (94.46s) 28,576,600 (118.02s)
ORY 0508-0514 None Sat4j + both TO TO
ORY 0508-0514 None Sat4j + res TO TO

ORY 0619-0625 Part Sat4j + res 21,762,419 (32.02s) 22,513,890 (41.52s)
ORY 0619-0625 Part Sat4j + both 20,493,563 (53.51s) 22,544,719 (78.09s)
ORY 0619-0625 Full Sat4j + res 18,412,520 (24.05s) 19,254,921 (28.53s)
ORY 0619-0625 Full Sat4j + both 17,708,375 (40.08s) 19,631,810 (250.14s)
ORY 0619-0625 None Sat4j + both TO TO
ORY 0619-0625 None Sat4j + res TO TO

ORY 0626-0702 Part Sat4j + res 22,063,146 (31.05s) 23,981,390 (48.52s)
ORY 0626-0702 Part Sat4j + both 21,903,089 (69.17s) 23,900,583 (93.0s)
ORY 0626-0702 Full Sat4j + both 19,769,761 (49.8s) 20,352,845 (256.61s)
ORY 0626-0702 Full Sat4j + res 19,691,244 (22.68s) 19,853,765 (30.14s)
ORY 0626-0702 None Sat4j + both TO TO
ORY 0626-0702 None Sat4j + res TO TO

ORY 0703-0709 Part Sat4j + res 23,081,408 (36.04s) 23,929,208 (43.05s)
ORY 0703-0709 Part Sat4j + both 21,083,493 (58.44s) 24,345,638 (84.75s)
ORY 0703-0709 Full Sat4j + both 20,059,776 (48.28s) 21,187,511 (233.13s)
ORY 0703-0709 Full Sat4j + res 19,621,684 (22.23s) 20,990,780 (30.21s)
ORY 0703-0709 None Sat4j + both TO TO
ORY 0703-0709 None Sat4j + res TO TO

Table 5.2: Results for overlapping family.

Term Period Decompo Solver Model First B (Time (s)) Last B (Time (s))

CDG T1 0703-0709 Part Sat4j + res minod-count 18,740,000 (10.41s) 19,535,000 (296.1s)
CDG T1 0703-0709 Part Sat4j + res minod 18,415,000 (9.36s) 19,535,000 (294.96s)
CDG T1 0703-0709 None Sat4j + res minod-count 14,620,000 (122.24s) 14,880,000 (297.16s)
CDG T1 0703-0709 None Sat4j + res minod 14,620,000 (175.25s) 14,700,000 (294.23s)

ORY 0508-0514 Full Sat4j + both minod-count 27,881,200 (123.37s) 28,091,500 (215.7s)
ORY 0508-0514 Full Sat4j + res minod 27,536,600 (60.66s) 27,804,400 (103.52s)
ORY 0508-0514 Part Sat4j + res minod-count 26,606,900 (106.46s) 28,609,500 (215.75s)
ORY 0508-0514 Full Sat4j + res minod-count 26,345,000 (53.9s) 27,881,200 (80.76s)
ORY 0508-0514 Full Sat4j + both minod 26,075,500 (85.55s) 27,804,400 (152.13s)
ORY 0508-0514 Part Sat4j + res minod 24,912,400 (106.14s) 27,096,900 (176.53s)
ORY 0508-0514 None Sat4j + res minod TO TO
ORY 0508-0514 None Sat4j + res minod-count TO TO

ORY 0619-0625 Part Sat4j + res minod-count 20,948,424 (98.29s) 21,532,898 (144.3s)
ORY 0619-0625 Part Sat4j + res minod 20,409,552 (88.33s) 21,322,962 (155.64s)
ORY 0619-0625 Full Sat4j + both minod-count 18,205,391 (112.1s) 19,262,126 (167.75s)
ORY 0619-0625 Full Sat4j + res minod-count 17,258,416 (63.49s) 18,976,432 (92.54s)
ORY 0619-0625 Full Sat4j + both minod 16,825,514 (93.25s) 18,789,961 (281.9s)
ORY 0619-0625 Full Sat4j + res minod 16,289,644 (56.38s) 18,166,148 (80.11s)
ORY 0619-0625 None Sat4j + res minod TO TO
ORY 0619-0625 None Sat4j + res minod-count TO TO

ORY 0626-0702 Part Sat4j + res minod 21,877,213 (94.2s) 22,827,742 (162.2s)
ORY 0626-0702 Full Sat4j + res minod 19,733,365 (71.73s) 20,293,372 (100.55s)
ORY 0626-0702 Part Sat4j + res minod-count 19,665,432 (80.39s) 22,407,406 (179.84s)
ORY 0626-0702 Full Sat4j + both minod-count 18,780,875 (126.77s) 20,624,204 (287.38s)
ORY 0626-0702 Full Sat4j + res minod-count 17,272,272 (53.83s) 20,386,156 (86.4s)
ORY 0626-0702 Full Sat4j + both minod 16,438,134 (93.94s) 20,513,757 (176.6s)
ORY 0626-0702 None Sat4j + res minod TO TO
ORY 0626-0702 None Sat4j + res minod-count TO TO

ORY 0703-0709 Part Sat4j + res minod 19,519,772 (90.62s) 22,517,931 (146.76s)
ORY 0703-0709 Part Sat4j + res minod-count 18,903,838 (78.75s) 22,797,314 (130.23s)
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Term Period Decompo Solver Model First B (Time (s)) Last B (Time (s))

ORY 0703-0709 Full Sat4j + res minod-count 17,889,794 (63.98s) 19,728,182 (101.84s)
ORY 0703-0709 Full Sat4j + both minod 17,616,033 (117.82s) 19,804,539 (276.38s)
ORY 0703-0709 Full Sat4j + res minod 17,609,671 (69.68s) 18,820,080 (89.86s)
ORY 0703-0709 Full Sat4j + both minod-count 17,310,521 (103.03s) 19,814,326 (270.62s)
ORY 0703-0709 None Sat4j + res minod TO TO
ORY 0703-0709 None Sat4j + res minod-count TO TO

Table 5.3: Results for overlapping-nbmax family.

Tables 5.1, 5.2 and 5.3 present the first bound and the last bound for each family of instances.
We can remark that the results were less than satisfactory. Nonetheless, an interesting observa-
tion can be made for the overlapping-nbmax family that integrates sum and count constraints:
the solvers managed to identify a bound in the majority of scenarios. The notable exception was
instances without decomposition, which can be primarily attributed to the size of the instance
post-encoding.

5.2.5 Conclusion
This section proposed to use different Boolean encodings for the domain of CSP variables to
define new encodings based on PB constraints. The main advantage of the proposed encodings
is that they allow to exploit the inference power of PB solvers, and especially their ability to
count.

The experimental analysis showed that our encodings, combined with the use of PB solvers,
allow us to solve efficiently problems containing mainly sum and cardinality constraints
[FW22b]. However, this good performance does not generalize to problems containing other
constraints in which native CP solvers remain faster.

From perspectives, we would like to investigate the use of different encodings for the con-
straints we already have, so has to improve the performance of PB solvers when solving CSPs,
especially by favoring the use of pure PB constraints rather than clauses. Another perspective is
to exploit the complementarity between the different solving paradigms for CSPs (either native,
based on SAT, or based on PB) to leverage the best of all approaches.

5.3 Parallel solving
As seen in previous sections, various solvers have been proposed for solving constraint program-
ming problems. Even though these solvers perform well in practice, some problems remain
hard to solve in a reasonable time. This is particularly true for enumeration and optimization
problems, which require to explore the whole search space. To solve such problems, a tempting
approach is to exploit the architecture of modern CPUs (or even cloud computing) to develop
parallel or distributed techniques. For example, in the previous sections, we exploited the struc-
ture of the problem to break down the problem of allocating check-in desk into sub-problems
that are solved in parallel.

In this context, several approaches have been proposed, such as the portfolio, which runs
different solvers in parallel on the same input, or Embarrassingly Parallel Search, which consists
of assigning different parts of the search space to the solvers that are run in parallel [RRM13].
These approaches have been implemented in different solvers, for instance Gecode16, Toulbar217,

16https://github.com/Gecode/gecode
17https://github.com/toulbar2/toulbar2
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Choco [PFL16] or OR-Tools [PF22].
However, these approaches may be hard to implement since they imply the use of complex

synchronization mechanisms and resource management. To simplify the development of such
solvers, different libraries and frameworks have been proposed, such as pFactory [AGL+19],
which provides simplified tools for dealing with parallel approaches, PaInleSS [LFBSK17] for
developing parallel SAT solvers, or Bob++ [GL07, ML13] for constraint programming (built on
top of the solvers Gecode and OR-Tools). They provide the elementary components required
for the development of parallel and distributed solvers, allowing to focus on the development of
new strategies.

In the same spirit, this section introduces a new C++ library designed to be cross-platform
and to support a wide variety of solvers that may be written in different languages (namely,
C, C++, and Java, thanks to JNI). Our framework provides several interfaces defining differ-
ent strategies for task assignment, information sharing, and synchronization between solvers,
among others. These interfaces may be implemented independently to easily try new parallel
approaches, or to implement existing approaches. In this section, we focus on EPS and show
that our framework can be used to implement existing decomposition techniques, as well as new
ones that can be competitive with respect to the state of the art. Information sharing between
solvers is based on the MPI (Message Passing Interface) library, which allows to deal with both
parallel and distributed architectures transparently. The choice of the information to share is
left to independent strategies, allowing to prototype new ideas quickly.

5.3.1 Related works

Among existing parallel approaches, the portfolio is probably the “simplest” one in its design.
This approach aims to simulate the Virtual Best Solver (VBS), i.e., the solver that one would
obtain by selecting among a set of solvers the one that performs best on a specific input. As
proposed in ppfolio [Rou12], it consists of executing different solvers (or different configurations
of the same solver) in parallel on the same input. Typically, the answer given by the portfolio
will be the one of the first solver to find a solution or prove the unsatisfiability of the input.
Many solvers propose an implementation of this technique, such as, for instance, Gecode18,
Sat4j [LBP10], pLingeling [Bie16], Choco [PFL16], dSyrup [ALST17].

Another approach is the Embarassingly Parrallel Search (EPS) [RRM13, MRR16], which
applies a cube-and-conquer technique. The basic idea of this approach is to divide the search
space into different subparts, which are assigned to the different available solvers based on a
so-called guiding-path [ZBH96]. A guiding path is made by choosing a set of variables, and each
solver starts by assigning these variables in different ways. The chosen set of variables and their
corresponding assignment is generally referred to as a cube. Most of the time, there are more
cubes than available solvers (the authors of EPS advise to generate around 30 cubes per solver).
The cubes are thus put in a queue until a solver becomes available again and eventually takes
one of them. Whenever a solver finds a solution, then the formula is satisfiable. A single solver
cannot in general prove the unsatisfiabiility of the input unless it finds a conflict that is not due
to the guiding path.

The main problem with space splitting is that some parts of the search space maybe easy,
while others may be hard, and the solvers exploring easy parts may become idle. To avoid this,
the work stealing approach has been proposed, as in Gecode for instance. A running solver splits
its current search space, and idle solvers may then take some of the obtained subparts and try

18https://github.com/Gecode/gecode
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to solve them. A running solver can also split its search space at some point (e.g. if it detects
that it is exploring a hard part) and enqueue it so as not to be interrupted later on. To avoid
such issues, another option is to use a hybrid approach, which consists in starting the search by
space splitting and then switching to portfolio, either when a hard subpart of the search space
is reached [Blo05] or when load balancing becomes an issue [MML10].

To improve the performance of these approaches, one could also share information between
the running solvers. In the case of SAT solving, learned constraints may, for instance, be shared
between the different solvers. This requires, in particular, to select which constraints to share,
often by considering their size: for instance, in the first version, pLingeling [Bie16], only con-
straints with 1 variable (a.k.a., unit clauses) were shared. Another key aspect of constraint
sharing is to decide when to share them. [AS14] proposes to perform a lazy constraint exchange
while [NI20] delays this exchange and estimates the time needed for this exchange to ensure
reproducibility. In a more general and higher level, information exchange can be done on opti-
mization problems by sharing the intermediate solutions and bounds obtained during the search
to all of the solvers. This prevents the solvers from exploring parts of the search space that do
not contain the optimal solution (see, e.g., [Der16, Section 3.1]).

In the rest of this section, we focus on the implementation of EPS in our framework and
new space-splitting strategies we designed, as doing so allows the exploitation of highly efficient
state-of-the-art solvers without being too intrusive in their implementation.

5.3.2 Architecture of our Framework

An important building block of our framework is the Universe solver interface, that we devel-
oped as an independent tool. It provides an object-oriented interface for any kind of solvers
(SAT, PB, or CP) allowing to adapt any existing solvers to use it on our framework (its design
also allows to exploit implementing solvers in a wide variety of constraint solving-based appli-
cations). The interfaces are available in both C++ and Java (using the Java Native Interface),
allowing to adapt almost all existing state-of-the-art solvers without relying on inter-process
communication. A (simplified) class diagram of this library is given in Figure 5.5, showing that
the main interface, named IUniverseSolver may be used to load an existing problem from its
file, and to solve it with or without hypotheses on the variable assignments (named assumptions
in the diagram). The other interfaces specialize this interface to allow feeding the solver with
constraints programmatically.

