
HAL Id: hal-04838397
https://univ-artois.hal.science/hal-04838397v1

Submitted on 14 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Conflict Handling Strategies for Partially Ordered
Access Control Security Policies

Ahmed Laouar, Sihem Belabbes, Salem Benferhat

To cite this version:
Ahmed Laouar, Sihem Belabbes, Salem Benferhat. Conflict Handling Strategies for Partially
Ordered Access Control Security Policies. 2024 IEEE Pacific Rim Conference on Communi-
cations, Computers and Signal Processing (PACRIM), Aug 2024, Victoria, Canada. pp.1-6,
�10.1109/PACRIM61180.2024.10690228�. �hal-04838397�

https://univ-artois.hal.science/hal-04838397v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Conflict Handling Strategies for Partially Ordered
Access Control Security Policies

Ahmed Laouar
CRIL, Univ. Artois & CNRS
UMR 8188, Lens, France

laouar@cril.fr

Sihem Belabbes
LIASD, IUT de Montreuil

Univ. Paris 8, Saint-Denis, France
belabbes@iut.univ-paris8.fr

Salem Benferhat
CRIL, Univ. Artois & CNRS
UMR 8188, Lens, France

benferhat@cril.fr

Abstract—In access control security models, the users of an
organization’s information system may be granted with con-
flicting privileges. This is usually the case when the underlying
security policy implements both permission and prohibition rules.
In this paper, we propose to capture uncertainty in security
models, within the framework of possibility theory. We define
efficient strategies for handling conflicting privileges derived by
a security policy, based on priorities assigned to the permissions
and prohibitions. We show that these strategies are in line with
the possibilistic management of inconsistency in security policies.

Index Terms—Access Control Security Models, Inconsistency
Management, Prioritized OrBAC.

I. INTRODUCTION

Data protection and data security are major concerns for
organisations and companies dealing with large-scale infor-
mation systems. Furthermore, the collection and processing of
sensitive data must comply with strict regulations. Thus, it is
crucial to control access to an organization’s IT resources in
order to safeguard user confidentiality and data integrity.

Access control security models offer a formal specification
for security policies, which are a set of rules that regulate ac-
cess to the resources of a system. They allow the expression of
authorization rules and conditions to determine whether a user
(subject) has the permission to perform an action on a given
resource (or object). Different access control models have been
proposed in order to enhance the scope of application and use
of security policies in a formal and standardized way (see [16],
and [21] for a non-exhaustive list).

The main question here is what happens if both a grant
and a deny decision are returned following an access request.
This situation arises from the simultaneous use of different
types of privilege rules, such as permissions and prohibitions.
In fact, the simpler models address this issue by avoiding
the storage of conflicting rules. Unfortunately, this approach
is not scalable, as sophisticated and dynamic models derive
privileges from prior information on the policy elements.

Among expressive access control models, the Organisation-
Based Access Control model (OrBAC) [18] is a dynamic and
contextual model, that allows to express several types of au-
thorisation rules, including permission, prohibition, obligation
and recommendation. The presence of these rules together
may lead to authorization conflicts. In that case, the model

is described as inconsistent. This highlights the need for
appropriate conflict handling strategies.

Furthermore, the OrBAC model supports a single policy per
organization, established by a central entity. However, it does
not discuss the applicability of multiple policies at the same
time. A similar situation can, on top of driving to conflicts, lead
to the need of making a decision from incomparable policies,
i.e., no preference relation holds between them. So, while
the single policy/authority allow a natural use of total orders,
having multiple policies may imply the need to employ partial
orders. Partial orders can also result from applying different
preference relations to various elements of the policy, such as
using distinct preferences for contexts and roles.

A large body of work has been devoted to the management
of conflicting information in areas such as propositional logic,
databases and description logics [3], [9]. When faced with a
conflict, one can adopt either a risky approach, which involves
modifying or rewriting a portion of the conflicting data, or a
cautious approach that allows for reasoning in the presence of
conflicts. In the latter, one can employ a preference strategy to
discriminate a part of the conflict. Alternatively, a repair-based
strategy can be used, wherein an inconsistent knowledge base
is replaced with one or more of its consistent sub-bases.

This paper aims to set an automated approach for handling
conflicts in dynamic access control models, and reasoning with
incomparable policies. The main contributions are:

• We adapt the notion of prioritized OrBAC by introducing
fully certain and uncertain rules.

• We address the problem of conflicts handling in partially
ordered OrBAC using a direct query-oriented method.

