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Abstract: High-power electrical machines often utilize clamping structures composed of various
materials with specific geometric dimensions to secure the stator laminations. These structures are
exposed to end-region magnetic flux, which induces eddy currents, leading to significant power
losses that reduce the machine’s efficiency. This study systematically investigates the impact of
clamping plate thickness on eddy current losses across different materials and operating frequencies.
A simplified experimental configuration was established to validate the numerical model developed
using 3D Finite Element Method (FEM). This model was used to calculate the eddy current losses
and analyze the influence of plate thickness under various conditions. A comprehensive parametric
analysis was performed, revealing critical insights into the relationship between material properties,
plate thickness, and loss generation. The findings indicate that while thinner plates exhibit higher
current density, thicker plates provide a larger volume for current flow, resulting in varying loss
patterns depending on the material’s electrical and magnetic properties. The study’s results offer
valuable guidance for optimizing clamping structure designs in high-power electrical machines by
selecting materials and thicknesses that minimize losses while maintaining mechanical integrity.

Keywords: eddy current losses; electrical machines; end-region; finite element method; clamping
plates and fingers; materials for electrical machines; skin effect

1. Introduction

High-efficiency electrical machines are becoming increasingly important, especially
in industrial applications [1]. For an electrical machine operating on a permanent basis
for a 25-year expected lifetime, energy consumption accounts for over 90% of its cost [2].
Therefore, even a minor increase in efficiency can result in substantial energy and economic
savings. In accordance with IEC 60034-2-1 [3] “Standard methods for determining losses
and efficiency from tests”, four distinct types of losses in rotating electrical machines are
identified: copper losses in the stator and rotor conductors, iron losses in the magnetic
core, mechanical losses, and additional losses, commonly referred to as stray-load losses
(SLLs). Since SLLs are much more difficult to determine [4], the standard specifies different
methods for measuring these losses with low, medium, or high uncertainty. In [5], the
value of the stray load loss of a 200 kW cryogenic induction motor is determined by ap-
plying a factor of 1.5% of the rated output, as specified in the IEEE 112 standard. In [6],
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the Finite Element Method (FEM) is employed to calculate SLL for a 500 kW induction
motor. The study also provides a detailed analysis of the origin of these losses, including
eddy current losses in the clamping structures. These devices are designed to secure the
stator laminations in high-power electrical machines, such as large turbo-generators. They
typically consist of clamping plates and fingers made of various conductive materials.
They are exposed to end leakage flux generated by the currents in the stator and rotor
end windings [6], which induces currents within the clamping structures. These induced
currents result in additional power losses, subsequently reducing the machine’s efficiency.
Selecting appropriate structures and materials to minimize these losses is crucial [7]. How-
ever, accurately determining these losses is challenging due to their occurrence in regions
that are not easily accessible for measurement. The quantification of such losses has then
been carried out using numerical simulations on the basis of 3D FEM [7–11]. However,
the majority of the studies dealt with numerical concerns such as the skin effect in the
conducting surfaces where the mesh must be dense, in addition to the difficulty to account
for end connections in models of large generators. Otherwise, symmetry conditions cannot
be used, and model size and computation time increase rapidly. In [7], results show that
using stainless steel in a 3.1 MW permanent-magnet generator reduces losses compared
to construction steel, improving machine efficiency by approximately 0.075% which is
significant for such machines. In order to decrease the eddy current losses in the stator-end
metallic parts of a large double-canned induction motor, an arch-shaped clamping plate
structure has been proposed in [8]. In [9], a calculation of eddy current losses in the plates
and clamping fingers of an asynchronous machine is presented by adopting a 3D FEM
with non-conformal meshing, which consists of introducing dissimilar meshes for calculat-
ing the magnetic field and current flow induced in the frequency domain. This method
significantly reduces the calculation time. Further investigation into the physical aspects
of the losses has been conducted to separately quantify the effect of the circumferential
component of the end leakage flux on losses in the clamping devices [10]. This study
reveals that the eddy currents caused by this component are very low and challenging to
measure accurately. On the other hand, some studies have highlighted the sensitivity of
the eddy current losses to the relative permeability value of the conducting material, hence
the importance of having an accurate approximation of the B(H) curve of the material [11].
In a more recent study, the work in [12] investigates the electromagnetic fields, eddy cur-
rent losses, and heat transfer in the end region of a synchronous condenser, comparing
different end structures and material properties. In [13], the research aims to analyze and
predict the eddy current losses in generator end structures, considering multiple factors
such as metal shield conductivity, relative permeability of clamping plates, and structural
characteristics and using Multi-Layer Perceptron (MLP) and Support Vector Regression
(SVR) techniques. Moreover, the majority of existing literature lacks comprehensive ex-
perimental validation, which is essential for confirming the accuracy of numerical models
and their predictions. Exceptions include [7], which conducts efficiency measurements to
validate simulation results, and [8,12,14,15], which employ temperature rise measurements
as a method for experimental validation. To this end, a dedicated experimental setup is
established, employing different clamping materials at various frequencies to quantify
losses due to the axial component of the magnetic flux. Eddy current losses are calculated
using a numerical model based on 3D FEM, and these results are compared to experimental
measurements. However, the study uses the same thickness for all materials, leading to
partial conclusions [16]. Typically, the sectional thickness of the clamping plate is close to
one skin depth [15], but aside from mechanical considerations, the influence of clamping
plate thickness on these losses has not been thoroughly investigated, even though it is
well-known that the skin effect plays a crucial role in determining the depth at which
currents penetrate conductive materials, particularly at higher frequencies.