In our parallel framework PANORAMYX, an abstract factory is used to create instances of
IUniverseSolver, which can then be executed in parallel. Figure 5.7 shows a sequence diagram
describing such an execution of our framework, independently of the parallel paradigm that
is being executed. One can observe that the main solver can invoke methods on a remote
solver, which is a proxy hiding the network communication (in our case, based on MPI) with
an actual worker solver, which may be different processes executed either on the same machine
or on a distant machine (in the case of distributed solving). All solving tasks are executed
asynchronously: whenever a solver either finds a solution of its assigned problem or proves its
unsatisfiability, it sends the answer to the main solver, which decides what is the next action to
perform (either terminate or assign new tasks to the running solvers).

The main solver is the one that actually implements the parallel paradigm to be executed,
such as portfolio or EPS. To make easier its implementation, our framework provides a template-
method based AbstractParallelSolver (which is also an IUniverseSolver), whose methods
are given in Figure 5.6. These methods allow to react to the various solving events that may occur
asynchronously, as the various paradigms do not handle them in the same way (for instance, if
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Figure 5.5: Some interfaces from the Universe solver interface (only relevant methods are
shown). BigInteger is an alias for either long long or mpz_class from gmp, depending on
compile options.
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a solver proves the unsatisfiability of its problem in a portfolio, then the input problem itself is
unsatisfiable, while it is not necessarily the case for EPS).

5.3.3 EPS approaches

This section details the implementation of EPS in our framework and how to implement different
space-splitting strategies for this approach.

5.3.3.1 Our Implementation

When the EPS approach is used in our framework, two threads are executed in parallel in the
main process. The first one runs Algorithm 4. It is mainly a loop (l. 1) that iterates over all possi-
ble cubes generated by the generateCubes function (see the following subsection), which assigns
the cubes to the available solvers. The availableSolver function (l. 2) is blocking: it waits
until a solver has no assigned task before returning it. The solving task is run asynchronously
(l. 3): the answer returned by the solver is received and handled in the second thread.

Algorithm 4: EPS solving loop.

1 foreach cube ∈ generateCubes() do
2 solver← availableSolver()
3 async solver.solve(cube)
4 end

This thread runs Algorithm 5. This loop receives the solver answers as messages that are
received one after the others (l. 3). The receive function blocks until a message arrives from a
particular solver. If this message is SATISFIABLE (l. 4), then a solution to the problem has been
found, and the input problem is satisfiable, thus all solvers may be interrupted (l. 5-6). If the
message is UNSATISFIABLE (l. 7), then the problem assigned to the solver (given by its cube)
is unsatisfiable, which does not necessarily mean that the input problem is unsatisfiable, so the
solver is marked as available again, allowing new problems to be assigned to it (l. 9).” The input
problem is unsatisfiable only if all generated cubes lead to an UNSATISFIABLE answer, which

Figure 5.6: The protected methods to implement when developing a new parallel paradigm.
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Figure 5.7: Sequence diagram for an execution of our parallel framework.
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is why the loop terminates at that point (l. 2). The nbUnsat allows thus to determine the final
answer to return (l. 12-15).

Algorithm 5: EPS message handle loop.

1 nbUnsat← 0
2 while nbUnsat < nbCubes do
3 message, solver← receive()
4 if message is SATISFIABLE then
5 interrupt()
6 return SATISFIABLE
7 else if message is UNSATISFIABLE then
8 nbUnsat← nbUnsat + 1
9 markAsAvailable(solver)

10 end
11 end
12 if nbUnsat = nbCubes then
13 return UNSATISFIABLE
14 end
15 return SATISFIABLE

5.3.3.2 Generating Cubes

In order to allow an easy implementation of various space-splitting strategies for the EPS ap-
proach provided in our framework, we define an interface for generating cubes. Its class di-
agram is given in Figure 5.8. The strategy itself is defined as ICubeGenerator, and uses an
IConsistencyChecker to check (or not) the arc-consistency of the cube. More specifically, the
check may be performed either when the cube is entirely generated or each time a variable as-
signment is assigned to it so as to avoid generating useless cubes. The cubes are generated in a
Stream, which is basically a lazy iterator: when possible, the next cube is only computed when
asked to, instead of generating all cubes before starting to assign them to the solvers. Doing
so allows to be both time and memory efficient during cube generation. We note that it is also
possible to adapt vectors and queues as Stream instances when lazy generation is not applicable.

A first possible option we implemented to generate cubes is a lexicographic approach: vari-
ables are added to the cube in lexicographic order, and the values to which they are assigned
are tried in ascending order from their domains. To avoid generating too many cubes, we follow
the recommendations of the authors of EPS, by generating around 30 cubes per worker. This
number may be estimated by iterating over the variable and multiplying the size of their do-
mains until this limit is reached: the number of iterated variables gives the size of the cubes
to generate. Despite being a naive approach, the lexicographic approach has the advantage of
allowing the lazy generation mentioned above, as determining the next cube from the current
one is straightforward.

This is not the case with the cartesian product iterative refinement (CPIR) [Der16, Section
3.2.1], which requires the cubes to be generated before their assignment to the solvers. This
approach, that we also implemented, is given in Algorithm 6. First, an empty cube is put in
a priority queue (l. 1). The priority of this queue is given by the size of the cartesian product
of the domain of the variables that are not assigned by the cube (problems with bigger size are
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Figure 5.8: The interfaces defining the cube generation strategies.

taken first). Then, while the queue does not reach the expected size (as before, 30 cubes per
worker) (l. 2), a cube is taken from the queue (l. 3), and an unassigned variable is selected from
the problem to extend this cube (l. 4). The extended cubes are obtained by trying all possible
assignments for this variable in different cubes, that are added to the queue (l. 5-6). Each time
a cube is extended, constraint propagation may be applied on the problem to both check the
arc-consistency of the generated cube and reduce the domain of the unassigned variables.

Algorithm 6: CPIR cube generation.
input : A problem P.
output: A Stream of cubes.

1 queue← {{}}
2 while |queue| < cubeLimit do
3 cube← queue.removeFirst()
4 var← unassignedVariable(P, cube)
5 foreach val ∈ dom(var) do
6 queue.add(cube ∪ {var = val})
7 end
8 end
9 return Stream(queue)

5.3.3.3 A New Cube Generation Strategy

In order to show the versatility of our framework, we also implemented a new cube generation
strategy based on the partitioning of the dual hypergraph of the problem to solve. This hyper-
graph has as hypervertices the constraints of the problem, while its hyperedges correspond to the
variables of the problem: each hyperedge joins the constraints with the corresponding variable
in their scope. For instance, suppose that we consider a problem composed of the variables x, y,
z, t, u, and v and the constraints c1, c2, c3 and c4 such that scp(c1) = {y, z}, scp(c2) = {z, u},
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Figure 5.9: Example of a dual hypergraph.

scp(c3) = {y, t, v}, and scp(c4) = {x, y, v}, then the dual hypergraph associated to that problem
is the one given in Figure 5.9. Partitioning this hypergraph (for instance, into 2 subhypergraphs)
is to identify which hyperedges (i.e., variables) to remove so that the obtained hypergraphs are
composed of several (in our example, 2) unconnected components. The set of hyperedges to
remove is called the cutset If we apply such a partitioning to the example problem given above,
we can for instance see that a possible cutset is {y}, as removing y gives on the one hand
the hypergraph composed of the hypervertices {c1, c2}, and on the other hand, the hypergraph
composed of the hypervertices {c3, c4}, which are not connected by any hyperedge. Finding a
good partitioning often means to find a balanced one, with approximately the same number of
constraints in each subhypergraph. This problem is NP-hard, so we propose to use the open-
source KaHyPar library [SHG+22], which provides a good approximation algorithm for finding
our cutset of interest. This cutset is used in the cube generation strategy to select the variable
on which to create the cubes. Indeed, to remove a hyperedge, we can assign the corresponding
variable, as it becomes constant afterwards, which is exactly what a cube does. As there may
be many variables in the cutset, though, we restrict the number of variables to put in the cube
using the same approach as in the lexicographic strategy described in the previous section.

5.3.4 Experiments and Results

To evaluate our approach, we used all the instances from the CSP track of the XCSP22 com-
petitition19 noted I11:

ICSP
XCSP22 (I11)

We have run different state-the-art solvers, namely Choco [PFL16] in its parallel mode (which
implements a portfolio), Toulbar220, and RBO21, which implements the approach presented in
[JKT16]. For our implementation, we run the EPS approach using the different cube generation
strategies (namely, lexico, cpir, and kahypar, referring respectively to the lexicographic cube
generation, the cartesian product iterative refinement and to the hypergraph decomposition
based on kahypar) using two solvers, namely ACE [Lec23] and Sat4j [LBP10]. We note, however
that Sat4j does not support the operations required for the CPIR approach to reduce the size
of the domains of the variables (as they are encoded as Boolean variables), so we did not run it
for the cpir strategies. In all cases, we both run the approach by checking the arc-consistency

19https://www.cril.univ-artois.fr/XCSP22/
20https://github.com/toulbar2/toulbar2
21https://github.com/Terrioux/BTD-RBO
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either each time it is extended (partial) or only when it is complete (final). The set of solvers
Ψ7 is defined as follows:Scg

∣∣∣∣∣∣
S ∈ {ACE, Sat4j}
g ∈ {lexico, cpir, kahypar}
c ∈ {partial, final}

 ∪ {btd, toulbar2, choco} (Ψ7)

Experiments were run on a cluster of computers equipped with 80-core Intel Xeon Gold 6248
(2.5 Ghz) and 768 GB of RAM. The time limit was set to 1200 seconds and the memory limit to
64 GB. All approaches were given 20 cores (in our case, it means that there were 1 main solver
and 19 worker solvers).

I11

Ψ7

20 minutes

64 GB

Linux CentOS Stream 8.3

80-core Intel Xeon Gold 6248 (2.5 Ghz)

768 GB

Summary of the experiments 12 (EPS - , )

Figure 5.10 gives an overview of the results. We can see that the solver Choco is really fast
in its portfolio mode, which is not really comparable to our approach (it does not has the cost
of generating cubes, and it is necessarily at least as good as the sequential version of the solver
it runs internally). An interesting observation is that our new approach for generating cubes
(based on hypergraph decomposition with KaHyPar) is faster than the lexicographic and CPIR
approaches on both Sat4j and ACE, and allows the solver to solve more instances. Additionally,
we run the sequential version of Choco and ACE to identify hard instances, which we define as
those that are solved in more than 600 seconds or not solved at all by both sequential solvers.
The results are given in Table 5.4 and show that the parallel approaches improve the runtime
or even solve inputs that were not solved before.

5.3.5 Conclusion
The third section introduced a new framework for developing parallel and distributed constraint
solvers. Thanks to a set of object-oriented solver interfaces, it allows to seamlessly integrate
various kinds of state-of-the-art SAT, PB, or CP solvers, as well as defining strategies for running
them in parallel. In particular, this section focused on the development of EPS-based approaches,
and showed that new techniques could easily be developed in our framework, even beating
the state-of-the-art. As perspectives, we would like to extend our framework to design other
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Figure 5.10: Cactus plot of the executed solvers For each solver (given by its line), we can easily
read the number of inputs on which it has been run until completion within a certain time limit,
given in seconds of the wall-clock time (and not CPU time). In particular, the more a solver is
to the right, the faster it is in general.

input choco-sequential choco speed-up choco ace-sequential ace-kahypar-partial speed-up ace
CarSequencing_table_85_02_c22 TIMEOUT 688.990000 1.741680 TIMEOUT 99.763000 12.028508
CarSequencing_table_90_01_c22 TIMEOUT TIMEOUT - TIMEOUT 710.158000 1.689765
DiamondFree_70_c22 TIMEOUT 302.177000 3.971182 TIMEOUT TIMEOUT -
Eternity_08_07_c22 TIMEOUT TIMEOUT - TIMEOUT 518.337000 2.315096
Eternity_09_07_c22 TIMEOUT TIMEOUT - 717.764000 TIMEOUT 0.598137
Hadamard_29_c22 TIMEOUT 915.134000 1.311283 TIMEOUT 82.159000 14.605825
Hidato_table_13_13_None_c22 TIMEOUT 5.861270 204.733786 653.617000 TIMEOUT 0.544681
Hidato_table_14_14_None_c22 TIMEOUT 9.106500 131.774008 TIMEOUT TIMEOUT -
Hidato_table_15_15_None_c22 TIMEOUT 12.814200 93.646111 TIMEOUT TIMEOUT -
NumberPartitioning_260_c22 TIMEOUT 60.539900 19.821638 748.510000 TIMEOUT 0.623758
Pb_BeauxArts_K77_c22 TIMEOUT TIMEOUT - TIMEOUT 246.689000 4.864424
QuasiGroup_base_v6_16_c22 TIMEOUT 92.163500 13.020339 TIMEOUT TIMEOUT -
RoomMate_sr0300_c22 TIMEOUT TIMEOUT - 747.281000 TIMEOUT 0.622734
SportsScheduling_dummy_16_c22 TIMEOUT TIMEOUT - 801.936000 315.026000 2.545618

Table 5.4: Detailed results on hard instances for Choco and the best parallel version of ACE,
compared to their sequential versions. The speed-up shows how much faster (or slower) the
parallel version of the solver is compared to its sequential version. Values in bold are the highest
on the instance. Instances that are solved by neither of the approaches are omitted.
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“general” parallel approaches (in addition to portfolio and EPS), such as ones exploiting the
decomposition of a problem into independent subproblems. We would also like our framework
to implement more intrusive techniques, such as those based on work stealing or those allowed
to share information between the running solvers.
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5.4 Conclusion
In this comprehensive exploration spanning three distinct sections, we navigated through various
techniques and methodologies designed to enhance the efficiency of constraint solvers. Initially,
we delved into the ABD technique, a method that proactively tweaks objective constraints,
demonstrating potential performance enhancements, particularly when integrated with the PB
Sat4j solver.

