
HAL Id: hal-04838387
https://univ-artois.hal.science/hal-04838387v1

Submitted on 14 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

An Ontology-Based Approach for Handling
Inconsistency in Explainable and Prioritized Access

Control Models
Ahmed Laouar, Toky Raboanary, Salem Benferhat

To cite this version:
Ahmed Laouar, Toky Raboanary, Salem Benferhat. An Ontology-Based Approach for Handling In-
consistency in Explainable and Prioritized Access Control Models. Scalable Uncertainty Manage-
ment – 16th International Conference, SUM 2024, Sébastien Destercke; Maria Vanina Martinez;
Giuseppe Sanfilippo, Nov 2024, Palermo, Italy, Italy. pp.249-264, �10.1007/978-3-031-76235-2_19�.
�hal-04838387�

https://univ-artois.hal.science/hal-04838387v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

An Ontology-Based Approach for Handling
Inconsistency in Explainable and Prioritized

Access Control Models

Ahmed Laouar1[0009−0002−0028−3234], Toky Raboanary2[0000−0001−6133−4643],
and Salem Benferhat1[0000−0002−4853−3637]

1 CRIL, Univ. Artois & CNRS, Lens, France {laouar,benferhat}@cril.fr
2 University of Cape Town, Cape Town, South Africa traboanary@cs.uct.ac.za

Abstract. The development of secure and efficient solutions for access
control is an important issue in a variety of applications. One of the main
challenges is to avoid situations that make access control decision-making
impossible. However, avoiding such situations hampers the evolution of
the model, as it means either adding a large set of constraints or dealing
with each conflict situation. It is, therefore, important to explore methods
that deal with conflicts as they arise while providing explanations of the
decision taken. In this work, we develop an ontology to manage dynamic
and abstract access control rules based on the OrBAC (Organization-
Based Access Control) model and integrate an ordering relation over
instances of the ontology. Our method takes advantage of the applica-
tion of inconsistency-tolerant semantics to resolve conflicts and generate
explanations for transparency in decisions made. Our results show that
the approach efficiently preserves the consistency of the decision taken
and provides potentially useful and human-friendly explanations.

Keywords: Access Control · Ontology · Inconsistency · Explainability.

1 Introduction

In computer security, various mechanisms are needed to make sure that infor-
mation systems are properly accessed by authorized users. Some of these mech-
anisms focus on user authentication and identification, while other mechanisms
focus on the modelling and the specification of access rights according to the
required security policy [19]. Access control models are the main mechanisms to
achieve this objective. They serve as a tool of implementing and enforcing secu-
rity policies, by providing an access decision (grant or deny) based on some prede-
fined access control security rules. A lot of research efforts focused on proposing
different types of models [15,19], like the role-based model (RBAC) [21] and the
organisation-based model (OrBAC) [16].

In this paper, we focus on dealing with conflicts that arise in generic and
dynamic access control models. We chose the OrBAC model, mainly because it
is a dynamic model that has the capacity of inferring access rights and also

2 A. Laouar et al.

because uncertainty in the model is natural and can be represented in multiple
ways, like using possibilistic logic weights [2]. We propose to deal with conflicts
on their occurrence rather than defining rules and constraints to avoid them as
it is usually used in the literature [8].

This can be achieved by applying inconsistency-tolerant semantics [4], which
are the formal way to reason in the presence of conflicts in ontologies [5].

Therefore, OrBAC must be adapted (or encoded) in some formal ontology
fragment in order to apply such methods. More precisely, the main contributions
of this paper are as follows:
– we provide an ontology that encodes the OrBAC model, alongside the use of

hierarchies and a specific representation of uncertainty;
– we show how a partial order is propagated in the ontology using SWRL rules;
– we apply repair methods inspired from partially ordered possibilistic knowl-

edge base repairs [17] to handle conflicts;
– we provide explanations for the model decisions, with and without conflicts;
– we show that reasoning services are done with simple SPARQL queries.
Section 2 provides a refresher on OrBAC. Section 3 introduces the OrBAC ontology
and the representation of uncertainty. Section 4 introduces an efficient conflict
handling method. Section 5 provides mechanisms to generate explanations of the
decisions taken, before concluding the paper.

2 Refresher on OrBAC

The basic concepts in access control are subjects, which represent users, objects,
which are passive entities like resources and files, and actions which are the basic
operations performed by a subject on an object, like read and write. OrBAC [16]
considers these concepts as concrete entities and abstracts each of them into
an abstract entities. Subjects that fulfill same functions are grouped in roles,
objects that satisfy common properties are grouped in views and actions that
share the same principles are grouped in activities. In addition, OrBAC considers
organisations as concrete concepts, and always defines rules in an organisation.

Concrete entities are linked to abstract entities using the connection rela-
tions Employ, Use and Consider. Employ(org,s,r) means that the subject “s” plays
the role “r” within the organization “org”. Use(org,o,v) means that the object “o”
is used in the view “v” within the organization “org”. Consider(org,α,a) means that
the organization “org” considers that the action “α” fall within the activity “a”.
Moreover, OrBAC is said to be dynamic because it uses contexts. A privilege may
be granted in a context and denied in another. It can represent environmental
variables, like timeOfDay, or a particular state like emergency. Contexts are de-
fined between a subject, an action and an object in an organisation using the
relation Define such that Define(org,s,α,o,c) means that in the organization “org”,
the context “c” holds between the subject “s”, the object “o” and the action “α”.