• We propose a new method, called the OrBAC repair, inspired
by inconsistency-tolerant semantics. The method is extended
efficiently to partially ordered OrBAC.

This paper is organized as follows, Section II discusses
related work. Section III recalls the OrBAC model. Section IV
introduces the notions of priorities and inconsistency in OrBAC,
alongside a query-oriented method to resolve the conflicts.
Section V introduces an efficient method to resolve the con-
flicts. We illustrate the proposed methods with an example in
Section V-C, before concluding with a discussion.



II. RELATED WORK

The problem of handling conflicts in access control have
been widely addressed in the literature, under multiple frame-
works, the reader may refer to [17] for an overview of
the available and the possible conflict detection and resolu-
tion methods (as part of policy analysis methods). Some of
the discussed methods adopt a human assisted approach (as
in [12]), where some conflicting queries are still posed to an
administrator. Some other methods are based on argumentation
and deal with policies as arguments and possible conflicts as
attacks in the argumentation framework [10].

Conflict handling in OrBAC has already been investigated.
However, the existing methods either consider a particular
cause for the emergence of conflicts (e.g. the presence of
privileges rules with exceptions [8]), or use a general en-
coding with first-order logic [7], resulting in computational
challenges. Other methods (e.g. [6]) propose to introduce the
notion of possibilistic priorities into the OrBAC model without
addressing the issue of conflicting information.

Moreover, the authors in [15] proposed a formal way to
handle conflicts in OrBAC. Their approach addresses the short-
comings of handling conflicts in Rule-Based models. Mainly
by detecting potential conflicts between the abstract elements
of a policy to avoid conflicts on the concrete level. The method
prevents the evolution of the model in a direction that leads to a
conflict. It uses a prioritized version of OrBAC to select a more
preferable rule, when a total order relation applies between
the conflicting rules. When rules are incomparable (a partial
order is defined on the model), it requires the definition of
separation constraints between the abstract elements to avoid
conflicts. The authors demonstrate that checking a potential
conflict in the prioritized OrBAC is done in polynomial time.

Research efforts in inconsistency-tolerant semantics have
explored the notion of repair, however, repair-based ap-
proaches are hampered by high computational complexity,
except in particular frameworks such as those based on
lightweight ontologies. Indeed, the DL-Lite family of descrip-
tion logics [13] enjoy favourable computational properties and
a reasonable expressive power, which make them a formalism
of choice for many applications. For instance, DL-Lite has
been used to deal efficiently with conflicting information in
data access and query answering [3], [9].

III. ORBAC

Since its first proposition, OrBAC [18] attracted a lot of
interest in the specification and modelling of security policies.
Thanks to its ability to express a large set of access control
rules, while retaining a compact and abstract definition of the
policy. In addition, concrete access rules are inferred in OrBAC.
In the literature, several recent applications of the OrBAC model
exist, notably in domains like Security Protocols [2], IoT [19]
and Safety Engineering [14]. Moreover, the model has been
extended in different ways [1], [11].

The elements of a policy in OrBAC are divided into concrete
and abstract concepts. The concrete concepts are subject, object
and action. They represent respectively a user (a process or a

human), an inactive entity (like a shared resource or a file)
and an access operation (like read and write). Moreover, OrBAC
also considers organizations to be concrete concepts. Abstract
concepts provide a means of generalizing (or abstracting) con-
crete concepts. Hence, subjects that fulfill the same functions
are grouped in the same role, objects that satisfy common
properties are grouped in the same view and actions that share
the same principles are grouped into an activity. A subject can
play multiple roles, the same applies for objects and actions.

OrBAC links the concrete elements of a policy with the
abstract elements using the rules Employ, Use, and Consider.
Employ(org,s,r) means that the subject “s” plays the role “r”
within the organization “org”. Use(org,o,v) means that the
object “o” is used in the view “v” within the organization “org”.
Consider(org,α,a) means that the organization “org” considers
that the action “α” fall within the activity “a”. Furthermore,
a context in OrBAC determines the circumstances under which
an organization grants or denies access privileges. Indeed, a
subject may have the permission to access an object in one
context and lose that same permission in another context.
Contexts are defined using the rule Define(org,s,α,o,c), which is
interpreted as: in the organization “org” the context “c” is true
between the subject “s”, the object “o” and the action “α”.

The security policy is defined on roles, views and activities
via the rules: Permission, Prohibition, Obligation, and Recom-
mendation. Each of these rules has five arguments. The rule
Permission(org, r, a, v, c) means that the organization “org”
grants the role “r” the permission to perform the activity “a”
on the view “v” if the context “c” holds. The rules Prohibition,
Obligation, and Recommendation can be defined in the same way.