The subsequent section proposed a novel approach using Boolean encodings for CSP variable
domains, highlighting the capabilities of PB solvers, especially in inference and counting. How-
ever, its efficacy was primarily notable for certain types of constraints, leaving room for further
refinement and leveraging diverse encoding paradigms.

The concluding section introduces a new framework for parallel and distributed constraint
solver development. By integrating a multitude of state-of-the-art solvers, it showcased the
flexibility and power of the framework, suggesting its adaptability for various parallel approaches
and integration of more sophisticated techniques.
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Predicting flow passengers and flight
delays
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Chapter 6

Predicting the Number of Passengers
with Reduced Mobility on Flights
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6.1 Introduction
In an age of increasing globalization and unprecedented connectivity, air transport has become
essential to reducing geographical distances and fostering international interaction.

The aviation sector is pivotal in molding the contemporary world, offering millions the op-
portunity to discover new places, engage in business, reconnect with family, and immerse in
diverse cultures. However, this remarkable mobility that aviation affords us also brings to light
a crucial challenge — ensuring that air travel is accessible and inclusive for all individuals,
regardless of their physical abilities.

The cornerstone of aviation inclusivity is to provide assistance and accommodations to pas-
sengers with reduced mobility (PRMs). These individuals may include seniors, people with
physical disabilities, temporary mobility impairments, and others requiring specialized support
during their journey through airports and aboard aircraft. As the demand for air travel con-
tinues to recover towards pre-COVID-19 trends, the aviation industry faces the task of meeting
the needs of PRMs and ensuring that these passengers enjoy the same level of safety, comfort,
and convenience as their able-bodied counterparts.

In Paris Airports, people with reduced mobility are managed by service providers. Paris
Airports must therefore, determine the number of PRMs and communicate this to the service
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providers, who will allocate the correct number of people to manage them. A prediction error
can result in under- or over-staffing, which, in turn, can cause over-invoicing by service providers.

Therefore, our task will be to study the data available to us to find a technical solution to
the need to predict the number of PRMs on flights departing from Paris Charles de Gaulle or
Orly airports. The aim is to find the total number of PRMs for the day at each airport. To do
this, we will aggregate the predictions made on each flight individually.

Like any application and any problem, there may be several machine learning techniques
(here, regression techniques) that can be used. It is, therefore, necessary to carry out a com-
parative study to evaluate them and decide which one to choose, taking into account certain
considerations (such as the technologies to be used, scalability, operational constraints, security,
robustness, explainability, etc.). In our case, Paris Airports which is the end-user of our pro-
posal has already positioned itself on Microsoft technologies (in particular through the ML.net
framework) and wants as an ensemble of regression trees (called in Microsoft jargon FastTrees)
and already deployed by Paris-CDG. This is mainly justified by the proven performance of this
technique at Paris-CDG, its speed of prediction and the possibility of training and updating
the model very quickly. So, as we will see in the results section, we have focused our tests on
technologies easily deployable in ADP infrastructures (e.g., FastTree from the library ML.net).

The rest of the chapter is organized as follows: in section 6.2, we explore the dataset from
Paris Airports. Section 6.3 presents our model’s attributes and configuration. Section 6.5
investigates the correlations between the various attributes (features) and the target variable.
Before conclusion, we continue with some results of our proposal model (Section 6.6).

6.2 Exploratory data analysis
Our study utilized data from CDG and ORLY between August 8, 2022, and September 15,
2023. At Charles de Gaulle Airport (CDG), there were 215, 478 arrival flights and 219, 607
departing flights during this period. Regarding passenger counts at CDG, the departing flights
carried a total of 36, 514, 206 passengers, while the arrival flights saw 34, 877, 654 passengers.
This translates to a daily average of 177, 591 passengers, of which about 2, 685 were passengers
with reduced mobility.

Concerning Orly Airport, the airport recorded 112, 272 arrival flights and 114, 593 departing
flights. On any given day, Orly managed an average of 89, 269 passengers. Notably, among these
daily figures, approximately 840 passengers were individuals with disabilities.

Figure. 6.1 the evolution of total passenger count at CDG over the period studied. Similarly,
Figure 6.2 shows the evolution of disabled passengers. Figure 6.3 highlights the fact that there
are far more PRMs during the IATA summer season than the winter season22. Finally, Figure 6.4
shows the number of flights with and without PRM. Figures 6.5 to 6.8 present similar information
but for Orly airport.

22IATA Summer begins on the last Sunday of March and ends on the last Saturday of October. IATA Winter
begins on the last Sunday of October and ends on the last Saturday of March.
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Figure 6.1: Evolution of the number of passengers during the period at CDG.
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Figure 6.2: Evolution of the PRM number during the period at CDG.
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Figure 6.3: Number of PRM by IATA season at CDG.
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Figure 6.4: Number of flights with and without PRM at CDG.
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Figure 6.5: Evolution of the number of passengers during the period at Orly Airport.
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Figure 6.6: Evolution of the PRM number during the period at Orly Airport.
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Figure 6.7: Number of PRM by IATA season at Orly Airport.
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Figure 6.8: Number of flights with and without PRM at Orly Airport.
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6.3 Model definition
In this section, we outline and underscore the key information available in the Paris operational
information system, which holds significance for predicting the count of persons with limited
mobility.

6.3.1 Basic flight features (BFF)
These are the basic characteristics of a flight (these features are listed in Table. 6.1). For
example, the name of the airline operating the flight, the aircraft type, the IATA code of the
flight’s destination, and the IATA season (Summer or Winter).

Feature Description Type Example
ArrDep flight direction (arrival or departure) Categorical A or D
Airline airline unique company code Categorical AF
AircraftType aircraft type code Categorical 77W
Destination IATA code of the destination airport Categorical JFK
Season The IATA Season Categorical W
Week A week index calculated from a reference

date.
Numeric 1000

Day Day number in the week (1-7) Numeric 1
SOBT The Scheduled off-block time in minutes since

midnight
Timestamp 360

Service Type Transport category Categorical J

Table 6.1: Basic flight features (BFF)

6.3.2 PRM count features
Before the departure or arrival of a flight, passengers with disabilities confirm their care. We
use the information known 36 and 24 hours in advance;

Feature Description Type Example
PrmConfirmed36h Number of PRM confirmed 36h before the

flight
Numerical 2

PrmConfirmed24h Number of PRM confirmed 24h before the
flight

Numerical 2

Table 6.2: PRM count features
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6.4 Model configuration
As explained above, we have used a technology that can be easily deployed in the Paris Airports
system based on FastTree from the C# ML.net library. The objective was: 1. To evaluate if
our forecasts are more accurate than those from providers or the PRM manager tool. 2. To
promptly implement this solution in a production environment if the results are favorable.

We have found a good configuration for this model based on three main model parame-
ters: the number of trees, leaves, and the learning rate. These hyperparameters are noted as
#Tree/#Leaves/LearningRate and are 75/700/0.2.

6.5 Correlation Analysis
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Figure 6.9: Results of statistical correlation measure for CDG.

Figure 6.9 and 6.10 show two heatmaps of the Pearson correlation score for CDG Airport
and Orly Airport, respectively. These heatmaps showcase the correlation of various attributes,
two attributes, namely prmConfirmed36h and prmConfirmed24h, stand out with a notably high
correlation score with the target variable prmConfirmed. This elevated correlation is logical,
given that both attributes represent the number of PRMs that have confirmed their care within
respective time frames of 36 and 24 hours. On the other hand, attributes related to flight
specifics exhibit a relatively low Pearson correlation score, underscoring a minimal correlation
with the prmConfirmed target variable.

6.6 Results
This section delves into a comparative analysis of our FastTree model against other methods
from ADP. The first method we have considered is to use the values known 36 (noted PRM
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Figure 6.10: Results of statistical correlation measure for Orly

confirmed 36h) or 24 (noted PRM confirmed 24h) hours before the flight as a prediction. The
second method, in contrast, leverages the predicted value generated by the PRM Manager tool,
again with a time frame of 36 (noted PRM manager 36h) or 24 (noted PRM manager 24h)
hours before the flight. As the PRM manager is a proprietary tool, we have no details on how it
calculates the value it produces. We compare our model over 28 days from August 18th, 2023,
to September 15th, 2023.

Figure 6.11 (resp. 6.12) shows the results for each model for CDG Airport (resp. Orly
Airport). We can see that keeping the values of confirmed PRM, even 24 hours in advance,
is not viable for obtaining a good prediction. We can also observe the similarity between the
predicted PRM curve and the actual curve, demonstrating the quality of our prediction and the
value of using a machine-learning model for this task. We also outperform the predictions made
by the proprietary tool.

These results are confirmed in Tables 6.3 and 6.4, which present the error (see. Definition 34)
between the real value and each model. Although our approach (column. ϵŷ) tends to over-
approximate, the error is much smaller than other models.
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Figure 6.11: Comparison between actual presentation, estimated presentations, and presenta-
tions curves known in advance for CDG Airport.
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6.6. Results

date ϵŷ ϵPMR36 ϵPMR24 ϵCONF36 ϵCONF24

2023-08-19 -52.4 699.0 593.0 988.0 918.0
2023-08-20 -194.7 527.0 426.0 911.0 840.0
2023-08-21 -129.0 594.0 505.0 944.0 885.0
2023-08-22 -72.2 720.0 584.0 1077.0 982.0
2023-08-23 10.7 657.0 524.0 1042.0 955.0
2023-08-24 -143.2 542.0 419.0 1058.0 977.0
2023-08-25 -112.3 540.0 413.0 1121.0 1050.0
2023-08-26 22.5 693.0 586.0 1046.0 982.0
2023-08-27 -101.1 489.0 416.0 853.0 803.0
2023-08-28 -95.8 553.0 449.0 983.0 919.0
2023-08-29 -121.2 644.0 507.0 1074.0 987.0
2023-08-30 0.5 705.0 567.0 1151.0 1061.0
2023-08-31 -215.7 500.0 394.0 983.0 913.0
2023-09-01 -56.0 640.0 536.0 1035.0 973.0
2023-09-02 -80.8 594.0 465.0 988.0 899.0
2023-09-03 62.3 575.0 473.0 969.0 913.0
2023-09-04 97.0 688.0 602.0 1082.0 1014.0
2023-09-05 179.8 758.0 637.0 1241.0 1158.0
2023-09-06 189.9 797.0 638.0 1303.0 1186.0
2023-09-07 51.8 730.0 611.0 1216.0 1123.0
2023-09-08 -68.3 666.0 555.0 1126.0 1070.0
2023-09-09 -52.9 772.0 647.0 1203.0 1131.0
2023-09-10 47.6 799.0 662.0 1269.0 1183.0
2023-09-11 -57.2 622.0 466.0 1254.0 1163.0
2023-09-12 23.4 719.0 512.0 1499.0 1383.0
2023-09-13 126.3 934.0 694.0 1506.0 1370.0
2023-09-14 -117.1 828.0 637.0 1348.0 1233.0
2023-09-15 -220.0 622.0 468.0 1194.0 1101.0

Table 6.3: Daily error between actual presentation, estimated presentations, and presentations
known in advance for CDG.
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date ϵŷ ϵPMR36 ϵPMR24 ϵCONF36 ϵCONF24

2023-08-19 -60.1 219.0 206.0 331.0 320.0
2023-08-20 -39.5 253.0 243.0 370.0 362.0
2023-08-21 -40.8 218.0 192.0 327.0 307.0
2023-08-22 -74.1 224.0 195.0 344.0 323.0
2023-08-23 -46.9 240.0 218.0 335.0 321.0
2023-08-24 -63.8 196.0 178.0 326.0 313.0
2023-08-25 -72.5 237.0 215.0 339.0 323.0
2023-08-26 0.8 232.0 213.0 330.0 317.0
2023-08-27 -39.9 222.0 208.0 314.0 303.0
2023-08-28 -32.9 241.0 223.0 351.0 339.0
2023-08-29 -47.4 271.0 248.0 359.0 340.0
2023-08-30 -12.2 242.0 223.0 325.0 313.0
2023-08-31 -5.2 270.0 251.0 359.0 345.0
2023-09-01 -76.6 224.0 210.0 356.0 345.0
2023-09-02 50.3 317.0 290.0 397.0 380.0
2023-09-03 -19.8 263.0 250.0 359.0 348.0
2023-09-04 62.0 306.0 293.0 424.0 413.0
2023-09-05 4.1 249.0 235.0 356.0 345.0
2023-09-06 42.1 318.0 291.0 442.0 423.0
2023-09-07 24.3 295.0 265.0 471.0 452.0
2023-09-08 0.2 482.0 289.0 586.0 430.0
2023-09-09 -30.0 321.0 307.0 457.0 449.0
2023-09-10 -2.8 299.0 269.0 427.0 406.0
2023-09-11 30.1 305.0 286.0 450.0 435.0
2023-09-12 -6.1 261.0 234.0 432.0 406.0
2023-09-13 7.1 325.0 294.0 467.0 443.0
2023-09-14 -45.5 299.0 276.0 421.0 401.0
2023-09-15 -47.9 304.0 286.0 450.0 433.0

Table 6.4: Daily error between actual presentation, estimated presentations, and presentations
known in advance for Orly.
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6.7 Conclusion
Throughout this chapter, the significance of accurately predicting the number of passengers with
reduced mobility in airports was underscored, primarily emphasizing the operational efficiencies
and the overarching goal of fostering inclusivity in the aviation industry. With their bustling
nature and vast numbers of passengers, Paris Airports face the critical task of ensuring seamless
travel for PRM. Hence, the main objective was to predict these numbers with greater accuracy.