Policy rules, which are also called abstract privileges, are defined using the
relations Permission, Prohibition, Obligation and Recommendation. Each rule admits
five arguments; Permission(org, r, a, v, c) means that the organization “org” grants

OrBAC Ontology 3

the role “r” the permission to perform the activity “a” on the view “v” if the
context “c” holds. The remaining rules are defined similarly.

Access rights, or concrete privileges, are derived for the concrete entities,
namely subjects, actions and objects. They are represented with the relations
Is-permitted, Is-prohibited, Is-obliged, and Is-recommended. The concrete privilege Is-
permitted(s,α,o) means that the subject “s” is allowed to perform the action “α”
on the object “o”. The derivation is given as follows:

Definition 1 (Derivation of concrete rules). Concrete permissions are de-
rived from an OrBAC policy using the following rule:
∀org,∀s,∀α,∀o,∀r,∀a,∀v,∀c,
Permission(org,r,a,v,c) ∧ Employ(org,s,r) ∧ Use(org,o,v) ∧ Consider(org, α, a) ∧ De-
fine(org,s,α,o,c) ⊨ Is-permitted(s,α,o)
The privileges Is-prohibited, Is-obliged, and Is-recommendedare derived similarly.

3 The OrBAC ontology

3.1 Preliminaries

An ontology can be encoded in OWL [9] using multiple syntaxes. In this pa-
per, RDF triples are used to represent the axioms of the proposed ontology,
in addition to some properties from OWL. Note that OWL is not limited to
the elements described in this paper, as it allows representing other notions
like complex concepts, subproperties, etc. The ontology is constructed from fi-
nite sets of classes C, object properties P and individuals I. The class triples
are of the form ⟨x,rdf:type,owl:Class⟩, where x ∈ C and relationships between
classes are of the form ⟨x,rdfs:subClassOf, y⟩, where x, y ∈ C. Object property
triples have the form ⟨x,rdf:type,owl:ObjectProperty⟩, where x ∈ P and ⟨x, p, y⟩ s.t.
p ∈ {rdfs:domain,rdfs:range}, x ∈ P and y ∈ C. Transitive object property triples
are of the form ⟨x,rdf:type,owl:TransitiveProperty⟩. It should be noted that prop-
erties like TransitiveProperty can be encoded in RDF triples, but are not part of
RDF/RDFS. Axioms about individuals are called assertions, and have the form
⟨x, p, y⟩, where x ∈ I is an individual, p is a property and y can be an individ-
ual or a literal. In addition, Semantic Web Rule Language (SWRL) rules [13] and
SPARQL [12] queries are used to implement reasoning services: SWRL rules can be
represented in the form φ → ϕ, where φ and ϕ are conjunction of atoms involv-
ing classes and object properties. SPARQL ASK queries check for the existence
of triples that match a specified query pattern and return True if the pattern
matches, and False otherwise. Then, SELECT queries retrieve specific data based
on the provided patterns, and the result is a set of variable bindings matching
the patterns. UNION queries combine results of multiple patterns, and the result
set includes all matches from each pattern, eliminating duplicates by default.

3.2 Ontology classes and object properties

Representing OrBAC concrete and abstract entities. Objects, subjects
and actions are represented using the classes orbac:Object, orbac:Subject and or-

4 A. Laouar et al.

bac:Action, respectively. The orbac:Organisation class represents organisations in
the model, and is also a sub class of the orbac:Subject class. They are all sub
classes of the class orbac:ConcreteConcept. Activities, views and roles are repre-
sented using the classes orbac:Activity, orbac:View and orbac:Role, respectively. They
are all sub classes of the class orbac:AbstractConcept. Moreover, the orbac:Context
class represents contexts.

Representing policy rules. The abstract policy rules, called also access types
in the following, are represented using the orbac:Permission, orbac:Prohibition, or-
bac:Obligation and orbac:Recommendation classes, which are all sub classes of the
class orbac:AccessType. Each access type is connected with its constructing el-
ements using the object properties: orbac:accessTypeOrg to link an access type
with an organisation. orbac:accessTypeRole to link an access type with a role. or-
bac:accessTypeActivity to link an access type with an activity. orbac:accessTypeView
to link an access type with a view. orbac:accessTypeContext to link an access type
with a context. Each access type instance must be connected with exactly one
entity for each of the above object properties.

Representing Connection rules. The rules linking concrete entities with
their abstractions, and the rule that defines whether a context holds or not
for a subject, an action and an object in an organisation are represented using
the classes orbac:Consider, orbac:Use, orbac:Employ and orbac:Define, which are all
sub classes of orbac:ConnectionRule. These rules are connected with their enti-
ties using the following object properties. The class orbac:Consider uses the or-
bac:considersActivity, orbac:considersAction and orbac:considersOrg object properties
to connect its instances to an activity, an action and an organisation respectively.
The class orbac:Use uses the object properties orbac:usesView, orbac:usesObject
and orbac:usesEmployer to connect its instances to a view, an object and an or-
ganisation, respectively. The class orbac:Employ uses the orbac:employesRole, or-
bac:employesEmployee and orbac:employesEmployer object properties to connect its
instances to a role, a subject and an organisation, respectively. The class or-
bac:Define uses the orbac:definesSubject, orbac:definesAction, orbac:definesObject and
orbac:definesContext properties to connect its instances to a subject, an action, an
object and a context, respectively.