In this study, a simplified configuration is utilized to perform a parametric analysis by
varying the thickness of clamping plates made from different materials at multiple power
supply frequencies. The aim is to investigate how eddy current losses are influenced by
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both the thickness of the clamping structure and the frequency of the power supply. In
contrast to our previous work in [17], this study provides experimental verification of the
numerical model and a detailed, in-depth examination of the impact of clamping plate
thickness on eddy current losses. The findings will provide insights into selecting clamping
structures based on the material properties and their optimal thickness. The first part of
the paper deals with the introduction of the test bench and its numerical model. Once the
latter is validated through a comparison of the simulation results to the measurements, it is
used to investigate the effects of the material thickness of the plates on the losses. This is
developed in the third section, along with a discussion of the results. A conclusion is given
at the end of the paper.

2. Eddy Current Loss Calculation
2.1. Experimental Bench

As demonstrated in a prior study [16], the primary source of induced currents in the
end plates is the axial component of the leakage magnetic flux. Consequently, to validate
the numerical model, an experimental setup is employed. It is constituted of a stator with
stacked M600-65A electrical steel laminations and a clamping device. As shown in Figure 1,
the latter is made up of a clamping plate and a stator sheet that supports pressure fingers
made of the same material as the plate. Four distinct 15 mm-thick clamping plates and
8 mm-thick fingers, fabricated with aluminum, brass, stainless steel, and magnetic steel,
are utilized, all having the same thickness. In order to focus solely on the effect of the axial
component of the leakage magnetic flux, the excitation circuit consists of a circular coil
constituted of a set of conductors placed above the clamping plate.
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A sinusoidal current at different frequencies and amplitudes supplies the coil using
a programmable control voltage supply to generate a variable axial magnetic flux, which
induces a current in the clamping structure. This supply is a 7kVA power amplifier, and the
voltage, current, active power, and circular coil resistance are measured at the end of each
test using a precision wattmeter and multimeter. The used test bench is shown in Figure 2,
and its main characteristics are depicted in Table 1.
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Table 1. Characteristics of the experimental bench.

Item Type Size

Number of slots 48
Stator inner diameter 280 mm
Stator outer diameter 460 mm

Core length 80 mm
Number of turns 175

2.2. Numerical Calculation

To calculate the eddy current losses in the clamping structure, a 3D finite element
analysis (FEA) is performed using a custom 3D FEM software, Code_Carmel [18]. Simula-
tions are conducted under the same conditions as the experimental tests, and the 3D AC
magnetodynamic problem is resolved using the A-ϕ formulation in the time domain.

The relative magnetic permeabilities and electrical conductivities of the four materials
at room temperature are initially determined using a mini-SST (Single Sheet Tester) device
as in [19] and the four-point method [20], respectively. The resulting material properties
are summarized in Table 2.

Table 2. Magnetic and electrical characteristics of the clamping plates measured in the laboratory.