By examining the historical data and leveraging machine learning techniques, particularly
the FastTree model, we endeavored to optimize these predictions. Our exploratory data analysis
revealed key trends and patterns that informed our modeling approach. Additionally, the fea-
ture engineering process, distinguishing between Basic flight features and PRM count features,
enabled a comprehensive understanding of the factors impacting PRM numbers.

Our comparative analysis against existing methods underscored the value proposition of
our machine-learning model. Our model surpassed the predictions made by existing tools and
methods. These findings highlight the potential of harnessing advanced technologies and machine
learning for airport operational enhancements.

159



Chapter 6. Predicting the Number of Passengers with Reduced Mobility on Flights

160



Chapter 7

Predicting and explaining off-block
delays

Contents
7.1 Milestones before off-block . . . . . . . . . . . . . . . . . . . . . . . 162
7.2 Exploratory Data Analysis - Off-block delays at CDG . . . . . . 163
7.3 Problem statement and objectives . . . . . . . . . . . . . . . . . . 165

7.3.1 Real-time off-block delay prediction . . . . . . . . . . . . . . . . . . 165
7.3.2 Off-block delay forecast . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.4 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.4.1 Basic Flight Features (BFF) . . . . . . . . . . . . . . . . . . . . . . 165
7.4.2 Off-block Milestone Features (OMF) . . . . . . . . . . . . . . . . . 166
7.4.3 Previous and Current Flights Delay Features (PCFDF) . . . . . . . 167
7.4.4 Weather condition features (WCF) . . . . . . . . . . . . . . . . . . 167
7.4.5 Passenger Flow Features (PFF) . . . . . . . . . . . . . . . . . . . . 168

7.5 Data and feature extraction, preprocessing, and selection . . . . 168
7.5.1 Data extraction and preprocessing . . . . . . . . . . . . . . . . . . . 168
7.5.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.6 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.6.1 Gradient-boosted decision trees . . . . . . . . . . . . . . . . . . . . 171
7.6.2 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . 172
7.6.3 Baseline model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.7 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.7.1 Forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.7.2 Real-time predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.8 Explaining off-block delay predictions . . . . . . . . . . . . . . . . 181
7.9 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

161



Chapter 7. Predicting and explaining off-block delays

At Paris-CDG, there are more than one flight departure per minute. There are about 498, 000
aircraft movements per year, corresponding to about 1, 300 movements per day23. On average,
there are 145 passengers per flight. At Paris-CDG, resources are planned using solutions powered
by constraint programming solvers (see Chapters 3 and 4.2.3). Among the critical resources are
the stands assigned to the flights. When a stand is released late, this can lead to complex
scheduling changes and cascading delays. It is, therefore, essential to anticipate and predict
these delays as accurately as possible, explain them, and propose actions to limit them. Recall
that a rotation is a set composed of arrival and departure flights. This set generally consists
of two flights, but there may be only one, in which case the flight begins a new rotation. The
rotation period is the time between the arrival of an aircraft (landing) and its departure (takeoff).
A flight has a scheduled departure time called Scheduled Off-Block Time, where it is supposed
to leave its parking area. The moment when the flight leaves its parking position is called Actual
Off-Block Time. The delay is the period between AOBT and SOBT.

7.1 Milestones before off-block

EIBT Period

TOBT Period

0 5 10 15 20 25 30 35 40 45 50 55 60

-2h30 SIBT

Arrival
delay

AIBT SOBT

Departure delay

TSAT AOBT CTOT +2h30

Figure 7.1: Milestones of a flight at Paris-CDG airport

We present here the main milestones preceding the pushback of an aircraft. These milestone
stands are presented in Figure 7.1. Before the flight arrives at the airport, the flight estimates its
arrival time at the block: Estimated In-Block Time. The flight refines its estimation during its
journey, which is why we obtain not one but several EIBT materialized by the blue zone on the
Figure 7.1. The Actual In-Block Time is the right time when the flight arrives at its stand. We
call arrival delay the difference between AIBT and SIBT. The boarding starts between 1 hour
and 30 minutes before SOBT. During the turn-around period (or rotation), the airline sends
various estimated times that the aircraft is ready (Target Off-Block Time) to the management
system (materialized by the red zone in Figure 7.1). For heavy traffic in the sky or congestion
on the runway, air traffic control can “slot” a flight, i.e., force its takeoff between a calculated
time called Calculated Take-Off Time and CTOT plus 15 minutes. If the aircraft fails to take off
during this period, it can be slotted again. The last milestone is the Target Start-Up Approval
Time is the time provided by air control, taking into account TOBT, CTOT, and/or the traffic
situation that an aircraft can expect startup/pushback approval.

23https://www.parisaeroport.fr/docs/default-source/groupe-fichiers/finance/relations-
investisseurs/information-financi%C3%A8re/rapports-annuels/report-on-activity-and-sustainable-
development-2019.pdf#page=38
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7.2. Exploratory Data Analysis - Off-block delays at CDG

7.2 Exploratory Data Analysis - Off-block delays at CDG
Punctuality is a sensitive issue in large airports and hubs for passenger experience and controlling
costs at the airport level. Paris-CDG is ranked24 in 2018 in 10th place in terms of punctuality.
Around half of the flights arrive on time, but only 20% take off on time.

A study of delays at Paris-CDG has highlighted different causes (e.g., extreme weather
conditions, congestion, breakdowns, incidents at the airport, passenger processes, etc.) of these
delays at different phases (parking/pushback, taxi-ing, etc.). Figure 7.2 gives an overview of
off-block delays over the year considered in our study (from August 12th 2021 to September
21st, 2022). It should be noted that during this period, some terminals were closed and are
still closed, while others reopened. Over this period, the proportion of flights with off-block
delays is 82% (Figure 7.2a). Figure 7.2b shows the cumulated delays (in minutes) for each day
of the considered period. We can observe an increase during summer 2022, corresponding to
a resumption of traffic and some terminals’ reopening. Figure 7.2c shows the delay mean for
each terminal. Terminal 2E has an average delay of 37% above the airport average. Figure 7.2d
shows the number of delayed flights per terminal.
We can observe that the two terminals corresponding to Air France (2E and 2F) have the most
delayed flights with 30% and 35% of delayed flights, respectively. Finally, Figure 7.2h depicts
the number of delayed flights per day period, ranging from p1 (6 am - 8 am) to p6 (8 pm - 11
pm). We can observe that the morning periods, particularly p2 (9 am - 11 am) and p3 (11 am -
2 pm), accumulate most of the delayed flights with 25% and 23% respectively. Since most delays
occur in the morning and there is a cascading delay effect, it is crucial to predict and manage
these delays in these time slots accurately.

Wake Category % Flights Average delay
light 0.124481 14.189239
medium 0.630896 18.203765
heavy 0.244623 27.333156

Table 7.1: Average delay per wake category.

Day period % Flights Average delay
p1 0.118049 11.882946
p2 0.237615 22.400423
p3 0.216767 23.048363
p4 0.171058 22.116601
p5 0.156253 17.804391
p6 0.100258 16.462603

Table 7.2: Average delay per day period.

Table 7.1 presents some information about wake categories. For each type, we had the
percentage of flights and the average delay for this category. Table 7.2 presents the same
information for the day periods.

24According to OAG Flightview.

163



Chapter 7. Predicting and explaining off-block delays

False True
Is delayed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 F

lig
ht

s

      0.18

      0.82

(a) Proportion of on-time flights vs. Off-
Block delayed flights.

2021-09
2021-11

2022-01
2022-03

2022-05
2022-07

2022-09

Date

5000

10000

15000

20000

25000

30000

35000

40000

Su
m

 o
f d

el
ay

(b) Cumulative delay for each day of the
considered period.

C2A C2B C2C C2D C2E C2F C2G CT3
Terminal

16

18

20

22

24

26

M
ea

n 
of

 D
el

ay
 (m

in
ut

es
)

Mean of delay
Mean of delay CDG

(c) Average delay per terminal.

C2F C2B C2E C2A C2G CT3 C2C C2D
Terminal

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

%
 F

lig
ht

s

0.39

0.28

0.14

0.09

0.03 0.03 0.02
0.01

0.35

0.17

0.30

0.07
0.05

0.03 0.03
0.01

Is delayed
False
True

(d) Proportion of on-time flights vs. Off-
Block delayed flights per terminal.

light medium heavy
Wake category

14

16

18

20

22

24

26

M
ea

n 
of

 D
el

ay
 (m

in
ut

es
)

Mean of delay
Mean of delay CDG

(e) Average delay by wake category.

light medium heavy
Wake category

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
 F

lig
ht

s

0.12

0.73

0.15
0.13

0.61

0.26

Is delayed
False
True

(f) Proportion of on-time vs. Off-Block
delayed flights per wake category.

p1 p2 p3 p4 p5 p6
Day period

12

14

16

18

20

22

De
la

y 
(m

in
ut

es
)

Mean of delay
Mean of delay CDG

(g) Average delay by day period.

p1 p2 p3 p4 p5 p6
Day period

0.00

0.05

0.10

0.15

0.20

0.25

%
 F

lig
ht

s

0.18
0.16

0.15
0.16

0.21

0.15

0.10

0.25

0.23

0.17

0.15

0.09

Is delayed
False
True

(h) Proportion of on-time flights vs. Off-
Block delayed flights per day period.

Figure 7.2: Overview of off-block delays at Paris-CDG from August 2021 to September 2022.
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7.3 Problem statement and objectives
This section presents the problem and the objectives of our off-block delay prediction approach
at Paris-CDG. Recall that we call off-block delay the time separating the moment that the
aircraft leaves the boarding gate (this operation is called pushback) from the scheduled off-block
time (between AOBT and SOBT).

Let Y be the target variable to predict for an input sample describing the flight under study.
We distinguish two regression tasks: the real-time off-block delay prediction and the forecast of
off-block delay prediction.

7.3.1 Real-time off-block delay prediction
The problem considered here is the one of predicting at any time t, the off-block delay y (ex-
pressed in minutes) that this flight will indeed have. These predictions are updated every 5
minutes until the flight leaves its stand. Indeed, for every slot (each slot lasts 5 minutes),
we can acquire new relevant data from the Paris-CDG operational information system. These
data can be used to update the predictions (this is valid for dynamic variables such as weather
conditions, the progress of passenger processes, etc.). Real-time off-block delay predictions are
intended mainly to:

• Draw managers’ attention in real-time to flights likely to have significant delays and which
may have cascading consequences;

• Explain and identify actionable causes, if necessary, to resolve the situation.

7.3.2 Off-block delay forecast
We call forecasts the prediction of delays before the opening of the flights. This may be a
few hours or several days before the flight. In our case, the forecast cannot rely on dynamic
information on the progress of passenger processes, weather conditions, etc. A such forecast
may serve to:

• Establish several plans and mitigation measures according to the expected delays. Then,
managers can activate the plan provided for each situation when it occurs;

• Identify the causes and anticipate the chaining effect and the consequences;
• Use forecasts to make plausible simulations on congestion and queues according to delay

forecasts, then consider solutions and management plans.

7.4 Model definition
In this section, we present and motivate the essential information currently available in the Paris-
CDG operational information system, which is likely relevant for predicting off-block delays. The
proposed features come from the analysis of a recent report on takeoff delays at Paris-CDG and
an entire year of real data.

7.4.1 Basic Flight Features (BFF)
Like the previous chapter, we used the basic characteristics of a flight, and they do not change
over time (these features are listed in Table. 7.3). For example, the name of the airline operating
the flight, the aircraft type, the IATA code of the flight’s destination, the terminal, the type of
customs (national, Schengen, or international), and the IATA season (Summer or Winter).
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Feature Description Type Example
Airline Airline unique company code Categorical AF
AircraftType Aircraft type code Categorical 77W
Destination IATA code of the destination airport Categorical JFK
Terminal CDG Terminal Categorical C2E
Customs Customs Criteria Categorical Schengen
Season The IATA Season Categorical W
Week A week index calculated from a reference

date.
Numeric 1000

Day Day number in the week (1-7) Numeric 1
Bus True if the flight has bus access. Boolean True
Parking True if the arrival flight and the departure

flight have the same parking
Boolean False

SOBT The Scheduled off-block time in minutes since
midnight

Timestamp 360

Rotation Duration between landing and takeoff in min-
utes

Numeric 300

Pax Count Number of passengers on the flight (esti-
mated)

Numeric 140

Total Pif Passenger Number of passengers that must pass
through the security point (estimated)

Numeric 75

Service Type Transport category Categorical J

Table 7.3: Basic flight features (BFF)

7.4.2 Off-block Milestone Features (OMF)

These milestones correspond to each off-block and are managed by various stakeholders, such as
air traffic control, the airline, and the airport. For this study, we focused on milestones around
the SOBT (-2h30 to +2h30, see Figure. 7.1). This period is split into 60 slots of 5 minutes.
Each new milestone (EIBT, TOBT, CTOT, TSAT) has a timestamp. The OMF features are
listed in Table. 7.4.