Concrete privileges represent the derived access rights of
subjects on objects with actions. These privileges are Is-
permitted, Is-prohibited, Is-obliged, and Is-recommended. The privi-
lege Is-permitted(s,α,o) means that the subject “s” is allowed to
perform the action “α” on the object “o”. The other privileges
can be defined in the same way. The derivation of these
concrete privileges is given by the following definition:

Definition 1 (Derivation of concrete rules). Concrete per-
missions are derived from abstract permissions using the
following rule:
∀org,∀s,∀α,∀o,∀r,∀a,∀v,∀c,
Permission(org,r,a,v,c) ∧ Employ(org,s,r) ∧ Use(org,o,v) ∧ Con-
sider(org, α, a) ∧ Define(org,s,α,o,c) ⊨ Is-permitted(s,α,o)
The other types of privileges are derived in the same way.

An instance of OrBAC is a knowledge base containing the
abstract and the concrete elements of the policy, the rules
connecting them and the set of the abstract rules.

Definition 2 (OrBAC instance). An instance of OrBAC is a tuple
of the form O = ⟨B,U ,P⟩. Such that B is a set of basic
concrete and abstract concepts, U is a set of rules of the form
Employ, Use, Consider and Define and P is the set of the abstract
rules Permission, Prohibition, Obligation and Recommendation.

In the remaining of this paper, we denote by O ⊨
Is-permitted(s, α, o) (resp.O ⊭ Is-permitted(s, α, o)) the fact that



a concrete permission is derived (resp. is not derived) from the
instance O (the same applies for other types of privileges).

IV. CONFLICT HANDLING IN ORBAC

In this section, we present a new representation of priorities
in OrBAC. This allows us to establish the notion of conflicts,
before introducing methods to resolve them.

A. Prioritized OrBAC

A crucial difference between the proposed representation
and those found in the literature [7], [8], [15], is the separation
of the policy elements into fully certain and uncertain rules.
This has already been discussed in [7], however, the proposed
separation does not apply uniformly throughout the model.
Our representation draws a parallel with lightweight ontolo-
gies, where separation is made between generic and factual
elements in knowledge bases.

The fully certain elements are the abstract privileges of the
policy, which are the set P in an OrBAC instance. The uncertain
elements are the rules mapping concrete concepts to abstract
concepts in the policy, which form the set U in an OrBAC
instance. The uncertain elements are associated with priorities
from a non-empty ordered set L = {w1, . . . , wn,1}. The order
defined over the elements of L is an irreflexive and transitive
binary relation which can either be:
• a total order relation, denoted > such that wi > wi−1 (for
i = 2, . . . , n), or

• a partial order relation, denoted ▷ such that some elements
of L may be incomparable, i.e., none of wi▷wi+1 or wi+1▷
wi holds. Incomparability is denoted by ▷◁.

Note that in both cases, the priority 1 represents full certainty:
∀i, 1 > wi (resp. 1 ▷ wi).

Definition 3 (Prioritized OrBAC). A prioritized OrBAC instance
is a tuple OL = ⟨B,U ,P,L⟩ such that B, U and P
are OrBAC instance elements as given by Definition 2, and
L = {w1, . . . , wn,1} is a non-empty ordered set of priorities
associated with the elements of U . Namely, Employ(org,s,r,wi),
Use(org,o,v,wj), Consider(org,α,a,wk) and Define(org,s,α,o,c,wh),
where org, s, r, o, v, α, a, c ∈ B.

This representation of uncertainty leads to some specific
aspects of the notion of conflicts:
• Conflicts cannot occur between the abstract rules, which

means that both a Permission and a Prohibition cannot be
defined for the same abstract concepts.

• The necessity to tolerate potential conflicts as defined
in [15]. A potential conflict occurs when a Permission and
a Prohibition are defined on abstract elements that might
generalize the same concrete elements.

• Conflict resolution is done on the concrete level, mainly, in
the presence of an access query.

As a consequence, the model is less restrained and more
suitable to dynamic environments. Moreover, it highlights the
need for methods to act on conflicts when they occur rather
than defining rules or conditions to avoid them.

The following definition adapts the derivation of concrete
privileges to the case of a prioritized OrBAC instance:

Definition 4 (Prioritized derivation of concrete rules).
Concrete permissions are derived from abstract permissions
using the following rule:
∀org,∀s,∀α,∀o,∀r,∀a,∀v,∀c,
Permission(org,r,a,v,c) ∧ Employ(org,s,r,w1) ∧ Use(org,o,v,w2)
∧ Consider(org,α,a,w3) ∧ Define(org,s,α,o,c,w4) ⊨ Is-
permitted(s,α,o,{w1, w2, w3, w4}).
The other types of privileges are derived in the same way.