Material Relative Magnetic Permeability µr Electrical Conductivity σ (MS/m)

Aluminum 1 17.93
Brass 1 15

Stainless steel 2.08 1.39
Magnetic steel 1020 6.47

For magnetic steel, the calculation is performed using the relative permeability value
corresponding to the average magnetic flux density within the linear region of the B(H)
curve, as shown in Figure 3a. The M600-65A stator sheets were characterized using an
Epstein frame in order to obtain their magnetic properties. Figure 3b shows the B(H) curves
of the sheets as a function of frequency, whose impact is clearly visible, as increasing it
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causes a decrease in relative permeability. These curves are accurately approximated in
Code_Carmel using an interpolation method based on spline functions [16], and they will be
used for the simulations at first harmonic frequencies.
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Only a portion of the device is modeled (one slot), as depicted in Figure 4, while
considering the skin effect, whose depth can be determined by the following equation:

δ =
1√

σµπ f
(1)

where σ is the electrical conductivity (S/m), µ is the magnetic permeability (H/m), and f is
the power supply frequency (Hz).
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Thus, the mesh resolution is refined to adequately address the skin effect, particularly
in challenging conditions such as magnetic steel operating at 200 Hz with a skin depth
of about 0.4 mm. The time step for the 3D numerical calculation is 40 points per period
of the sinusoidal current signal, which corresponds to 0.5 ms at 50 Hz. Additionally, to
mitigate any numerical biases, the same mesh is employed for all calculations. Concerning
the boundary conditions, these are as follows:

• B: n = 0 in the boundary of the domain;
• E: t = 0 at the edges of the conducting devices;
• J: n = 0 on the surfaces of the pressure fingers and the clamping plate, so as to have

induced currents that do not flow out of these surfaces.
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The eddy current losses in the clamping system and the iron losses in the magnetic
core are calculated separately, where the latter are obtained from the numerical simulation
using a post-processing procedure based on Bertotti’s loss decomposition [21]. It turned
out that for the studied configuration and this type of excitation, the iron losses in the stator
are very low and therefore can be neglected compared to the Joule losses in the circular coil.
The measured active power (Pmeas) is the sum of the resistive losses in the excitation circuit
(PJ), the iron losses in the magnetic core (Piron), and the eddy current losses in the clamping
device (Peddy):

Pmeas = Peddy + PJ + Piron (2)

As a consequence, the eddy current losses in the clamping plate are simply obtained
in measurements by deducting the resistive losses in the circular inductor from the total
measured losses. The Joule losses in the circular coil (PJ = RI2) are obtained by measuring
the DC resistance in this coil for each measurement point at given current and frequency
using the ammeter–voltmeter method. This is completed while allowing time for thermal
stabilization of the circular coil. Table 3 presents the total measured losses, eddy current
losses, circular inductor resistance, and also iron losses calculation from 3D FEM for
aluminum clamping structures at 50 Hz and different current amplitudes. It can be observed
that the iron losses are very low and negligible. Furthermore, the resistance of the circular
coil remains quasi-constant regardless of the excitation current. This is achieved by allowing
the coil temperature to stabilize for each measurement point.

Table 3. Loss measurements for aluminum clamping structures at 50 Hz.

Current (A) 3 6 9 12

Measured power (W) 16.5 65.7 148.0 262.4
Eddy current losses (W) 6.6 26.1 59.0 104.2

Calculated iron losses (W) 10−3 2 × 10−3 4.5 × 10−3 7.7 × 10−3

Resistance (ohm) 1.0989 1.0985 1.0987 1.0984

Figures 5–8 show a comparison of the induced current losses in the clamping devices
obtained from measurements and simulation for aluminum, brass, stainless steel, and
magnetic steel clamping structures at 50 Hz and 200 Hz, respectively. Table 4 presents
a comparison of the measured and calculated loss values for the four materials for an
excitation current of 12 A at both frequencies. The results demonstrate a high degree
of correlation between the measurements and the 3D FEA, with an error of less than
6% for aluminum and less than 5% for brass at both frequencies. For stainless steel, the
two methods differ by 10% at 50 Hz and less than 25% at 200 Hz. The divergence between
the simulation and measurement results for stainless steel, and especially for magnetic
steel, may be attributed to a number of factors. These include the uncertainty in the
measurement of the resistance of the circular coil, which was measured as accurately as
possible as described above, as well as the uncertainty in the measurement of the electrical
conductivity of the four clamping device materials. Additionally, the effect of temperature
on these measured values may also contribute to the observed discrepancy. It is also
important to note that the discrepancy is minimal for aluminum and brass, which are non-
magnetic materials. This is why the gap is more pronounced for stainless steel and magnetic
steel. Indeed, the relative permeability of stainless steel is low, making it challenging to
determine accurately using a mini-SST, which is designed to characterize highly magnetic
materials. In the case of magnetic steel, the calculations were based on the hypothesis of
homogeneous linear permeability, which is not the case on the surface of the clamping plate
due to the deterioration it may have sustained. Furthermore, as the current frequency at
which the circular coil is supplied increases, the discrepancy in measurements for magnetic
steel and stainless steel becomes more pronounced. This is due to the growing uncertainty
in the measurement of magnetic permeability at higher frequencies.
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Table 4. Comparison of the measured and calculated loss values for the four materials with an
excitation current of 12 A at 50 Hz and 200 Hz.