Feature Description Type
Arrival Delay Time in minutes between the last EIBT and

the SIBT.
Numeric

TOBTdiff Time in minutes between the last TOBT and
the SOBT.

Numeric

TOBTcount The number of TOBTs Numeric
CTOTdiff Time in minutes between the last CTOT and

the SOBT.
Numeric

TSAT diff Time in minutes between the last TSAT and
the SOBT.

Numeric

Table 7.4: Off-block milestone features (OMF)
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7.4.3 Previous and Current Flights Delay Features (PCFDF)
Relevant information on the probability of a delay for a given flight is the proportion of flights
scheduled just before the flight under study and which are late. This could, for example, be due
to congestion, a breakdown at the airport, or extreme weather conditions.

Feature Description Type
Delay Airport Mean off-block delay from all the airports (re-

gardless of the terminal)
Numeric

Delay Terminal Mean off-block delay from the same terminal Numeric
Delay airline Mean off-block delay from the same airline Numeric
Percent delayed flights Airport Proportion of off-block delayed flights over all

the airport (regardless of the terminal)
Numeric

Percent delayed flights Terminal Proportion of off-block delayed flights from
the same terminal

Numeric

Percent delayed flights Airline Proportion of off-block delayed flights from
the same airline

Numeric

Table 7.5: Previous and Current Flights Delay Features (PCFDF)

We compute the proportion of late flights and the average duration of these delays for each
flight slot. At a time t, these features are calculated during a time window w, ranging from
a few minutes to a few hours. As we will show empirically, the optimal window duration is a
few minutes. For example, if w = 10 minutes and the current flight slot is 25, we compute the
different values from the flights whose AOBT is between slot 23 and slot 25.

7.4.4 Weather condition features (WCF)
Certain weather conditions, such as low visibility and strong winds, are known to be factors that
can cause takeoff delays and, therefore, delay the flight’s departure from its stand. Table. 7.6
shows weather-related features.

Feature Description Type
Low Visibility Procedures These procedures are applied at an airport

to ensure safe operations when there is low
visibility.

Boolean

Humidity rate (in percent) Humidity rate Numeric
Wind speed (in meter/sec) Wind speed Numeric
Air pressure (in hectoPascal) Air pressure Numeric
Temperature (in degrees Celsius) Temperature Numeric

Table 7.6: Weather Condition Features (WCF)
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7.4.5 Passenger Flow Features (PFF)

Feature Description Type
Security Checkpoint Progression The progression of the number of passengers

having passed the security point.
Numeric

Boarding Progression The progression of the boarding. Numeric

Table 7.7: Passenger flow features (PFF)

These features provide information at any time on the progress of specific passenger processes,
which may cause an off-block delay. In particular, the relevant information is the percentage
at slot t of passengers who have already passed boarding or passed security checkpoints. These
features are used only to predict and update the off-block delay prediction in real-time (each
flight slot).

7.5 Data and feature extraction, preprocessing, and selection
In this section, we present our main findings concerning the selection of variables and the selec-
tion of data (in particular, the choice of the best parameters for the time window duration, the
training data amount, …).

7.5.1 Data extraction and preprocessing
Paris-CDG’s operational information system (called AOP for Airport Operation Plan) collects
much information about each flight and its progress. A new flight entry is created for our
prediction tasks with the associated timestamp and updated data at each time slot. It is possible
to trace the status of a flight back to its departure. Therefore, for static characteristics, we
extract them only once. For dynamic characteristics, such as delays of other flights, these are
calculated variables that we perform with queries on past flights. For example, to compute
the proportion of flights that have been delayed in the last w minutes, we need to review all
flights involved in the w time window. The delay characteristics of previous and current flights
(PCFDF) are computed after extraction with different w windows. Our study considered one
year of data (from August 2021 to September 2022). We constructed a dataset with 10, 633, 920
rows and 31 columns (each flight is repeated 60 times with dynamic values updated in each slot).

7.5.2 Feature selection
Once our data set was extracted and preprocessed we proceeded to the selection of variables to
confirm our intuitions and to eliminate attributes that would prove irrelevant to our prediction
tasks. We first performed a simple correlation analysis between each characteristic and the
target variable (delay to parking departure). We use the well-known Pearson correlation
coefficient that measures a linear correlation. It is a number between −1 and 1 the strength
and direction of the relationship between two variables. Figures.. 7.3 and 7.4 show the results
of this coefficient.

It can be seen in Figure. 7.3 that the most relevant variables at the slot 0 are:

• the difference between the SOBT and the TSAT with a score of 0.4,
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Pearson's correlation coefficient

TSAT
TOBT Count

Total Pif Passenger
Week

PIF Progression
Delay terminal

Customs
Terminal

Destination
Wake Category

Airline
Board Progression

CTOT
Parking

Humidity Rate
Season

0.4
0.33
0.28
0.24
0.22
0.16
0.16
0.16
0.12
0.12
0.12
0.11
0.082
0.081
0.079
0.076
0.048
0.041
0.019
0.005
0.0027
0.00093
-0.0003
-0.00048
-0.0047
-0.013
-0.022
-0.051
-0.057
-0.066
-0.12
-0.29

0.2

0.1

0.0

0.1

0.2

0.3

Figure 7.3: Results of statistical correlation measure at slot 0

Pearson's correlation coefficient

TSAT
TOBT Count

Pax Count
Total Pif Passenger
Board Progression

Week
Percent Flight Terminal

Percent Flight Airline
Terminal

Destination
Wake Category

Airline
SOBT

Parking
Rotation
Season

0.74
0.68
0.32
0.28
0.24
0.23
0.22
0.21
0.19
0.18
0.16
0.15
0.13
0.11
0.095
0.082
0.079
0.076
0.048
0.041
0.019
0.0088
0.0027
0.00093
-0.00048
-0.0021
-0.022
-0.042
-0.078
-0.096
-0.12
-0.37

0.2

0.0

0.2

0.4

0.6

Figure 7.4: Results of statistical correlation measure at slot 30

• the number of TOBT with a Pearson score of 0.33.

In contrast, the variables representing the humidity rate (Humidity Rate) and IATA season of
a flight (Season) seem to have little relevance. These variables have a negative Pearson score of
−0.057 and −0.12, respectively. For the slot 30, the order of the essential variables is confirmed.
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The durations between SOBT and TSAT or the number of TOBT are the essential variables
with a Pearson score of 0.74 and 0.32.

The importance of the TSAT variable is explained by the fact that it is one of the last pieces
of information obtained for a flight before it leaves its stand and that departure is most often at
the time indicated by the TSAT. Nevertheless, air traffic control may send this information very
early before the departure of the aircraft. The variable Percent Flight Airport, representing the
proportion of delayed flights airport (for the calculation of the values, we used the 10-minute
time window), becomes more important with a progression of its score from 0.16 to 0.23. Finally,
we can note that the dynamic variables (in particular, the variable concerning the progression
of the boarding) have a score in progression. This progression shows the importance of using
dynamic flight data for real-time predictions.

To validate the findings on the correlation scores obtained, we performed another empirical
analysis by varying the set of variables used for delay prediction. We also varied the window w
used to calculate the dynamic variables from the nearby history and the amount of history to
use (twelve months, nine months, six months, or three months). We used an ensemble model of
boosted regression trees called LightGBM[KMF+17].

For our study, we tested our configuration for 40 days (from August 12 to September 21,
2022). In the following, we denote by Dm

w the dataset with m the number of months used and
w the duration of the window used for the computation of the dynamic variables. The set of
datasets are defined as follows: {

Dm
w

∣∣∣∣ m ∈ {3, 6, 9, 12}}
w ∈ {10, 30, 60}

}
(I12)

Concerning, models we have tested different configurations defined as follows:{
FastTreet/l/lrv

∣∣∣∣ t/l/lr ∈ {32, 75} × {64, 128, 256, 512} × {0.05}
v ∈ V

}
(M1)

where t, l, lr represents the hyperparameters and correspond to #Tree/#Leaves/LearningRate,
and V corresponds to the set of features used by the model:

V = {{BFF}, {BFF,WCF,OMF,PFF}, {BFF,PCFDF,WCF,OMF,PFF}}
For each day, we trained the model until the day before the test day and evaluated it on the

test day. Table. 7.8 shows the optimal configurations. The errors and R2 score presented in this
Table are for the 40 days tested.

Table. 7.8 presents the results for the different configurations. Using dynamic variables brings
a real gain, reducing the error by half and significantly improving the R2 score. Thus, the best
configuration uses all of the history (12 months), with a time window of 60 minutes.

7.6 Model selection
As with the prediction task in the previous chapter, the Paris Airports are the end-users of
our approach and are already positioned on technologies based on decision trees, particularly
FastTrees from ML.net library.
This led us to consider in this case study LightGBM, which is similar to FastTrees as they
are an ensemble of boosted decision trees. Nevertheless, we have also considered deep learning
techniques since these latter are among the best for regression problems in many areas. In the
following section, we provide some details on the model selection.
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Dataset Features (V) Hyperparameters MAE RMSE R2

D12
60 BFF,PCFDF,WCF,OMF,PFF 75/256/0.05 9.645 13.858 0.731
D9

60 BFF,PCFDF,WCF,OMF,PFF 75/256/0.05 9.672 13.858 0.731
D12

30 BFF,PCFDF,WCF,OMF,PFF 75/256/0.05 9.705 13.928 0.728
D12

10 BFF,PCFDF,WCF,OMF,PFF 75/256/0.05 9.706 13.926 0.728
D12

10 BFF,WCF,OMF,PFF 75/256/0.05 9.709 14.009 0.725
D6

60 BFF,PCFDF,WCF,OMF,PFF 75/256/0.05 9.720 14.044 0.723
D12

30 BFF,WCF,OMF,PFF 75/256/0.05 9.730 14.047 0.723
D9

30 BFF,PCFDF,WCF,OMF,PFF 75/256/0.05 9.737 14.038 0.723
D12

60 BFF,WCF,OMF,PFF 75/256/0.05 9.746 14.075 0.722
D9

10 BFF,PCFDF,WCF,OMF,PFF 75/256/0.05 9.762 14.048 0.723
D6

10 BFF,PCFDF,WCF,OMF,PFF 75/256/0.05 9.787 14.224 0.716
D9

30 BFF,WCF,OMF,PFF 75/256/0.05 9.792 14.173 0.718
D9

60 BFF,WCF,OMF,PFF 75/256/0.05 9.796 14.214 0.717
D6

30 BFF,PCFDF,WCF,OMF,PFF 75/256/0.05 9.801 14.221 0.716
D9

10 BFF,WCF,OMF,PFF 75/256/0.05 9.803 14.184 0.718
D6

60 BFF,WCF,OMF,PFF 75/256/0.05 9.823 14.318 0.712
D3

60 BFF,PCFDF,WCF,OMF,PFF 75/256/0.05 9.831 14.309 0.713
D3

10 BFF,PCFDF,WCF,OMF,PFF 75/256/0.05 9.866 14.386 0.710
D6

10 BFF,WCF,OMF,PFF 75/256/0.05 9.866 14.412 0.709
D6

30 BFF,WCF,OMF,PFF 75/256/0.05 9.871 14.440 0.707
D3

30 BFF,PCFDF,WCF,OMF,PFF 75/256/0.05 9.897 14.388 0.710
D3

30 BFF,WCF,OMF,PFF 75/256/0.05 9.912 14.543 0.703
D3

60 BFF,WCF,OMF,PFF 75/256/0.05 9.915 14.491 0.705
D3

10 BFF,WCF,OMF,PFF 75/256/0.05 9.919 14.479 0.706
D9

60 BFF 75/256/0.05 17.443 26.576 0.010
D12

10 BFF 75/256/0.05 17.456 26.667 0.004

Table 7.8: Results of feature selection on historical data.

7.6.1 Gradient-boosted decision trees

Ensemble methods are machine learning techniques that build a strong learner from many weak
learners. Boosting is a well-known ensemble method that consists of iteratively training a se-
quence of weak learners and using the error of the previous learners for weighting the sample for
the next learner. GBDT is a popular method for solving prediction problems in classification
and regression domains. XGBoost [CG16] and LightGBM[KMF+17] are two classical implementa-
tions of GBDT. LightGBM introduces Gradient-based One-Side Sampling (GOSS) and Exclusive
Feature Bundling (EFB) to deal with datasets with many features and many examples. We use
a LightGBM model for evaluation and experiments in the following. We choose LightGBM for this
accuracy and this compatibility with the library for computing SHAP values [LL17], or other
forms of explanations, because there exists an implementation in Python and C#. To facilitate
the experiments, we have developed a command-line interface to configure a LightGBM model
easily. Thus, we can choose the columns to include or ignore and identify the categorical and
numerical columns with the command. It is also possible from the command line to configure
the model (specifying the number of leaves, trees or the learning-rate value, for example).
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Hyperparameters value
Stacked RNNs layers 256-tanh-0 → 256-tanh-0
Stacked Dense layers 64-relu-0.6
Optimizer Adam
Learning Rate 0.0001

Table 7.9: Hyperparameters for the LSTM-model.