Running example. In collaborative research projects, sharing resources in-
volves access to sensitive data by users from multiple organisations, which re-
quires proper access control mechanisms. We consider an example of a con-
sortium of universities. The consortium defines a permission in the secondment
context, a secondee can perform modification to the reports view, which contains
secondment reports. It also defines a prohibition for a staff member to not mod-
ify the same reports, in the default context. Moreover, the consortium considers
that the action edit falls under the activity modify and the file report1 is used
within the view reports. Assume a user called Bob, who is employed within the

OrBAC Ontology 5

:perm1 rdf:type orbac:Permission.
:perm1 :accessTypeOrg :consortium.
:perm1 :accessTypeContext :secondment.
:perm1 :accessTypeActivity :modify.
:perm1 :accessTypeView :reports.
:perm1 :accessTypeRole :secondee.

:emp1 rdf:type orbac:Employ.
:emp1 :employesEmployer :univ1.
:emp1 :employesRole :secondee.
:emp1 :employesEmployee :Bob.

:use1 rdf:type orbac:Use.
:use1 :usesEmployer :univ1.
:use1 :usesView :reports.
:use1 :usesObject :report1.

:def2 rdf:type orbac:Define.
:def2 :definesOrg :univ1.
:def2 :definesContext :secondment.
:def2 :definesSubject :Bob.
:def2 :definesAction :edit.
:def2 :definesObject :report1.

:prohi1 rdf:type orbac:Prohibition.
:prohi1 :accessTypeOrg :consortium.
:prohi1 :accessTypeContext :default.
:prohi1 :accessTypeActivity :modify.
:prohi1 :accessTypeView :reports.
:prohi1 :accessTypeRole :staffMember.

:emp2 rdf:type orbac:Employ.
:emp2 :employesEmployer :consortium.
:emp2 :employesRole :staffMember.
:emp2 :employesEmployee :Bob.

:cons1 rdf:type orbac:Consider.
:cons1 :considersOrg :consortium.
:cons1 :considersActivity :Modify.
:cons1 :considersAction :edit.

:def1 rdf:type orbac:Define.
:def1 :definesOrg :consortium.
:def1 :definesContext :default.
:def1 :definesSubject :Bob.
:def1 :definesAction :edit.
:def1 :definesObject :report1.

Fig. 1: Running example triples.

consortium as a staff member. In addition, Bob is on a secondment in univ1, thus
they are employed as a secondee there. The context default holds between Bob,
edit and report1, in the consortium, since Bob is a staff member. Moreover, the
context secondment also holds for Bob, edit and report1 since Bob is on a second-
ment. The representation of this example using the proposed orbac ontology is
given in Figure 1.

Hierarchies in the OrBAC ontology. In access control models, hierarchies de-
fine how privileges are inherited in the model. We propose the use of hierarchies
of organisations and roles, as defined in [7]. For roles, two types of relationships
are implemented: a sub-role inherits both permissions and prohibitions of a par-
ent role, and a senior-role inherits permissions of a parent role and the parent
role inherits its prohibitions. This separation results from the difference in sig-
nificance of a relationship between roles. A senior role is considered as more
privileged, thus inheritance goes upward.
– orbac:SubRole and orbac:SeniorRole classes as sub classes of the orbac:Role class.
– The orbac:hasParent property links a sub-role or a senior-role to a parent role.
– Sub-roles and senior-roles are defined in an organisation using the property

orbac:subRoleOrg, which links a sub-role or a senior-role to an organisation.
– Organisational hierarchy is represented using the orbac:subOrganisationOf object

property, which links two organisations. Every rule or relation that is defined
in a parent organisation holds for the sub-organisation, for example: if ⟨perm1,
orbac:accessTypeOrg, consortium⟩ ∧ ⟨univ1, orbac:subOrganisationOf, consortium⟩ →
⟨perm1, orbac:accessTypeOrg, univ1⟩. The inverse does not hold.

6 A. Laouar et al.

We use SPARQL queries to check if a rule is inferred from the hierarchy, without
adding the inferred axioms (triples) to the ontology.

Example 1. The following are examples of role hierarchies: the three triples on
the left indicate that a secondee is a sub-role of employee in univ1. Similarly, on
the right, the consortium considers that an employee is a sub-role of staffMember.
:secondee rdf:type orbac:subRole.
:secondee orbac:hasParent :employee.
:secondee orbac:subRoleOrg :univ1.

:employee rdf:type orbac:subRole.
:employee orbac:hasParent :staffMember.
:employee orbac:subRoleOrg :consortium.