The uncertainty over the resulting privilege is the combi-
nation of the uncertainty defined on its deriving elements.
For the sake of simplicity, the uncertain rules of the form
Employ(org,s,r,wi), Use(org,o,v,wi), Consider(org,α,a,wi) and De-
fine(org,s,α,o,c,wi) are referred to using the notation T (·, wi).
In the remaining of this paper, we consider the following form
of an access query: the subject s asks to perform the action α
on the object o, namely, Is-permitted(s,α,o)?.

B. Inconsistency in OrBAC

The following definition introduces the notion of inconsis-
tency in OrBAC:

Definition 5 (inconsistent OrBAC instance). Let OL =
⟨B,U ,P,L⟩ be a prioritized OrBAC instance. OL is said to be
inconsistent if there exists a subject “s”, an object “o” and an
action “α” such that both Is-permitted(s,α,o,{w1, w2, w3, w4})
and Is-prohibited(s,α,o,{w5, w6, w7, w8}) are derived from OL.
Otherwise, OL is said to be consistent.

A conflict in OrBAC is the minimal set of rules used to drive
both a concrete permission and a concrete prohibition for the
same “s”, “o” and “α”. Formally:

Definition 6 (OrBAC conflict). Let C be a subset of uncertain
and fully certain rules from a prioritized instance OL. C is a
conflict in OL if
• C ⊨ Is-permitted(s, α, o, {w1, w2, w3, w4}) and C ⊨

Is-prohibited(s, α, o, {w5, w6, w7, w8}), and
• ∀T (·, wi) an uncertain rule in C, (C \ {T (·, wi))} ⊭

Is-permitted(s, α, o, {w1, w2, w3, w4}) or (C \ {T (·, wi))} ⊭
Is-prohibited(s, α, o, {w5, w6, w7, w8}).

Note that unlike many other languages (like DL-Lite [13])
conflicts are not only binary, and may involve more elements.
Moreover, in this paper, we consider only conflicts between
permissions and prohibitions for the sake of simplicity; how-
ever, these methods can be easily extended.

A naive approach to compute all conflicts of an OrBAC
instance is to derive all the concrete rules, then apply some
search algorithm. This approach can be impractical when the
number of rules is large. Instead, a simple conjunctive query
can be executed on a relational database representation of the
instance to get all the conflicts.

Proposition 1. Computing all the conflicts of an OrBAC
instance is a tractable task.



Proposition 1 can be achieved using the following first order
logic conjunctive query:

Q1(s, α, o, ri, rj , ai, aj , vi, vj , ci, cj , w1, . . . , w8) =

Permission(org, ri, ai, vi, ci) ∧ Prohibition(org, rj , aj , vj , cj) ∧
Employ(org, s, ri, w1) ∧ Employ(org, s, rj , w5) ∧
Use(org, o, vi, w2) ∧ Use(org, o, vj , w6) ∧
Consider(org, α, ai, w3) ∧ Consider(org, α, aj , w7) ∧
Define(org, s, α, o, ci, w4) ∧ Define(org, s, α, o, cj , w8)

C. The Query-Oriented Method
In the case of an inconsistent prioritized OrBAC instance, as

given by Definition 5, a natural approach is to consider the
more certain derived privilege related to the subject “s”, the
action “α” and the object “o”. This means that a query of the
form Is-permitted(s,α,o)? is granted if there exists a derived
permission that is strictly more certain than any derived
prohibition. This approach focuses only on the rules that are
related to the elements “s”, “α” and “o”.

The following definition provides the conditions for a per-
mission to be granted in the case of a total order relation (>).

Definition 7 (Query-oriented method). Let OL = ⟨B,U ,P,L⟩
be a totally ordered OrBAC instance and > be the total order
defined over the priorities in L. The query Is-permitted(s,α,o)?
is granted if:
1) OL ⊨ Is-permitted(s,α,o,{w1, w2, w3, w4}) and OL ⊭ Is-

prohibited(s,α,o,{w5, w6, w7, w8}), or
2) ∃w1, w2, w3, w4 such that:

• OL ⊨ Is-permitted(s, α, o, {w1, w2, w3, w4}), and
• ∀w5, w6, w7, w8 s.t. OL ⊨ Is-prohibited(s, α, o,
{w5, w6, w7, w8}):

min{w1, w2, w3, w4} > min{w5, w6, w7, w8}
(Where min{wi, wj , wk, wh} is the least certain element).