Material
f = 50 Hz f = 200 Hz

3D FEM Test 3D FEM Test

Aluminum 104.2 105.2 167.3 178.3
Brass 118.1 124.5 186.1 195.7

Stainless steel 87.3 115.1 649.1 723.3
Magnetic steel 22.1 52.3 188.2 350.5

When comparing losses among the four materials, we observe that losses for aluminum
and brass exhibit similar behavior at both 50 Hz and 200 Hz, owing to their comparable
electrical and magnetic properties. In contrast, the losses for stainless steel significantly
increase at 200 Hz, surpassing those of aluminum and brass clamping structures, despite
stainless steel’s lower electrical conductivity. Magnetic steel losses also slightly exceed
those of aluminum and brass at 200 Hz.

3. Impact of Different Quantities on Eddy Current Losses
3.1. Impact of the Stator

To analyze the effect of the stator’s presence on losses caused by induced currents in
the clamping devices, the same system is evaluated without the magnetic circuit. The losses
are computed at 50 Hz for brass and at 200 Hz for magnetic steel clamping devices, with
the results presented in Figure 9. These findings indicate that for magnetic steel and brass
(and hence aluminum), the stator’s effect on losses is minimal. Indeed, Figure 10 shows
a field map of flux density B in the clamping plate and finger for stainless steel with and
without the stator, where it can be seen that flux lines in the clamping plate are in the same
direction and have equal amplitudes for both cases. While we notice a higher amplitude of
flux density at the end of the pressure finger for the case where the magnetic core is present,
this difference does not impact the total losses in the clamping structure as they mainly
occur at the plate [16].
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Figure 10. Flux density B (T) in the clamping plate and finger for stainless steel with (a) and without
(b) the magnetic core at 50 Hz.

3.2. Impact of the Distance

Since it was found that the presence of the stator does not have a significant impact
on the losses in the clamping devices, and the numerical model has been validated, the
latter can be further simplified to reduce its size and thus reduce the computational time
by considering a system consisting only of the clamping plate with the circular coil as
shown in Figure 11. This allows us to study the effect of the plate–circular coil distance (d)
on the induced current losses. Losses are calculated for an excitation current of 12 A for
four different distances, from 5 mm up to 20 mm, and in particular for d = 17 mm to be in
accordance with the distance set experimentally.
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Figure 11. Experimental bench from bottom to top: the clamping plate and the circular inductor.

The same simulation conditions as the previous test bench are considered. In what
follows, and as aluminum and brass have very similar magnetic and electrical properties,
we will present results for aluminum, stainless steel, and magnetic steel only. Tables 5 and 6
present eddy current losses calculated as a function of the supply frequency and the distance
between the clamping plate and the circular inductor (d) for aluminum, stainless steel,
and magnetic steel. Obviously, the closer the plate is to the excitation source, the greater
the losses are in the clamping plate for all materials. We also notice that the losses are the
greatest for aluminum and the lowest for magnetic steel at 50 Hz. Meanwhile, at 200 Hz,
a significant increase is noted for stainless steel compared to the other materials, and the
losses in magnetic steel surpass those in aluminum. A detailed analysis of these results is
provided in [16]. Given the significantly higher electrical conductivity of both aluminum
and magnetic steel compared to stainless steel, it is expected that local losses would be
greater in these materials. However, due to the reduced skin depth at 200 Hz, induced
currents are confined to the edges of the clamping plate.

Table 5. Eddy current losses (W) in the clamping plates at 50 Hz as a function of the distance (d).

Distance (mm)

Material 5 10 17 20

Aluminum 138.9 120.6 100.3 93.0
Stainless steel 71.3 62.0 51.5 47.8
Magnetic steel 35.0 30.0 24.4 22.7

Table 6. Eddy current losses (W) in the clamping plates at 200 Hz as a function of the distance (d).

Distance (mm)

Material 5 10 17 20

Aluminum 228.5 195.7 160.9 148.7
Stainless steel 697.0 605.7 503.6 466.7
Magnetic steel 338.4 288.2 234.4 217.8

3.3. Impact of the Clamping Plate’s Thickness

It can be stated that distance exerts a similar impact on losses regardless of the material
utilized for the clamping devices. In order to understand the results obtained above,
another aspect is the study of the impact of clamping plate material thickness on losses, by
comparing this thickness with the skin depth of each material. To investigate the impact
of clamping plate thickness, various thicknesses ranging from 0.8 mm to 55 mm were
examined, while keeping the distance between the plate and the circular coil at 17 mm as
all previous measurements and simulations had been carried out at this distance, as well as
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maintaining the excitation current at 12 A. Figure 12 demonstrates the skin effect clearly
in a 20 mm-thick aluminum clamping plate at 200 Hz, where the eddy current density
is concentrated near the surface. In comparison, at the same thickness and material, the
current flow is distributed uniformly across the entire surface of the plate at 50 Hz.
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Figure 12. Eddy current density (A/m2) for a 20 mm-thick aluminum clamping plate at (a) 50 Hz
and (b) 200 Hz.