3.3 Representation of uncertainty

The representation of priorities in OrBAC has been widely studied [3,8]. However,
the proposed solutions focus on providing a preference of application between
policy rules. The automatic assignment of preferences has been discussed in [8],
but the authors did not elaborate on how it can be achieved. In this paper, a
new representation of uncertainty is suggested, making the following separation:
– Fully certain rules: the policy rules (or access types) are established by policy

experts and must be enforced, hence, they are given the highest priority.
– Uncertain rules: are the rules connecting concrete and abstract concepts.
Uncertainty is encoded using a preference relation defined between the individ-
uals of the connection relations, namely, Employ, Consider, Use, and Define. Policy
rules are assumed to be fully certain. Defining a preference between individu-
als of the uncertain rules is achieved using the transitive object property ⟨x,
orbac:isPreferredTo, y⟩, which means x is more preferred to y. Equivalence holds
when both ⟨x, orbac:isPreferredTo, y⟩ and ⟨y, orbac:isPreferredTo, x⟩ hold and in-
comparability is the absence of both relations.

The following describes how preferences are automatically assigned to the
connection rules. The main method proceeds by ordering abstract concepts (e.g.
roles). The order is then propagated using SWRL rules. Rule R1 in Table 1 is
an example on how ordering is propagated from orbac:Role individuals to or-
bac:Employ individuals, other rules are defined similarly. Another method relies
on hierarchies to define preferences. Mainly, a sub-role and a senior-role are
considered more preferred than their parent roles. In addition, rules defined in
sub-organisations have a higher preference. Rules R2 and R3 in Table 1 are ex-
amples of rules used to propagate ordering from hierarchies. All the rules are
provided in the appendix. SWRL rules are executed efficiently using Drools [20].

Example 2. In our example, if we have ⟨secondment, orbac:isPreferredTo,default⟩ and
⟨secondee, orbac:isPreferredTo, staffMember⟩, then the SWRL rules result in ⟨emp1,
orbac:isPreferredTo, emp2⟩ and ⟨def2, orbac:isPreferredTo, def1⟩. In addition, ⟨univ1,
orbac:subOrganisationOf, consortium⟩, ⟨use1, orbac:usesEmployer, univ1⟩ and ⟨emp2,
orbac:employesEmployer, consortium⟩, result in ⟨use1, orbac:isPreferredTo,emp2⟩.

Definition 2. An orbac KB is a tuple K = ⟨T,R, TI⟩ s.t. T is a finite set of
axioms of the orbac ontology. R is a finite set of SWRL order propagation rules.
TI is a finite set of assertions (dataset) and I is the set of individuals.

OrBAC Ontology 7

Table 1: SWRL rules for order propagation. From R2. consider that r1 and r2 are
roles, if r2 is a parent role of r1, then r1 is preferred to r2.
R1: orbac:isPreferredTo(?role1,?role2) ∧ orbac:employesRole(?employ1,?role1) ∧
orbac:employesRole(?employ2,?role2) → orbac:isPreferredTo(?employ1,?employ2)
R2: orbac:hasParent(?role1, ?role2) → orbac:isPreferredTo(?role1, ?role2)
R3: orbac:usesEmployer(?use1, ?org1) ∧ orbac:employesEmployer(?employ2, ?org2) ∧
orbac:subOrganisationOf(?org1, ?org2) → orbac:isPreferredTo(?use1, ?employ2)

In the following, TI = TU ∪ TF is used to separate the assertions involving
uncertain (U) and fully certain (F) individuals. TU = {⟨x, p, y⟩ ∈ TI |x = i or y =
i s.t. ⟨i, rdf : type, t⟩ ∈ TI and t ∈ U}, where U = {orbac:Employ, orbac:Consider,
orbac:Use, orbac:Define}.

The derivation of access rights, given by Definition 1, is encoded using SPARQL
queries, called Is-permitted(s, α, o) and Is-prohibited(s, α, o), for a concrete per-
mission and prohibition, respectively, where s, α, o are a subject, action, and
object, respectively. Due to space limitations, the orbac ontology, alongside all
the queries used in this paper are provided in the appendix 3.

Example 3. In the running example, both Is-permitted(Bob,edit,report1) and Is-
prohibited(Bob,edit,report1) return true.

4 Inconsistency handling

The main objective of encoding OrBAC as an ontology is to allow inconsistency
handling as defined for formal ontologies [4]. The separation between fully cer-
tain and uncertain rules plays a key role in this application. In this section, we
introduce the different reasoning services applied to the orbac ontology. Then,
we discuss the application of partially ordered possibilistic repairs [17] to it.

4.1 Consistency checking and computing conflicts

In access control, a knowledge base is considered as inconsistent if both a per-
mission and a prohibition are inferred for the same subject, object and action.
In the access control literature, inconsistency is also referred to by the presence
of redundant rules [8]. The SPARQL query InconsistencyChecking(K) checks if at
least for one of the classes orbac:Employ, orbac:Consider, orbac:Use and orbac:Define,
two different instances are defined for the same subject, action and object, re-
spectively. And whether instances of both orbac:Permission and orbac:Prohibition are
defined for their consecutive orbac:Role, orbac:Activity, orbac:View and orbac:Context.
The query also checks if every instance is linked with the same organisation, or
with one of its parent organisations and whether the permission is linked with a
parent role or the prohibition is linked with a senior role. The definition following
establishes inconsistency in the sense of the orbac ontology:
3 All paper appendices are available at https://github.com/ahmedlaouar/orbac.owl

https://github.com/ahmedlaouar/orbac.owl

8 A. Laouar et al.

Definition 3. Let K be an orbac KB, K is inconsistent if both of the queries
Is-permitted(s, α, o) and Is-prohibited(s, α, o) return true for the same s, α, and
o (both a concrete permission and prohibition are derived).