Otherwise, the query Is-permitted(s,α,o)? is not granted.

In the case of a partial order (▷), Definition 7 cannot be
applied, as certain priorities in L are incomparable. One way to
deal with this problem is to compute all the possible total order
extensions of the partial order ▷. A family of total orders (>1

, . . . , >m) is obtained such that: strict ordering is preserved:
∀ >i, if wj▷wk then wj >i wk, and incomparability wj ▷◁ wk

is extended to either wj >i wk or wk >i wj .

Definition 8 (Partially ordered query-oriented method). Let
OL = ⟨B,U ,P,L⟩ be a partially ordered OrBAC instance and
▷ be the partial order defined over the priorities in L. Let
(>1, . . . , >m) be the total order extensions of ▷ (as defined
above). The query Is-permitted(s,α,o)? is granted if it follows
from each total order extension >i associated with the instance
OL using Definition 7.

Definition 8 ensures that a derived permission is not granted
unless it is strictly preferred to any derived prohibition. How-
ever, checking if a query follows in this case using the query-
oriented method of Definition 8 is not tractable if we explicitly
use all the total order extensions of the partial order, since their
number is exponential in the worst case.

V. THE REPAIR-BASED METHOD

In the above section, we showed that checking if a per-
mission is granted by a partially ordered inconsistent OrBAC
instance is a challenging task. In similar settings, tractable
inconsistency-tolerant semantics have been introduced to deal
with partially ordered lightweight ontologies [4], [5], [20].

In this section, we propose to apply some of these methods
to resolve conflicts in OrBAC. This can be achieved in two
ways. The first is encoding OrBAC in lightweight ontologies.
However, this can either lead to a loss of expressiveness or to
the use of a larger language, which means losing tractability.
Moreover, the cost of mapping OrBAC instances to the used
language must be taken into consideration. The second way,
which we believe is more appropriate, consists in preserving
the OrBAC model and applying the semantics on it.

A. OrBAC repair

The Cπ-repair method, which was introduced in [20], ap-
plies the possibilistic repair on each total order extension of the
partial order defined on the uncertain elements of a knowledge
base. The following definition adapts the notion of possibilistic
repair to totally ordered OrBAC instances.

Definition 9 (OrBAC Repair). Let OL = ⟨B,U ,P,L⟩ be a
totally ordered OrBAC instance. Let Rπ(OL) be a subset of OL
and wi be the least certain priority associated with an element
of Rπ(OL). Rπ(OL) is said to be a repair of OL if Rπ(OL) is
consistent and Rπ(OL)∪ {T (·, wi−1)} is inconsistent (where
T (·, wi−1) ∈ U).

Proposition 2. If Is-permitted(s,α,o) is derived from the repair
Rπ(OL) using the derivation rule given in Definition 4, then
Is-permitted(s,α,o) is granted using Definition 7.

Now, when presented with a partially ordered OrBAC in-
stance, we can follow the same logic of the Cπ-repair method
to compute a repair:
1) First, compute all the total orders (>1, . . . , >m) that extend

the partial order ▷.
2) Then, compute a repair for each total order extension >i

associated with the instance, as per Definition 9.
3) Apply the derivation of Definition 4 on each repair of a

total order extension, a set of all the concrete privileges
associated with each repair is obtained.

4) Intersect all the sets of privileges to obtain a single repair.
The approach described above guarantees that a permission

is granted if and only if it can be derived from every repair
obtained from the total order extensions of the partial order.

B. Accepted permission

As we showed before, computing the total order extensions
of a partial order is impractical. Instead, we propose a tractable
and equivalent method that allows to check if a query follows
from the described repair. The method is an adaptation of
the characterization of the Cπ-repair to OrBAC instances.
Moreover, the method is capable of checking if a permission
is granted, without computing the repair or deriving all the



privileges of an instance. The method relies on three important
notions. The conflicts, which can be computed using the query
Q1 from Proposition 1, and the concepts of support and
dominance which are given by the following definitions.

Definition 10 (Support). Let OL = ⟨B,U ,P,L⟩ be a pri-
oritized OrBAC instance. The support of the concrete permis-
sion Is-permitted(s,α,o,{w1, w2, w3, w4}) is the minimal sub-
set of rules required to derive it, i.e., the set of rules
{Permission(org,r,a,v,c), Employ(org,s,r,w1), Use(org,o,v,w2), Con-
sider(org,α,a,w3), Define(org,s,α,o,c,w4)}.