Figure 13 illustrates the distribution of eddy current density in stainless steel at 200 Hz
for thicknesses of 10 mm, 20 mm, and 45 mm. The current density is prominently high
and evenly spread across the plate’s surface when its thickness is much less than the skin
depth of stainless steel (δ = 24 mm). As the plate thickness increases, maintaining the same
skin depth of the material, induced currents find more volume to flow through, albeit with
reduced amplitude compared to thinner plates.
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Figure 14 illustrates the calculated eddy current losses in the clamping plate at 50 Hz,
100 Hz, 150 Hz and 200 Hz, respectively, for the three materials. These results reveal a
consistent trend for aluminum and stainless steel: losses increase with clamping plate
thickness until reaching a peak at a thickness below the skin depth value. Beyond this point,
losses slightly decrease and stabilize. This behavior can be explained by the current density
maps, where thinner plates show high current density spread over the entire surface but
with limited volume for current flow, potentially resulting in lower overall losses.

In contrast, magnetic steel exhibits relatively stable eddy current losses across varying
thicknesses. This is attributed to the magnetic field and induced currents being concentrated
near the surface due to the material’s low skin depth at both frequencies. Consequently,
increasing the thickness has minimal impact on losses.

At 150 Hz and 200 Hz, the skin depth decreases for aluminum, leading to a reduction
in losses starting from thinner plates. Stainless steel, with its higher skin depth compared to
other materials, shows a similar loss evolution as at 100 Hz but with a shift in the position
of the peak losses. Although the mechanical aspects of clamping plates are not of interest
in this work, the observation that losses evolve as a function of thickness, decreasing until
they stabilize for large clamping plate thicknesses (except for magnetic steel), favors the
mechanical role of clamping plates.
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Globally, thinner clamping plates (<5 mm) would suggest the use of stainless steel to
limit eddy current losses in the whole operating frequency range. However, this may be
unsuitable in terms of mechanical strength for large electrical machines. On the other hand,
for higher clamping plate thicknesses (>10 mm), magnetic steel is the best candidate for the
industrial operating frequency, whereas aluminum exhibits better performances at higher
operating frequencies.
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4. Conclusions

This paper presented a simple and original approach to studying the effect of different
clamping plate configurations on eddy current losses in high-power electrical machines.
In particular, the clamping plate material as well as its thickness have been studied in
terms of impact on the eddy current losses. An experimental bench has been developed to
investigate the effect of the axial component of the magnetic flux on the losses in clamping
devices. The effect of different clamping plate materials has been emphasized in terms
of losses. For the considered experimental clamping plate thickness (15 mm), magnetic
steel seems to be the best choice for a low operating frequency (50 Hz), whereas brass and
aluminum have lower losses at higher frequencies (200 Hz). In addition, a numerical model
has been developed and described in detail before being validated with these experimental
results. Based on this numerical model, a parametric analysis of the losses in relation to the
clamping plate thickness has been conducted for different materials using a less complex
model that was less time-consuming to compute.
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Key findings indicate that clamping plate thickness significantly affects eddy current
losses, with thinner plates showing higher current densities but limited volume for current
flow, while thicker plates allow for current distribution across a larger volume. However,
the skin effect plays a critical role, particularly at higher frequencies, as it confines induced
currents to surface regions, impacting the loss distribution. This results in varying loss
patterns that depend significantly on the electrical and magnetic properties of the materials
used. Furthermore, the results reveal that for materials like aluminum and brass, losses
increase with thickness up to a certain point, after which they stabilize or decrease. In
contrast, magnetic steel demonstrates stable losses across varying thicknesses, primarily
due to its low skin depth.

These findings provide valuable guidelines for optimizing clamping structure designs,
suggesting that adjusting plate thickness based on material and operating frequency can
minimize eddy current losses while maintaining structural integrity.

In conclusion, this research contributes to a better understanding of how clamping
plate thickness affects eddy current losses, offering practical guidance for enhancing the
efficiency of high-power electrical machines through optimized design choices.
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