Moreover, a conflict is the minimal set of individuals deriving both a permission
and a prohibition for the same subject, action and object.

Definition 4. Let K = ⟨T,R, TU ∪ TF ⟩ be an orbac KB. Let IU denote the
uncertain individuals involved in TU . C ⊆ IU is a conflict of K if:
– InconsistencyChecking(⟨T,R, TC ∪ TF ⟩) = True, and;
– ∀i ∈ C, InconsistencyChecking(⟨T,R, TC\{i} ∪ TF ⟩) = False.
Where TC\{i} = TC \ {⟨x, p, y⟩ ∈ TC |x = i or y = i}.

The individuals in IU (IU = {i ∈ I|⟨i, rdf:type, t⟩ ∈ TU and t ∈ {orbac:Employ,
orbac:Consider, orbac:Use, orbac:Define}}) are considered uncertain by the represen-
tation in Section 3.3. These individuals are those included in conflicts. The re-
maining individuals are fully certain or irrelevant to conflicts. Computing all the
conflicts of a KB is achieved using a SPARQL query called ComputeConflicts(K),
which is, to some extent, similar to the InconsistencyChecking(K) query.

Example 4. The query InconsistencyChecking(K) returns True from our exam-
ple, because it infers both a permission and prohibition for (Bob, edit, report1).
The conflict resulting from the query ComputeConflicts(K) contains the follow-
ing individuals: C = {emp1, use1, cons1, emp2, def1, def2}.

Proposition 1. Checking the consistency and computing the conflicts of an or-
bac KB K using the queries InconsistencyChecking(K) and ComputeConflicts(K)
are both tractable. This follows from the efficiency of the used queries.

4.2 Repair-based method

An orbac knowledge base, as given by Definition 2 is partially preordered, thanks
to the use of the property orbac:isPreferredTo. To resolve inconsistency in the
orbac ontology, we propose to adapt the notion of accepted assertion used for
DL-LiteR partially preordered possibilistic knowledge bases in [1,17]. To achieve
that, we start by introducing two notions: support and dominance. Schematically,
a request for a permission is accepted if it admits at least one support which
dominates all the supports for a prohibition [18].

Support: a support of a privilege for a given subject, action and object is the
minimal set of individuals participating in its derivation. A privilege may have
multiple supports. To compute the supports of a privilege, a SPARQL query is
used. ComputeSupportsp(K,s, α, o), s.t. p ∈ {Permission,Prohibition}, and s, α
and o are a subject, action and object, respectively, returns all the supports of
a permission involving s, α and o. A similar query to compute supports of a
prohibition is achieved by changing the requested access type with Prohibition,
considering the fact that querying for a prohibition is slightly different, as it
must check for senior roles prohibitions.

OrBAC Ontology 9

Definition 5. Let K = ⟨T,R, TU ∪TF ⟩ be an orbac KB and s, α and o be a sub-
ject, an action and an object respectively. Let IU denote the uncertain individuals
in TU . S ⊆ IU is a support of a privilege involving s, α and o if:
– ComputeSupportsp(⟨T,R, TS ∪ TF ⟩,s, α, o) ̸= ∅, and;
– ∀i ∈ S, ComputeSupportsp(⟨T,R, TS\{i} ∪ TF ⟩,s, α, o))= ∅.
Where p ∈ {Permission,Prohibition} and TS\{i} = TS \{⟨x, p, y⟩ ∈ TS |x = i or y =
i}. and TS is the set of triples involving elements of S.

Example 5. A support of the permission of (Bob, edit, report1) contains the in-
dividuals Sperm = {emp1, def2, use1, cons1}, and a support of the prohibition of
(Bob, edit, report1) contains the individuals Sproh = {emp2, def1, use1, cons1}.

Dominance: the object property orbac:isPreferredTo encodes a partial preorder
over a knowledge base. The dominance relation as defined in [17] extends the
partial preorder defined over the elements of a set into a partial preorder defined
over its subsets. We adapt this definition to the relation defined in this paper.

Definition 6. Let K = ⟨T,R, TU ∪ TF ⟩ be an orbac KB. Let IU denote the
uncertain individuals in TU . Let B1 and B2 be two subsets of IU .
B1 dominates B2 if ∀x ∈ B1, ∃y ∈ B2 s.t. ⟨x, orbac:isPreferredTo, y⟩ holds and ⟨y,
orbac:isPreferredTo, x⟩ does not hold.