Note that a given concrete permission Is-permitted(s,α,o) may
have multiple supports, and computing all of its supports can
be done by executing a conjunctive query on the instance.

Proposition 3. Computing all the supports of the concrete
permission Is-permitted(s,α,o) is a tractable task.

Proposition 3 can be achieved using the following query:
Q2(r, a, v, c, w1, . . . , w4) = Permission(org,r,a,v,c) ∧ Em-
ploy(org,s,r,w1) ∧ Use(org,o,v,w2) ∧ Consider(org,α,a,w3) ∧ De-
fine(org,s,α,o,c,w4)

The dominance relation extends the partial order defined
over the priorities into a partial order defined over subsets
of an instance. It was initially introduced in the context of
partially ordered DL-Lite ontologies [20].

Definition 11 (Dominance). Let OL = ⟨B,U ,P,L⟩ be a par-
tially ordered OrBAC instance and ▷ be the partial order de-
fined over the priorities in L. Let S1 ⊆ U∪P and S2 ⊆ U∪P .
We say that S1 dominates S2 if ∀T1(·, wi) ∈ S1, ∃T2(·, wj) ∈
S2 such that wi ▷ wj . Where T1(·, wi), T2(·, wj) ∈ U .

Newt, we introduce the notion of accepted permissions.

Proposition 4 (Accepted permission). Let OL = ⟨B,U ,P,L⟩
be a partially ordered OrBAC instance. The query Is-
permitted(s,α,o)? is granted if ∀C a conflict of OL (as per
Definition 5), ∃S ⊆ U ∪ P such that:
1) S is a support of Is-permitted(s,α,o,{w1, w2, w3, w4}) (as

per Definition 10), and
2) S dominates C (as per Definition 11).

Proposition 5. Checking whether a given access query is
accepted using Proposition 4 is a tractable task.

C. Example

The example is a scenario of access control in a health
care unit. We consider the OrBAC instance OL that is defined
over the subject {Mary}, the object {Alex-records}, the action
{read}, the roles {anesthetist, nurse, relative}, the view {chronic-
records}, the activity {consult} and the contexts {surgery, de-
fault}. We assume a partial order that results from ordering
roles and contexts separately in the instance, with roles
and contexts being incomparable. The priorities w2, w1 are
assigned to the contexts surgery and default respectively, and
the priorities u3, u2, u1 are assigned to the roles anesthetist,
nurse and relative respectively. The partial order is given by:

1 ▷ w2 ▷ w1 1 ▷ u3 ▷ u2 ▷ u1

The different rules of the instance are the following:

ϕ1 = Permission(Hcu, anesthetist, consult, chronic-records, surgery)

ϕ2 = Prohibition(Hcu, nurse, consult, chronic-records, default)

ϕ3 = Prohibition(Hcu, relative, consult, chronic-records, default)

φ1 = Consider(Hcu, read, consult,1)

φ2 = Use(Hcu, Alex-records, chronic-records,1)

φ3 = Employ(Hcu,Mary, anesthetist, u3)

φ4 = Employ(Hcu,Mary, nurse, u2)

φ5 = Employ(Hcu,Mary, relative, u1)

φ6 = Define(Hcu,Mary, read, Alex-records, surgery, w2)

φ7 = Define(Hcu,Mary, read, Alex-records, default, w1)

Using Definition 4, the concrete privileges that can be derived
from the above OrBAC policy are:
• OL ⊨ Is-permitted(Mary, read, Alex-records, {1, u3, w2})
• OL ⊨ Is-prohibited(Mary, read, Alex-records, {1, u2, w1})
• OL ⊨ Is-prohibited(Mary, read, Alex-records, {1, u1, w1})

a) Conflicts: One can see that the instance is inconsistent
since it derives concrete permission and prohibition for the
same concrete elements. The conflicts are:
• C1 = {ϕ1, ϕ2, φ1, φ2, φ3, φ4, φ6, φ7}
• C2 = {ϕ1, ϕ3, φ1, φ2, φ3, φ5, φ6, φ7}

b) Accepted permission: Consider the following access
query: Is-permitted(Mary, read, Alex-records)?. The query has a
single support in the policy S = {ϕ1, φ1, φ2, φ3, φ6}, the
priorities associated with its uncertain elements form the set
{1, u3, w2}. In order for the query to be accepted, as per
the Proposition 4, the support S must dominate both the
conflicts C1 and C2. The dominance translates to each uncertain
element of the support being more preferred to at least one
element from the conflict. This holds for both C1 and C2.
Figure 1 illustrates the dominance of S over C1 and C2.
We conclude that the permission Is-permitted(Mary,read,Alex-
records,{1, u3, w2}) is accepted.