7.6.2 Recurrent neural networks
RNN is a well-known technique based on neural networks. For our study, we used LSTM [HS97]
(Long Short Time Memory) a classical implementation of RNN. LSTM is useful for ML tasks
with dependencies on recent history, such as speech-to-text, translation, time series, etc. We
have tested a simple configuration on LSTM (see Table 7.9) for our dataset.

Because the model has a very long training time, we had to limit the dataset used to windows
of 3 months only. The number of epochs is also limited to 10. The models have been run on a
cluster of computers equipped with 768 GB of RAM and five 80-core Intel Xeon Gold 6248 (2.5
GHz). We have set the wall-clock time limit to 96 hours and the memory limit to 760 GB. The
model took more than 5 hours to perform a single iteration on the data, plus the error of the
model was quite close to the LightGBM model, so we decided to renounce the use of this model
for our study.

7.6.3 Baseline model
We also used a baseline model to get an idea of the predictions’ quality and the errors’ mag-
nitude. This latter is a naive model that always predicts the mean of the delay (computed on
the training data).

7.7 Model evaluation
In this section, we answer the question of the choice of model type: a standard regression model
or a model taking into account the history of predictions to consider, for example, the chaining
effect of delays. We provide results with an ensemble model of boosted regression trees and an
LSTM-based model. Note that the objective is not to find the best model or to tune a model
to find its best parameters; we first want to know:

• how much an ML model could significantly reduce the prediction error compared to a
baseline model (that predicts the average delay)

• whether a sequential model significantly improves the results compared to a flat model.

7.7.1 Forecast
We first study the result for the off-block delay forecast as explained in Section 7.3.2.
Recall that the off-block delay forecast gives a prediction a few days or hours before the flight
opens (1 day before the flight in our experiments).

For this task, we use only one dataset of I12 that take account 12 months of historical data
defined as follows:
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7.7. Model evaluation

{
D12

}
(I13)

Note that we have omitted the m parameter as we will not be using dynamic variables.
Concerning the model, we use a configuration from M1 and the baseline model:{

FastTree75,256,0.05BFF , Baseline
}

(M2)

I13

M2

2 Hours

350 GB

Linux CentOS Stream 8.3

80 Intel Xeon Gold 6248 (2.5 GHz)

768 GB

Summary of the experiments 13 (Forecast - , )

For each day, we trained the model until the day before the test day and evaluated it on the
test day. Table 7.10 presents, for each day, the mean of delay, the maximum delay, the standard
deviation, the R2 score, and finally, the errors between our model or baseline model and the
target variable. Despite the superiority of the LightGBM model, we can observe the difficulty of
making very accurate off-block delay forecasts.
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Day y ymax σ R2 RMSE RMSEBaseline MAE MAEBaseline

2022-08-13 24.83 266 29.39 0.11 27.79 29.53 17.41 18.66
2022-08-14 24.81 247 26.41 0.01 26.21 26.56 17.52 18.47
2022-08-15 21.16 186 24.48 0.11 23.09 24.49 16.47 17.31
2022-08-16 24.79 260 30.67 0.12 28.84 30.80 18.01 19.94
2022-08-17 27.00 255 27.03 0.09 25.77 27.50 17.83 18.74
2022-08-18 24.07 219 24.72 0.16 22.62 24.81 15.39 16.87
2022-08-19 19.34 239 22.49 0.09 21.42 22.64 16.07 16.85
2022-08-20 18.81 293 22.56 0.08 21.64 22.77 16.14 17.18
2022-08-21 16.86 281 22.72 0.03 22.42 23.29 15.65 16.82
2022-08-22 15.25 210 22.75 -0.02 22.98 23.72 16.15 16.93
2022-08-23 16.76 236 21.32 0.08 20.40 21.94 14.59 17.17
2022-08-24 19.57 238 26.45 -0.09 27.62 26.56 16.62 18.89
2022-08-25 17.88 156 22.68 0.08 21.76 23.04 15.15 17.17
2022-08-26 17.79 259 21.86 0.09 20.84 22.26 14.46 16.84
2022-08-27 17.74 179 22.88 0.06 22.13 23.27 14.49 16.40
2022-08-28 16.97 295 21.95 0.09 21.00 22.51 14.51 16.89
2022-08-29 15.50 295 21.73 -0.36 25.30 22.67 15.67 17.46
2022-08-30 18.27 236 23.89 0.08 22.95 24.18 14.60 17.38
2022-08-31 21.04 217 25.84 0.09 24.67 25.85 15.66 18.19
2022-09-01 18.91 290 24.55 0.11 23.12 24.74 14.36 17.36
2022-09-02 27.55 190 25.45 0.08 24.40 26.05 16.10 18.10
2022-09-03 26.03 209 27.03 0.18 24.42 27.33 15.79 18.56
2022-09-04 21.03 281 26.98 0.14 25.03 27.00 16.26 18.19
2022-09-05 25.38 208 26.42 0.03 26.01 26.64 17.22 18.34
2022-09-06 21.93 224 26.92 -0.04 27.40 26.92 18.13 18.66
2022-09-07 21.42 277 26.43 0.19 23.85 26.43 16.28 17.86
2022-09-08 25.02 274 27.74 0.07 26.75 27.91 17.70 18.69
2022-09-09 28.50 256 30.69 -0.03 31.15 31.38 19.32 21.04
2022-09-10 20.79 279 23.30 0.01 23.17 23.33 16.74 16.12
2022-09-11 27.90 245 26.97 -0.01 27.11 27.61 18.50 19.10
2022-09-12 19.00 243 26.16 -0.17 28.36 26.33 17.95 17.47
2022-09-13 17.42 240 19.80 -0.02 19.97 20.31 14.54 15.42
2022-09-14 22.01 199 23.79 0.06 23.01 23.79 15.16 16.71
2022-09-15 23.74 185 26.07 0.10 24.76 26.13 16.85 17.70
2022-09-16 83.04 280 50.42 -1.47 79.22 79.20 61.76 64.55
2022-09-17 32.30 276 31.35 -1.32 47.73 33.01 39.09 21.92
2022-09-18 18.75 161 21.58 -0.72 28.28 21.82 21.93 15.91
2022-09-19 17.70 295 22.73 -0.08 23.58 23.12 15.00 16.41
2022-09-20 16.06 140 18.56 -0.09 19.34 19.47 14.06 15.94
2022-09-21 15.18 262 20.61 0.01 20.54 21.70 14.41 16.60

Table 7.10: Results for forecast task.
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7.7.2 Real-time predictions
For this task, the models have been run on a cluster of computers equipped with 128 GB of
RAM and two quadcore Intel XEON E5-2637 v4 (3.5 GHz). For LightGBM model, the wall-clock
time limit was set to 2 hours and the memory limit to 64 GB.

For this task, we use only one dataset from I12, I14 defined as follows:{
D12

60

}
(I14)

We use the best model from Section 7.7.1 and the baseline model.{
FastTree75,256,0.05BFF,PCFDF,WCF,OMF,PFF , Baseline

}
(M3)

I14

M3

2 Hours

64 GB

Linux CentOS Stream 8.3

Two quadcore Intel XEON E5-2637 v4 (3.5 GHz)

128 GB

Summary of the experiments 14 (Real Time Predictions - , )

Table 7.11 presents the R2 score, the RMSE and the MAE for the days tested with models
from M3. We notice that the proposed model is more accurate and stable regarding error than
the baseline model. For example, for September 1st, the mean absolute error for our model is
6.70 while the error for the baseline model is more than twice (17.26). However, we can also
notice that September 16th significantly increased errors25. The delays could go up to 4h30
(the average delay over the day was 1h20). In addition, as the period covered for each flight is
between -2h30 and +2h30, we only collect some of the data on these delays.

Tables 7.12, 7.13, and 7.14 display scores corresponding to predictions made 2 hours, 1 hour,
and 30 minutes prior to the flight’s actual departure, respectively. It’s evident from these tables
that prediction accuracy improves, with errors diminishing as the departure time approaches.

Figures 7.5 and 7.6 provide insights into the prediction errors relative to actual delays. The
x-axis denotes the time, in minutes, leading up to the flight’s departure. Specifically, Figure 7.5
illustrates the error trajectory for an actual delay of 15 minutes, whereas Figure 7.6 delineates
the error trend for a 75-minute delay. Across both scenarios, it is notable that the error gravitates
towards 0. For instance, an hour ahead of the flight departure, the average error stands at about
3 minutes for both delay durations.

25On Thursday, September 16, the delays are due to an air traffic controllers’ strike at CDG.
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Figure 7.5: Evolution of the error for a delay of 15 minutes.
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Figure 7.6: Evolution of the error for a delay of 75 minutes.
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Date R2 RMSE RMSEBaseline MAE MAEBaseline

2022-08-13 0.81 14.07 32.56 8.19 18.89
2022-08-14 0.74 14.00 28.15 8.49 18.25
2022-08-15 0.75 12.53 25.06 8.03 16.99
2022-08-16 0.67 21.06 37.14 9.92 20.99
2022-08-17 0.74 13.70 27.76 8.28 18.69
2022-08-18 0.78 12.18 26.19 7.56 16.92
2022-08-19 0.67 13.29 23.12 7.34 16.19
2022-08-20 0.77 12.25 25.30 7.32 16.83
2022-08-21 0.77 13.75 28.82 7.12 17.03
2022-08-22 0.42 23.24 30.70 7.48 16.75
2022-08-23 0.52 22.70 32.65 7.49 17.28
2022-08-24 0.66 17.58 30.35 8.13 18.89
2022-08-25 0.65 13.21 22.54 7.24 16.28
2022-08-26 0.71 26.08 48.80 7.97 18.76
2022-08-27 0.76 16.33 33.41 7.06 16.93
2022-08-28 0.81 10.98 25.13 6.53 16.40
2022-08-29 0.78 11.77 25.13 6.78 16.91
2022-08-30 0.80 11.14 24.84 6.53 16.62
2022-08-31 0.77 12.64 26.47 7.07 17.57
2022-09-01 0.70 15.22 27.71 6.70 17.26
2022-09-02 0.79 11.93 27.14 7.34 18.37
2022-09-03 0.78 13.05 28.65 7.40 18.71
2022-09-04 0.79 14.17 30.67 7.37 18.31
2022-09-05 0.66 24.65 43.05 9.30 19.81
2022-09-06 0.80 12.72 28.95 7.50 18.70
2022-09-07 0.85 11.53 30.12 6.89 18.05
2022-09-08 0.84 14.64 37.48 8.03 20.06
2022-09-09 0.80 15.53 36.18 8.76 21.84
2022-09-10 0.65 16.11 27.46 7.43 16.48
2022-09-11 0.70 15.90 30.54 8.32 19.67
2022-09-12 0.74 14.33 28.25 7.08 17.13
2022-09-13 0.53 17.83 26.11 7.24 15.40
2022-09-14 0.51 23.20 33.23 8.62 17.45
2022-09-15 0.79 13.23 29.40 7.55 18.06
2022-09-16 0.32 44.39 81.82 31.24 65.07
2022-09-17 0.76 18.14 40.11 9.55 23.83
2022-09-18 0.84 11.25 28.29 6.88 15.98
2022-09-19 0.65 17.61 29.89 8.16 16.89
2022-09-20 0.69 10.44 18.98 6.38 15.03
2022-09-21 0.69 13.29 24.28 7.27 16.16

Table 7.11: Daily results for real-time prediction.
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Date R2 RMSE RMSEBaseline MAE MAEBaseline

2022-08-13 0.74 16.40 32.84 11.63 19.02
2022-08-14 0.63 17.17 28.96 12.76 18.89
2022-08-15 0.57 15.82 24.12 12.93 16.39
2022-08-16 0.76 17.24 35.83 12.48 20.98
2022-08-17 0.59 16.89 27.33 12.24 18.46
2022-08-18 0.65 15.06 26.01 11.54 16.75
2022-08-19 0.61 14.09 22.45 10.58 16.01
2022-08-20 0.58 14.62 22.63 11.05 16.39
2022-08-21 0.71 13.23 24.59 10.76 16.28
2022-08-22 0.68 13.14 23.59 9.88 15.72
2022-08-23 0.59 14.39 22.66 10.49 16.48
2022-08-24 0.62 17.28 28.04 11.10 18.53
2022-08-25 0.45 16.49 22.29 10.81 16.17
2022-08-26 0.67 14.45 25.21 10.66 16.72
2022-08-27 0.64 13.41 22.34 9.88 15.36
2022-08-28 0.68 12.80 22.69 9.97 16.14
2022-08-29 0.63 13.83 22.91 10.23 16.65
2022-08-30 0.67 14.07 24.50 10.07 16.40
2022-08-31 0.67 15.06 26.24 10.05 17.51
2022-09-01 0.68 14.17 25.07 9.17 16.67
2022-09-02 0.71 14.29 27.65 10.66 18.67
2022-09-03 0.72 14.56 28.40 10.37 18.56
2022-09-04 0.74 14.56 28.51 10.37 17.80
2022-09-05 0.62 17.35 28.83 12.61 18.86
2022-09-06 0.68 15.89 28.30 11.17 18.15
2022-09-07 0.69 14.05 25.06 10.16 16.66
2022-09-08 0.72 15.17 29.26 10.96 18.86
2022-09-09 0.71 17.38 33.64 11.82 21.50
2022-09-10 0.65 14.51 24.66 10.41 15.66
2022-09-11 0.71 16.04 31.00 11.68 19.90
2022-09-12 0.76 13.46 27.55 9.62 16.73
2022-09-13 0.58 14.01 21.58 10.24 15.02
2022-09-14 0.50 18.02 25.60 11.49 16.95
2022-09-15 0.67 14.88 26.19 10.50 17.09
2022-09-16 0.24 44.87 83.65 34.47 68.75
2022-09-17 0.64 18.51 33.26 12.57 21.95
2022-09-18 0.51 14.33 20.55 10.50 14.67
2022-09-19 0.64 14.85 24.83 10.05 15.98
2022-09-20 0.47 13.65 19.06 9.86 15.15
2022-09-21 0.58 15.40 24.11 10.50 15.98