Accepted permission. In the case where, for a given query, both concrete
permission and prohibition are derived, we adapt the notion of acceptance de-
fined in [17] to decide whether a permission is granted or not. The idea is to
verify for each support of a prohibition, if there exists a support of a permission
dominating it. This way, multiple supports of a permission can participate in
granting an access, while ensuring that there is no support of a prohibition that
is more preferred to all the supports of a permission. Our approach is local and
query-driven, and does not involve repairing the knowledge base. It is clearly in
the spirit of argumentation methods. The method relies on the notions of sup-
port and dominance from previous section, and avoids inferring all privileges.
Instead it checks if an access is granted using the following definition.

Definition 7. Let K = ⟨T,R, TU∪TF ⟩ be an inconsistent orbac KB. An access is
accepted for a given subject s, action α and object o, if for each Sproh a support of
a prohibition for (s, α, o) (as per Definition 5), ∃Sperm a support of a permission
for (s, α, o) s.t. Sperm dominates Sproh (as per Definition 6).

Example 6. Let us now complete our example. The consortium agreed that the
connection rule Consider is fully certain. For the privileges of Bob to edit the object
report1, in Example 5, we derived a single support for a permission Sperm and
a single support Sproh. The new supports are: Sperm = {emp1, use1, def2}, and
Sproh = {emp2, use1, def1}. From Example 2, ⟨emp1, orbac:isPreferredTo, emp2⟩,
⟨def2, orbac:isPreferredTo, def1⟩ and ⟨use1, orbac:isPreferredTo, emp2⟩. Therefore, ac-
cording to Definition 6, S dominates C, hence a permission is accepted for Bob
to edit the object report1.

10 A. Laouar et al.

Since the computation of supports is done in polynomial time, and under the
assumption that the size of the support sets of permissions and prohibitions
(for an access request) is polynomial, the decision whether or not to grant a
permission (Definition 7) is also done in polynomial time w.r.t. the size of the
dataset (data complexity).

5 Text-based generation of explanations

Explainability in AI systems is becoming crucial nowadays because transparency
is needed so that we can trust AI prediction. In Example 6, not only know-
ing that Bob can edit the object report1 is important, but also understanding
the reasons for that decision made by the AI system. Different types of expla-
nations can be provided, such as trace-based, counterfactual, contrastive and
scientific explanations [6]. Our interest is trace-based and contrastive explana-
tions. The former consists of finding the rationale that leads to the decision
made by following the steps that were taken by the AI system [6], and the
latter focuses on emphasising the features that make the differences between
facts [6]. Our method leverages InferenceQuery(K) (presented in Section 3.3),
ComputeConflicts(K) (Definition 4), ComputeSupports(K,s, α, o) (Definition 5)
and the notion of dominance (Definition 6) to generate the explanations. It makes
use of SimpleNLG [11] and nltk4 libraries for natural language generation. This
last section briefly presents our method for generating the explanations.

Algorithm 1 presents our method for generating the logic-based explanations
(L) and the explanations in natural language (V) by receiving in inputs: OrBAC
knowledge base K, subject s, action α and object o. It starts with querying K
for (s, α, o) to determine the different privileges with their justifications (stored
in t), and it computes the conflicts (lines 1-2). If there is no conflict, the access is
either permitted or prohibited where the contents of L and V explain it (lines 3-
6). Otherwise, the process assumes that the access is denied at the beginning. In
this case, the method continues with separating the 2 opposite traces: tperm for
permission and tproh for prohibition, which form L and are verbalised in V (lines
9-12). Thereafter, it computes the supports of permission and prohibition, em-
phasises the contrasts regarding the conflict by means of Cont = Sperm∆Sproh

and shows this using logic-based explanations and natural language explana-
tions (lines 13-17). The preferences related to (s, α, o) are computed to be part
of the explanations (lines 18-19) to help understand the automatic resolution of
the conflict. Lines 21-34 determine the access following Definition 6 and Defini-
tion 7. The access for (s, α, o) is granted if for each sproh ∈ Sproh, a support of
prohibition (line 21), ∃sperm ∈ Sperm, a support of permission for (s, α, o), s.t.
sperm dominates sproh (line 23). In line 24, Trace selects the preferences respon-
sible for the dominance, which is used to constitute L2 and V2. Then, the access
is permitted if i = |Sproh| holds, making L2 and V2 be part of the explanations.

4 https://www.nltk.org/

OrBAC Ontology 11

Algorithm 1: Generating explanations for the access control
Require: K, s, α, o {K = orbac KB, s = subject, α = action and o = object}

t← InferenceQuery(K, s, α, o) {t traces the inferred privileges.}
C ← ComputeConflicts(K, s, α, o)
if C = ∅ then

{NO access conflict}
Access← GetAccess(t) {Access is either permitted or prohibited.}
L← Formulate(K, t) {L: Logic-based explanations}
V ← Vsimple(K, t) {V : Verbalised explanations, Vsimple: Trace verbalisation (t)}

else
{Access conflict}
Access← false {Access is prohibited.}

{Trace-based explanations through the traces: tperm and tperm}
tperm ← SelectPermission(K, t) {tperm ∈ t where tperm concerns permission.}
tproh ← SelectProhibition(K, t) {tproh ∈ t where tproh concerns prohibition.}
L← Formulate(K, tperm) ∪ Formulate(K, tproh) {L from tperm and tproh}
V ← append(Vsimple(K, tperm), VSimple(K, tproh)) {Verbalisation}