S: 1 u3 w2

C1: 1 u2 w1

(a) S dominates C1

S: 1 u3 w2

C2: 1 u1 w1

(b) S dominates C2

Fig. 1: −→ : the strict preference relation (▷)

VI. CONCLUDING DISCUSSIONS

Conflicts in access control models arise when both permis-
sion and denial rules are used. This paper proposes mecha-
nisms for handling conflicts, without rewriting the security pol-
icy or adding any constraints or conditions. Instead, conflicts
are addressed when answering access queries. This approach
is beneficial for dynamic environments and supports policy
evolution as well as efficient query answering.

Priorities may induce a preference relation over the rules
to resolve conflicts. Furthermore, the existing methods tend to
define more constraints when there is no preference.



Our approach considers a new version of prioritized OrBAC,
and distinguishes between fully certain and uncertain rules.
It is compatible with the framework of possibility theory for
representing uncertainty. It is inspired from inconsistency-
tolerant semantics in the context of formal ontologies.

We consider abstract rules as fully certain, and deal with
conflicts as a result of connecting abstract elements to concrete
elements. We propose two methods for handling partially
ordered OrBAC. The query-oriented method consists in defining
decision rules to conclude whether a request for a privilege is
granted or not. The total order version is trivially efficient.
Meanwhile, the partial order version considers total order
extension of the partial order, a computationally challenging
step. To resolve this issue, the repair-based method adapts the
notion of accepted permission from possibilistic lightweight
ontology repairs, to avoid enumerating all the total orders
that extend a partial order. The accepted permission method
considers all the conflicts of an instance in order to make
decisions on access queries. This approach is cautious, which
is favourable for this kind of application.

We opted for OrBAC because it is a well-formalized, dy-
namic and contextual model. The proposed methods can be
extended to other access control models. For instance, The
Role-Based Access Control can be adapted since roles are
already considered in OrBAC. However, other notions must be
taken into consideration, like hierarchies. The Attribute-Based
Access Control is also an interesting model for this kind of
applications. However, defining the separation of fully certain
and uncertain rules in this model is not straightforward and
may require introducing new rules or modifying the model.

In future work, we plan to consider other definitions of
conflicts. For instance, two roles may be disjoint and lead
to a conflict between two Employ rules for the same subject.
We also plan to automate priority assignment in the model.
Acknowledgements: This research was supported by the
European Union’s Horizon research and innovation program
under the MSCA-SE (Marie Skłodowska-Curie Actions Staff
Exchange) Call: HORIZON-MSCA-2021-SE-01; Project title:
STARWARS [grant agreement 101086252]. Ahmed Laouar’s
PhD is supported by the French national project ANR Vivah
[grant number ANR-20-THIA-0004]. This research has also
received support from the ANR project EXPIDA [grant num-
ber ANR-22-CE23-0017] and from the ANR project CRO-
QUIS [grant number ANR-21-CE23-0004].
The authors would like to thank the reviewers for their useful
comments.

REFERENCES

[1] Abou El Kalam, A., Deswarte, Y.: Multi-orbac: A new access control
model for distributed, heterogeneous and collaborative systems. In:
Proceedings of the IEEE Symposium on Systems and Information
Security (2006)

[2] Adelin, R., Nugier, C., Alata, É., Nicomette, V., Migliore, V., Kaâniche,
M.: Facing emerging challenges in connected vehicles: a formally
proven, legislation compliant, and post-quantum ready security protocol.
Journal of Computer Virology and Hacking Techniques 18(4), 425–452
(2022)

[3] Baget, J., Benferhat, S., Bouraoui, Z., Croitoru, M., Mugnier, M., Papini,
O., Rocher, S., Tabia, K.: A general modifier-based framework for
inconsistency-tolerant query answering. In: Principles of Knowledge
Representation and Reasoning (KR), Cape Town, South Africa. pp. 513–
516 (2016)

[4] Belabbes, S., Benferhat, S.: Computing a possibility theory repair for
partially preordered inconsistent ontologies. IEEE Transactions on Fuzzy
Systems pp. 1–10 (2021)

[5] Belabbes, S., Benferhat, S., Chomicki, J.: Elect: An inconsistency han-
dling approach for partially preordered lightweight ontologies. In: Logic
Programming and Nonmonotonic Reasoning (LPNMR), Philadelphia,
USA. pp. 210–223 (2019)