Table 7.12: Results for the real-time task, 2 hours before the departure.
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Date R2 RMSE RMSEBaseline MAE MAEBaseline

2022-08-13 0.81 13.35 30.77 10.39 18.49
2022-08-14 0.71 14.09 26.60 10.67 18.14
2022-08-15 0.71 13.41 25.04 10.70 16.75
2022-08-16 0.80 13.72 31.08 10.30 19.42
2022-08-17 0.77 13.20 28.77 10.19 18.94
2022-08-18 0.72 12.89 24.89 9.87 16.65
2022-08-19 0.69 12.13 21.85 9.73 16.08
2022-08-20 0.65 13.48 22.69 10.13 16.41
2022-08-21 0.66 12.22 21.25 9.78 15.54
2022-08-22 0.78 10.93 23.66 8.70 15.79
2022-08-23 0.63 12.45 20.79 9.22 16.11
2022-08-24 0.73 13.61 26.16 9.62 18.03
2022-08-25 0.68 12.81 22.81 9.35 16.39
2022-08-26 0.63 11.88 19.60 9.20 15.43
2022-08-27 0.75 12.02 23.87 8.85 15.87
2022-08-28 0.76 10.79 22.07 8.55 15.84
2022-08-29 0.72 11.60 22.13 8.91 16.36
2022-08-30 0.74 11.85 23.15 8.77 16.20
2022-08-31 0.80 11.22 25.24 8.35 17.38
2022-09-01 0.79 11.70 25.62 8.39 16.85
2022-09-02 0.78 12.05 27.10 9.05 18.29
2022-09-03 0.82 11.66 28.56 8.89 18.74
2022-09-04 0.80 12.05 27.24 9.28 17.61
2022-09-05 0.77 12.69 27.31 9.84 18.14
2022-09-06 0.75 13.04 26.02 9.62 17.73
2022-09-07 0.77 12.12 25.23 9.15 16.95
2022-09-08 0.80 12.55 28.29 9.41 18.59
2022-09-09 0.79 13.79 31.39 10.01 20.62
2022-09-10 0.68 12.11 21.47 8.90 15.25
2022-09-11 0.70 13.82 26.50 9.88 18.59
2022-09-12 0.82 11.11 26.20 8.82 16.71
2022-09-13 0.58 11.92 18.53 8.93 14.35
2022-09-14 0.65 14.69 25.02 9.72 16.76
2022-09-15 0.77 12.46 26.44 9.17 17.20
2022-09-16 0.35 40.53 81.29 29.68 66.79
2022-09-17 0.78 15.09 34.94 10.46 22.62
2022-09-18 0.67 12.53 21.80 9.15 15.21
2022-09-19 0.69 12.80 22.95 9.01 15.67
2022-09-20 0.55 12.19 18.65 8.92 14.91
2022-09-21 0.46 14.09 19.71 9.64 15.33

Table 7.13: Results for the real-time task, 1 hour before the departure.
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Date R2 RMSE RMSEBaseline MAE MAEBaseline

2022-08-13 0.81 11.53 26.65 9.06 17.19
2022-08-14 0.83 10.49 26.12 8.22 17.73
2022-08-15 0.76 12.00 24.48 9.03 16.82
2022-08-16 0.84 10.67 27.27 8.20 18.29
2022-08-17 0.83 10.71 27.27 8.36 18.43
2022-08-18 0.73 12.10 23.88 8.42 16.47
2022-08-19 0.79 10.39 22.57 8.16 16.25
2022-08-20 0.76 10.89 22.20 8.42 16.42
2022-08-21 0.73 10.36 20.44 8.32 15.19
2022-08-22 0.77 9.58 20.70 7.43 15.27
2022-08-23 0.74 10.58 20.79 7.96 16.11
2022-08-24 0.80 11.26 24.88 8.34 17.49
2022-08-25 0.78 11.08 23.47 8.21 16.53
2022-08-26 0.75 10.13 20.27 7.82 15.69
2022-08-27 0.84 9.52 24.02 7.36 15.98
2022-08-28 0.79 9.43 21.00 7.48 15.57
2022-08-29 0.80 9.62 21.80 7.48 16.21
2022-08-30 0.80 10.56 23.43 7.37 16.35
2022-08-31 0.84 9.96 25.12 7.49 17.29
2022-09-01 0.82 9.87 23.56 7.17 16.35
2022-09-02 0.84 9.41 24.77 7.31 17.58
2022-09-03 0.86 9.40 25.90 7.19 17.98
2022-09-04 0.87 9.12 25.11 7.23 17.04
2022-09-05 0.84 10.07 25.40 7.93 17.29
2022-09-06 0.86 10.03 26.59 7.63 18.14
2022-09-07 0.84 9.94 24.65 7.64 16.98
2022-09-08 0.84 10.38 26.12 8.00 17.66
2022-09-09 0.86 10.61 29.89 8.07 20.18
2022-09-10 0.76 10.82 21.92 7.91 15.54
2022-09-11 0.78 11.78 26.37 8.37 18.52
2022-09-12 0.83 9.96 24.38 7.57 16.19
2022-09-13 0.73 9.88 19.28 7.43 14.50
2022-09-14 0.71 10.91 20.38 7.70 14.95
2022-09-15 0.84 10.67 26.80 7.88 17.85
2022-09-16 0.36 39.04 77.93 27.26 63.84
2022-09-17 0.83 12.78 33.01 8.33 21.87
2022-09-18 0.75 11.59 23.23 8.04 15.94
2022-09-19 0.67 12.05 21.10 8.13 15.14
2022-09-20 0.71 10.17 19.24 7.40 15.13
2022-09-21 0.60 12.20 19.84 8.52 15.43

Table 7.14: Results for the real-time task, 30 minutes before the departure.
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7.8 Explaining off-block delay predictions
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Figure 7.7: SHAP values for September 16th 2022 at slot 0

Figures 7.7 and 7.8 give an overview of the most essential features of our model. The features
are sorted by the sum of the SHAP values over all samples at slots 0 and 30. The color represents
the value of the feature (red corresponds to high, blue to low). This reveals, for example, that
when the slot is 30, a high value for TSAT increases the predicted delay. Finally, the SHAP
values largely confirm the coefficients of Pearson from Section 7.5.2 and the importance of the
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Figure 7.8: SHAP values for September 16th 2022 at slot 30

impact of the TSAT and TOBT variables.
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(e) 30 minutes after scheduled off-block time
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Figure 7.9: Evolution of the feature importance for a flight of 16th september with a delay of
60 minutes.
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Figure 7.10: Evolution of the prediction for flight with a delay of 60 minutes.

Figure 7.9 shows an overview, for a Lufthansa flight with a delay of 60 minutes, of the
feature-importances at different moments of the prediction. We can see that the evolution of
the TSAT estimate will play a role in the prediction and influence positively or negatively.
Figure 7.10 shows the evolution of the prediction for the same flight. The average error of our
prediction is about 13 minutes. We can observe that the prediction decreases at some points
and ends at 49 minutes.

7.9 Deployment
AOP is a software written in C# using a PostgreSQL database. It creates snapshots of the
evolution of flights and allows us to find the state of a flight at any time from its arrival to
its departure. For space reasons, the data is compressed in the database, so the AOP has an
engine that allows us to retrieve the information we want on the fly. The AOP uses different
machine-learning models to fill in missing data and predict the use of specific resources such
as security checkpoints. The machine learning models use the ML.net library that proposes an
implementation for LightGBM model. Each model is rebuilt every night to take into account the
last day. Generating the dataset used in this study takes about 20 hours. This time makes it
difficult to use the model directly in production and rebuild them every night.
To solve this problem, we can use a cache by generating the complete dataset once and simply
adding the new day to the dataset. This solution is currently being deployed and tested. The
learning time for the model is less than 1 hour in Python and should remain reasonable in C#.

7.10 Conclusions
Punctuality is a sensitive issue in major airports and hubs for the passenger experience. In
this chapter, we have addressed the problem of predicting delays at the departure of parking
lots at Paris-CDG airport, one of the largest airports in the world and the hub of Air France.
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7.10. Conclusions

Our study started with analyzing the problem (its magnitude, form, causes, …) and the needs
(real-time forecasting and prediction) at Paris-CDG. Based on this analysis, we proposed two
types of feature categories that could be useful for delay prediction: static features used for the
forecasting task and dynamic features (which can be updated in real-time) used for real-time
delay prediction. The next step was to build a pipeline to extract the raw data we needed from
the operational information system of Paris-CDG. This allowed us to build a dataset representing
one year of activity. We conducted an empirical study to select the characteristics and the data
and then to select the models. One of the specificities of our work is that we worked with very
fluctuating data due to the COVID-19 pandemic and its consequences in terms of air travel
restrictions on several occasions and other air traffic hazards. The results show that some delays
can be predicted much better than the baseline model. This result can be significantly improved
by systematically exploring other models and their best hyperparameters. It is also possible
to exploit information from other flight milestones related to airside operations, such as the
progress of luggage loading or its progression on the baggage circuit. In addition to the accuracy
improvement, one of the crucial elements for our application will be the explicability of the
predictions, particularly the identification of explanations that can help in delay management.
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General Conclusion and Perspectives

Throughout this manuscript, we embarked on a journey through the world of airport operations,
guided by the powerful lens of Constraint Programming (CP) and Machine Learning (ML).

Chapter 1 introduced us to the realm of CP [Mon74, RvW06, Lec09], a paradigm rooted in
representing and solving combinatorial problems. The essence of this chapter revolved around
framing real-world problems, particularly airport-centric challenges, as Optimization Problems.
Herein, decision variables and constraints are crafted in a manner that mimics natural language
descriptions. This chapter introduces two fundamentals problems study in this manuscript:
Stand Allocation Problem (SAP) and Check-in Desk Allocation Problem (CDAP).

Following the detailed exploration of CP in Chapter 1, Chapter 2 introduced readers to
another powerful computational tool: ML. Rooted in the ability to learn from data and make
predictions, ML serves as an invaluable asset in the dynamic, data-rich environment of mod-
ern airports. Machine Learning is characterized by its various paradigms, including Supervised
Learning, Unsupervised Learning, and Reinforcement Learning. Within the context of airport
operations, as showcased in Chapter 2, the focus has predominantly been on Supervised Learn-
ing. This paradigm, which deals with labeled datasets, holds great potential for airports like
Paris Airports. With vast amounts of flight and passenger data available, supervised learning
algorithms have the capability to discern patterns, predict outcomes, and subsequently optimize
resource allocation. Using a fictive task of predicting the number of hot dog sales the chapter
introduces a complete pipeline and analysis from the data analysis to the prediction and expla-
nation task. The rest of the manuscript follows the same approach. The chapter also highlighted
the critical role of machine learning within the AOP system at Paris Airports. The ability to
calculate and predict passenger presentations at each airport resource for a given day represents
a significant leap in operational efficiency and passenger experience. Two primary applications
were underlined in Chapter 2: predicting passengers with reduced mobility and off-block delays.

First of all, this manuscript was an opportunity to present the Metrics26 analysis tool
[FWW21], a library designed to standardize the methods of extracting and analyzing constraint
solvers and, broadly, any software generating time-stamped outcomes. All campaigns featured
in this manuscript were orchestrated using the Metrics tool, streamlining the demonstration
process and enabling readers to easily understand and replicate the analyses.

Chapter 3 [FALM23] focuses on the modeling of the Check-in Desk Allocation Problem
(CDAP). The core of this chapter was dedicated to exploring diverse modeling strategies for
different variants of this problem: no− overlapping, overlapping and overlapping− nbmax.
For this latter, we propose 3 types of modeling based on some refinements of specific variables
introduced and kinds of constraints.
With experimental environments serving as a backdrop, the chapter casts light on how vari-
ous solvers perform under different circumstances, emphasizing the paramount importance of

26https://github.com/crillab/metrics
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aligning solver configurations with specific problem instances. A standout revelation from this
exploration was the performance of the Gather method, for handling with the large number
of constraint AllDiffExcept. Beyond highlighting the superiority of specific techniques, the
chapter also revealed the oscillating performance of various solver configurations in different
scenarios. This underscores the need for a thorough understanding of the problem in order to
correctly model and select the right solver configuration. Although choosing the right solver
configuration is at least as complex a task as modeling the problem itself. Moreover, juxtapos-
ing our strategies with the ADP algorithm offered an enriched comparison. While it is tempting
to gravitate towards simpler algorithms for their straightforwardness, this chapter has shown
that there are tangible benefits—performance, solution quality, and adaptability—in turning to
more robust, generic solvers. Currently, a first version using Python for modeling [LS20] is being
used in conjunction with the old version for “visual” comparisons made by the users. It will go
definitively into production before 2024. A perspective could be to work on a modeling interface
with a language faster than Python while retaining the modeling simplicity that Python brings.