{Trace-based and contrastive explanations from supports}
Sperm ← ComputeSupports(K, tperm) {Set of supports of permission}
Sproh ← ComputeSupports(K, tproh) {Set of supports of prohibition}
Cont← Sperm∆Sproh {Cont: contrasts between permission and prohibition}
L← L ∪ Sperm ∪ Sproh ∪ Cont {Cont presents the contrastive explanation.}
V ← append(Vsupport(Cont)) {Vsupport: Verbalisation for supports}

{Presenting the preference relations}
L← L ∪ pref(K, s, α, o) {Presenting all preferences related to (s, α, o)}
V ← append(Vpref(pref(K, s, α, o))) {Vpref: Verbalisation for preferences}

{Trace-based explanations based on dominance}
i← 0, L2 ← ∅, V2 ← ∅
for all sproh ∈ Sproh do

for all sperm ∈ Sperm do
if dominates(sperm, sproh) {Following Definition 5} then

L2 ← L2 ∪ Trace(dominates(sperm, sproh)) {Presenting the preferences}
V2 ← append(Trace(Vpref(dominates(sperm, sproh)))) {Verbalisation}
i← i+ 1
break

end if
end for

end for
if i = |Sproh| then

Access← true {By following Definition 6, the access is granted.}
L← L ∪ L2, V ← append(V2) {Providing the explanations}

end if
end if

Ensure: Access, L, V {Access = Access control, L = logic-based explanations,
V = explanations in natural language}

12 A. Laouar et al.

Access Conflict: Bob is permitted and prohibited to edit report1.
Outcome: Bob can edit report1.

Logic-based
explanation

perm1(consortium, secondee,modify, reports, secondment) ∧
emp1(univ1, bob, secondee) ∧ use1(univ1, report1, reports) ∧
cons1(univ1, edit,modify) ∧
def2(univ1, bob, edit, report1, secondment) ∧
subOrganisationOf(univ1, consortium) ⊨
Is-permitted(Bob, edit, report1)

prohib1(consortium, staffMember,modify, reports, default) ∧
emp2(consortium, bob, staffMember) ∧ use1(univ1, report1, reports) ∧
cons1(univ1, edit,modify) ∧
def1(consortium, bob, edit, report1, default) ∧
subOrganisationOf(univ1, consortium) ⊨
Is-prohibited(Bob, edit, report1)

Supports
Sperm = {emp1, def2, use1}
Sproh = {emp2, def1, use1}
Cont = Sperm∆Sproh = {emp1, emp2, def1, def2}
Outcome
Is-permitted(Bob, edit, report1) because:
⟨emp1, orbac:isPreferredTo, emp2⟩, ⟨def2, orbac:isPreferredTo, def1⟩,
⟨use1, orbac:isPreferredTo, emp2⟩

Explanation
in English

There is a conflict. Bob, a secondee at consortium, can edit report1. Bob
is permitted to modify reports in a secondment context, where report1
is considered as reports, edit it is classified as a modify activity, and
univ1 is part of consortium. Bob, a staffMember at consortium, cannot
edit report1. Bob is prohibited to modify reports in a default context,
where report1 is considered as reports, edit it is classified as a modify
activity, and univ1 is part of consortium. There are contrasts: (a) Bob
is a secondee at consortium, and Bob is a staffMember at univ1. (b) In
univ1, the context secondment holds between Bob, report1 and edit, and
in consortium, the default context holds between Bob, report1 and edit.
Bob can edit report1 because: (1) ‘Bob is a secondee at consortium’ is
preferred to ‘Bob is a staff member at univ1’. (2) ‘In univ1, the second-
ment context holds between Bob, report1 and edit’ is preferred to ‘In
consortium, the default context holds between Bob, report1 and edit’.
(3) ‘report1 is used in reports at univ1’ is preferred to ‘Bob is a staffMem-
ber at univ1’.

Table 2: Example of a conflict of access. The explanations show why access is
permitted and prohibited and why the final outcome is granted. The presentation
of preferences is omitted for the sake of space.

Logic-based explanations. Formulate(K, t) translates the results t from
querying K to logic-based representation. See the second line in Table 2 as an
illustration. Sperm∪Sproh∪Cont, where Cont = Sperm∆Sproh shows the contrast

OrBAC Ontology 13

between the supports. pref(K, s, α, o) presents the list of preference relations that
are involved in determining the privilege for (s, α, o).