[6] Benferhat, S., Bouriche, K., Ouzarf, M.: On the possibilistic handling of
priorities in access control models. In: Foundations and Applications of
Intelligent Systems: Proceedings of the Seventh International Conference
on Intelligent Systems and Knowledge Engineering, Beijing, China, Dec
2012 (ISKE 2012). pp. 275–285. Springer (2014)

[7] Benferhat, S., El Baida, R.: A prioritized-based approach to handling
conflicts in access control. In: 16th IEEE International Conference on
Tools with Artificial Intelligence. pp. 286–293. IEEE (2004)

[8] Benferhat, S., El Baida, R., Cuppens, F.: A stratification-based approach
for handling conflicts in access control. In: Proceedings of the eighth
ACM symposium on Access control models and technologies. pp. 189–
195 (2003)

[9] Bienvenu, M., Bourgaux, C.: Inconsistency-tolerant querying of de-
scription logic knowledge bases. Reasoning Web: Logical Foundation
of Knowledge Graph Construction and Query Answering: 12th Inter-
national Summer School 2016, Aberdeen, UK, September 5-9, 2016,
Tutorial Lectures 12 pp. 156–202 (2017)

[10] Boella, G., Hulstijn, J., van der Torre, L.: Argument games for interactive
access control. In: The 2005 IEEE/WIC/ACM International Conference
on Web Intelligence (WI’05). pp. 751–754. IEEE (2005)

[11] Bouij-Pasquier, I., Ouahman, A.A., Abou El Kalam, A., de Montfort,
M.O.: Smartorbac security and privacy in the internet of things. In:
2015 IEEE/ACS 12th International Conference of Computer Systems
and Applications (AICCSA). pp. 1–8. IEEE (2015)

[12] Bringhenti, D., Seno, L., Valenza, F.: An optimized approach for assisted
firewall anomaly resolution. IEEE Access 11, 119693–119710 (2023)

[13] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.:
Tractable reasoning and efficient query answering in description logics:
The DL-Lite family. Journal of Automated Reasoning 39(3), 385–429
(2007)

[14] Chouchani, N., Debbech, S., Perin, M.: Model-based safety engineering
for autonomous train map. Journal of Systems and Software 183, 111082
(2022)

[15] Cuppens, F., Cuppens-Boulahia, N., Ghorbel, M.B.: High level con-
flict management strategies in advanced access control models. Elec-
tronic Notes in Theoretical Computer Science 186, 3–26 (2007).
https://doi.org/10.1016/j.entcs.2007.01.064, proceedings of the First
Workshop in Information and Computer Security (ICS 2006)

[16] Hasani, S.M., Modiri, N.: Criteria specifications for the comparison and
evaluation of access control models. International Journal of Computer
Network and Information Security 5(5), 19 (2013)

[17] Jabal, A.A., Davari, M., Bertino, E., Makaya, C., Calo, S., Verma, D.,
Russo, A., Williams, C.: Methods and tools for policy analysis. ACM
Computing Surveys (CSUR) 51(6), 1–35 (2019)

[18] Kalam, A.A.E., Baida, R.E., Balbiani, P., Benferhat, S., Cuppens, F.,
Deswarte, Y., Miege, A., Saurel, C., Trouessin, G.: Organization based
access control. In: Proceedings POLICY 2003. IEEE 4th International
Workshop on Policies for Distributed Systems and Networks. pp. 120–
131. IEEE (2003)

[19] Laamech, N., Munier, M., Pham, C.: Idsm-o: An iot data sharing
management ontology for data governance. In: Proceedings of the 14th
International Conference on Management of Digital EcoSystems. pp.
88–95 (2022)

[20] Laouar, A., Belabbes, S., Benferhat, S.: Tractable closure-based pos-
sibilistic repair for partially ordered DL-Lite ontologies. In: European
Conference on Logics in Artificial Intelligence. pp. 353–368. Springer
(2023). https://doi.org/10.1007/978-3-031-43619-2_25

[21] Mohamed, A.K.Y.S., Auer, D., Hofer, D., Küng, J.: A systematic liter-
ature review for authorization and access control: definitions, strategies
and models. International Journal of Web Information Systems 18(2/3),
156–180 (2022)


	Introduction
	Related work
	OrBAC
	Conflict handling in OrBAC
	Prioritized OrBAC
	Inconsistency in OrBAC
	The Query-Oriented Method

	The Repair-Based Method
	OrBAC repair
	Accepted permission
	Example

	Concluding Discussions
	References