Chapter 4.2.3 introduces a modelization for Stand Allocation Problem (SAP) based on the
rules and constraints of CDG airport [FLMT22, FMLT22]. After introducing a first model of
this problem, the chapter introduces a first variant proposing to adapt what is done in the
state-of-the-art by adding allDifferent constraints based on the interval graph of temporally
overlapping tasks. Finally, the chapter proposes an adaptation of the objective function to
take into account the minimization of aircraft movements. Since we use a solver that does not
handle multi-objectives, we have done this directly in the objective function, by adding to the
satisfaction calculation the number of times we have not moved an aircraft for rotations with
at least two tasks. Initial experiments have shown our approach to be superior to the current
solver used by ADP. However, as we reflect on the in-depth analysis presented, it is essential
to understand the context: this chapter primarily served as a proof of concept. In this light,
while the methodologies introduced lay a strong foundation and demonstrate the potential for
comprehensive solutions, they also underscore a need for further refinement. A first perspective
must be to model a specific case for terminal 1 of CDG based on specific infrastructure of this
terminal. Let us take a look at Figure 11b: if a plane is placed in Y 07 and another plane is
placed in Y 06, we need to make sure that the plane in Y 07 leaves before the plane in Y 06,
because the planes arrive on the outside (route marked by A) and leave on the inside (route
A3). Note that the direction is reversed if we take stands Z02 and Z01.

Another perspective could be to view the stand allocation problem as a genuine multi-
objective issue, and to address this, one could use solvers such as Choco [PFL16] for resolution.

Chapter 5 delves deep into the realm of advanced resolution techniques with the primary
objective of amplifying the efficiency and adaptability of solving Constraint Programming prob-
lems. This chapter starts by introducing the Aggressive Bound Descent technique, which ven-
tures into aggressive adjustments of objective constraints. This risk-centric approach, where
solvers occasionally plunge into potentially UNSAT search space, showcased a notable perfor-
mance enhancement for constraint optimization problems. Although the immediate performance
metrics may seem modest, further research, as detailed in [FLMW22], not only confirmed the
method’s potential but also highlighted an increase in solver efficiency. In particular, the inte-
gration of ABD into the PB Sat4j solver has demonstrated the full capabilities of this approach.

After that, the chapter explores the usage of PB encoding for resolving CSP problems. By
crafting new encodings grounded in PB constraints, we aimed to capitalize on the potent in-
ference capabilities of PB solvers, notably their intrinsic prowess in counting. While empirical
studies signaled the potency of our encodings for problems dominated by sum and cardinality
constraints [FW22b, FW22a], this enhanced performance was not universal. Native CP solvers

188



(a) Terminal 1 of CDG.
(b) Example of a special traffic situation linked
to the CDG1 infrastructure.

Figure 11: Overview of the terminal 1 of CDG.

retained their edge in scenarios involving a wide range of constraints. This observation under-
lines the necessity for future studies to rethink our current encodings and possibly create new
variations that can truly tap into the raw power of PB solvers, with a penchant for pure PB
constraints over traditional clauses.

Finally, the last part of the chapter unveiled a novel framework PANORAMYX27 [FLW23] de-
signed to spearhead the development of parallel and distributed constraint solvers. This tool is
part of a larger universe of tools dedicated to constraint programming: TOOTATIS28. PANORAMYX
is based on the interfaces offered by the Universe29 library. Through an ensemble of meticu-
lously designed object-oriented solver interfaces (Universe), this framework paves the way for
integrating a diverse array of SAT, PB, or CP solvers. We propose an EPS approach based on the
hypergraph decomposition of the problem. This approach improves classical EPS approaches.
It would now be interesting to extend this approach to optimization problems and to compare
the performance of airport problems such as CDAP by automatic decomposition rather than
based on in-depth knowledge of the problem structure as initiated in this manuscript. Finally,
it would be possible to combine the different configurations to achieve good performance using
a portfolio so that they become complementary.

Chapter 6 delved into the pivotal challenge of ensuring accessibility and inclusivity within
the realm of air travel. As the world of aviation grows exponentially, ensuring convenience and
safety for passengers with reduced mobility (PRMs) remains a paramount concern, especially
for hubs as significant as Paris Airports. The chapter emphasized the operational importance
of accurately predicting the number of PRMs transiting through the airports daily. Beyond
operational efficacy, these predictions also have financial implications, as misestimations can
result in suboptimal staffing and consequently, financial discrepancies. By focusing on historical
data and contemporary machine learning methods, we sought to enhance the accuracy of these
predictions. The heart of our exploration centered around the FastTree model, influenced by
Paris Airports’ inclination towards Microsoft’s ML.net framework. Not only did this model fit
well within the technological landscape of the Paris Airport, but its speed, ease of deployment,

27https://github.com/crillab/panoramyx
28https://crillab.github.io/tootatis/
29https://github.com/crillab/universe
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and proven performance made it an ideal choice for our purposes. The comprehensive data anal-
ysis brought forth intriguing insights, underscoring the correlations between various flight and
PRM-related features and the target variable. With meticulous data parsing and feature engi-
neering, our model exhibited the potential to improve PRM predictions. This work is currently
used by the ADP group to indicate the number of PMR to service providers in replacement of
the prediction taken by the commercial tool PRM Manager.

Chapter 7 tackled the intricate challenge of predicting flight delays at the bustling Paris-
CDG airport. Given the airport’s massive scale, with an average of over one flight departure per
minute and encompassing around 498, 000 aircraft movements annually, efficient and accurate
resource management becomes paramount. One of the most significant resources in this context
is the flight stands. A late release of a stand can set off a domino effect, leading to a cascade of
delays and operational challenges.

The chapter started with a detailed examination of flight rotations – sets comprising of arrival
and departure flights. Delays were meticulously defined, centering on the discrepancy between
the scheduled departure time (SOBT) and the actual off-block time (AOBT). The center of the
research revolved around predicting these delays to foster operational efficiency and enhance the
passenger experience [FMT23a, FMT23b].

Diving deep into the data, the chapter introduced two primary categories of features pertinent
to delay prediction: static and dynamic. Static features, being constant, catered to forecasting
tasks, while dynamic features, with the flexibility of real-time updates, were tailored for real-
time delay predictions. The data extraction process was intricate, pulling from the operational
information system of Paris-CDG to curate a comprehensive dataset spanning an entire year.

One of the unique aspects of our study was navigating the unpredictability induced by the
COVID-19 pandemic. The pandemic’s influence introduced erratic fluctuations in flight data,
given the fluctuating air travel restrictions and other operational challenges during this period.

Nevertheless, our empirical studies culminated in results surpassing the baseline model in
predicting certain delays. This achievement underscores the potential of further enhancing
accuracy by delving into other models, optimal hyperparameters, and exploring additional flight
milestones.

Moreover, while accuracy is undoubtedly vital, the chapter also emphasized the significance of
explicability in predictions. Being able to provide clear and coherent explanations for predictions
not only fosters trust but also empowers operational teams with actionable insights to manage
delays.

Through the research conducted in this thesis, we’ve transitioned from an antiquated, pro-
prietary constraint programming approach to adopting modern methodologies rooted in open-
source solutions. This shift promises enhanced flexibility and scalability for the continued evo-
lution of the DCB. Moreover, the initial exploration into machine learning signifies the dawn
of its broader application within airport environments, paving the way for pivotal predictions
concerning factors like the volume of PRMs and potential aircraft delays.
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shadow restrictions, 20

slot, 44
time slot, 46

solution, 10
stand, 14, 20, 44, 162

stand allocation problem, 14, 20, 28
contact stand, 14
hard stand, 14
remote stand, 14
stand operation, 15

stands, 20
compatible stands, 20

strength, 39
successor, 20
support, 10
symmetrical, 18

T
table

negative table, 58
task, 22
tree

binary tree, 31, 33
boosted decision tree, 31
boosted tree, 36, 37
decision tree, 31, 37, 40, 43
regression gradient boosted decision tree,

33
tuple, 7

allowed tuple, 53
allowed tuple, 9
disallowed tuple, 9, 53
valid tuple, 10

V
value

predicted value, 35
true value, 35

variable, 6, 52, 53
target variable, 37
discrete variable, 6
fixed variable, 6
unfixed variable, 6
variable assignment, 6

variance, 36
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Résumé
L’industrie de l’aviation joue un rôle essentiel dans notre monde globalisé, permettant à des
millions de personnes de voyager, de faire des affaires. Les aéroports, avec l’Aéroport Charles de
Gaulle de Paris (CDG) comme exemple typique, incarnent les complexités des hubs mondiaux.
Gérant des millions de passagers et se connectant à des centaines de destinations dans le monde
entier, CDG est classé comme le deuxième aéroport le plus fréquenté d’Europe. Malgré son en-
vergure, il n’y a pas de projets immédiats pour de nouveaux terminaux, soulignant l’importance
de l’optimisation pour la gestion efficace des passagers et des ressources. Cette nécessité est
encore amplifiée par la résurgence du trafic aérien après les perturbations liées à la COVID-19.

Pour répondre aux complexités des aéroports comme CDG, des solutions innovantes sont
nécessaires. Les méthodes traditionnelles, basées sur des technologies plus anciennes, pourraient
peiner à répondre aux défis actuels, surtout étant donné l’aspect imprévisible de l’aviation.
Deux approches se démarquent: la programmation par contraintes, apte à gérer des problèmes
combinatoires et d’optimisations, et l’apprentissage automatique, reconnu pour sa puissance
prédictive.

Ce manuscrit se déroule en trois parties distinctes sur sept chapitres. La première partie
aborde la programmation par contraintes et ses applications dans les opérations aéroportuaires,
en particulier pour l’allocation des comptoirs d’enregistrement et des parkings avions. À travers
des évaluations expérimentales, l’utilité des nouveaux modèles est démontrée, mettant en avant
notre outil Metrics pour l’analyse des résultats. Cette section offre également un aperçu des
méthodes de résolution génériques pour les problèmes d’allocation.

La dernière partie du manuscrit s’oriente vers le rôle de l’apprentissage automatique dans
l’optimisation des opérations aéroportuaires. Elle se concentre sur la prévision du nombre de
passagers à mobilité réduite (PMR) et la prédiction des retards “au bloc” des vols. Compte tenu
de l’importance de ces deux aspects, le potentiel de l’apprentissage automatique pour prévoir et
prévenir les défis est mis en évidence.

À mesure que le paysage de l’aviation évolue, l’optimisation des opérations, en particulier
dans les hubs comme CDG, a des implications majeures. Ce manuscrit trace une voie pour
exploiter la programmation par contraintes et l’apprentissage automatique afin de renforcer
la résilience et l’efficacité des opérations aéroportuaires, garantissant leur capacité à servir un
monde interconnecté.

Mots-clés: programmation par contraintes, optimisation, apprentissage automatique.

Abstract
The aviation industry serves as a critical connector in today’s globalized world, enabling

millions to travel, conduct business, and engage with diverse cultures. Key to this connectivity
is the infrastructure provided by airports, with Paris Charles de Gaulle Airport (CDG) epito-
mizing the complexities inherent in global hubs. Handling millions of passengers and connecting
to hundreds of destinations worldwide, CDG ranks as Europe’s second busiest airport. Despite
its vast scale, there are no imminent plans for new terminals, emphasizing the importance of op-
timization for efficient passenger and resource management. This urgency is further heightened
by the resurgence in air traffic post-COVID-19 disruptions.
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Addressing the complexities of mega hubs like CDG necessitates innovative solutions. Tra-
ditional methods, anchored in older technologies, might struggle to meet present-day challenges,
especially given the aviation industry’s unpredictability. Two promising approaches emerge in
the modern context: constraint programming, adept at managing large-scale problems, and
machine learning, renowned for its predictive prowess.

This manuscript unfolds in three distinct parts across seven chapters. The initial part delves
into constraint programming and its applications in airport operations, particularly in the al-
location of check-in desks and aircraft stands. Through experimental evaluations, the utility
of new models is demonstrated, showcasing our Metrics tool’s role in analyzing experimental
results. This section also offers insights into generic resolution methods for allocation problems.

The latter part of the manuscript pivots to machine learning’s role in optimizing airport
operations. It focuses on forecasting the number of passengers with reduced mobility (PRM)
and predicting off-block flight delays. Given the importance of both these aspects in maintaining
operational efficiency, machine learning’s potential in predicting and preempting challenges is
underscored.

As the aviation landscape continually shifts, the optimization of operations, especially in
hubs like CDG, has far-reaching implications. This manuscript charts a course towards harness-
ing constraint programming and machine learning to foster resilience and efficiency in airport
operations, ensuring they remain adept at serving a connected world.

Keywords: constraint programming, optimization, machine learning.
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