Explanations in natural language. Concerning verbalisation, we used
a template-based approach to generate explanations in natural language be-
cause the structure of an ontology is fixed. A template is a linguistic structure
with gaps designed to be completed to form a sentence [10]. A linguistic tem-
plate has been developed for each case, and the selected individuals from K
fill in the gaps. See the third line, in Table 2 as an illustration. Vsimple(K, t)
uses the following template: “[subject], [role] at [Organisation], [ability] [action]
the [object], and [Organisation] is part of [Organisation2]. This is because [subject]
is [decision] to [activity] [view] in [context] context, where [object] is considered
as [view], and [action] it is classified as a [activity] activity.”, where “[x]” repre-
sent a gap to be replaced. “[ability]” is either ‘can’ or ‘cannot’ if the access is
permission or prohibition, respectively. “ [decision]” is either ‘permitted’ or ‘pro-
hibited’ if the access is permission or prohibition, respectively. The other gaps
are replaced by the individuals in t. Vsupport and Vpref follow the same principle.
Vsupport(V) = Vind(v1) + · · · + Vind(vn), where v1, . . . , vn ∈ V are individuals,
and Vind is a template-based verbaliser like Vsimple. We defined a template for
each entity, and the algorithm selects the individuals to render the explana-
tions. As an illustration, the template “[subject] is [role] at [Organisation]” is
a template for the entity Employ. Then, using it, Vind(emp1) generates ‘Bob is
a secondee at univ1’. In the case of contrast (line 17), the supports with the
same classes are verbalised in parallel. Lastly, Vpref(P) = Vpref’(p1(a1, b1)) +
· · · + Vpref’(pm(am, bm)), where p1(a1, b1), . . . , pm(am, bm) ∈ P are the prefer-
ences responsible for the dominance, a1, . . . , am, b1, . . . , bm are individuals, and
Vpref’(pi(ai, bi)) = Vind(ai) + ‘is preferred to’ + Vind(bi), with 1 ≤ i ≤ m.

Discussions. We generated all privileges from our knowledge base, and the
authors judge that the generated explanations are useful to help understand
the outcome. We used a grammar checker: language_tool_python5 for getting
an insight into the grammaticality, and it is positive. We also used automatic
metrics to know the readability of the explanations in natural language. As a
result, the reader needs to have at least some college education, which is in line
with the education of administrators. However, the best method to evaluate the
quality of generated texts is through human evaluation [14], and the usefulness
of the explanations has been checked by the authors. We can just say that the
method has the potential to be useful and human-friendly. Details of this simple
evaluation are available in the appendix 6.

6 Concluding discussions

In this paper, we propose an access control system relying on an ontology of
the OrBAC model, on a SPARQL query engine to perform reasoning services and
5 https://pypi.org/project/language-tool-python/
6 All paper appendices are available at https://github.com/ahmedlaouar/orbac.owl

https://github.com/ahmedlaouar/orbac.owl

14 A. Laouar et al.

on a SWRL rules engine to automatically assign priorities in the ontology. We
showed the efficiency of the different reasoning services and provided a new
method to resolve conflicts, relying on inconsistency-tolerant semantics, which
were initially defined for lightweight ontologies. Furthermore, trace-based and
contrastive explanations are generated to support the decision made. Through a
simple study, we found that the generated explanations are potentially useful and
human-friendly. There is room for improvement. The importance of permission
and prohibition are equal in our explanation generation, whereas prohibition
might be essential. In addition, discriminating supports and conflicts may reduce
the number of explanations while focusing on the relevant ones.

Acknowledgments. This research was supported by the European Union’s Horizon
research and innovation programme under the MSCA-SE (Marie Skłodowska-Curie Ac-
tions Staff Exchange); Call: HORIZON-MSCA-2021-SE-01; Project title: STARWARS
(STormwAteR and WastewAteR networkS heterogeneous data AI-driven management)
[grant agreement 101086252]. This research has also received support from the ANR
project EXPIDA (EXplainable and parsimonious Preference models to get the most
out of Inconsistent DAtabases), [grant number ANR-22-CE23-0017]. THR acknowl-
edges support from the Hasso Plattner Institute for Digital Engineering through the
HPI Research School at UCT. A. Laouar’s PhD is supported by the ANR project Vivah
(Vers une intelligence artificielle à visage humain) [grant number ANR-20-THIA-0004].

References

1. Belabbes, S., Benferhat, S.: Computing a possibility theory repair for partially
preordered inconsistent ontologies. IEEE Transactions on Fuzzy Systems 30(8),
3237–3246 (2021)

2. Benferhat, S., Bouriche, K., Ouzarf, M.: On the possibilistic handling of priori-
ties in access control models. In: Foundations and Applications of Intelligent Sys-
tems: Proceedings of the Seventh International Conference on Intelligent Systems
and Knowledge Engineering, Beijing, China, Dec 2012 (ISKE 2012). pp. 275–285.
Springer (2014)

3. Benferhat, S., El Baida, R.: A prioritized-based approach to handling conflicts in
access control. In: 16th IEEE International Conference on Tools with Artificial
Intelligence. pp. 286–293. IEEE (2004)

4. Bienvenu, M., Bourgaux, C.: Inconsistency-tolerant querying of description logic
knowledge bases. Reasoning Web: Logical Foundation of Knowledge Graph Con-
struction and Query Answering: 12th International Summer School 2016, Ab-
erdeen, UK, September 5-9, 2016, Tutorial Lectures 12 pp. 156–202 (2017)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385–429 (2007)

6. Chari, S., Seneviratne, O., Gruen, D.M., Foreman, M.A., Das, A.K., McGuinness,
D.L.: Explanation ontology: a model of explanations for user-centered ai. In: In-
ternational Semantic Web Conference. pp. 228–243. Springer (2020)

7. Cuppens, F., Cuppens-Boulahia, N., Miège, A.: Inheritance hierarchies in the or-
bac model and application in a network environment. Proc. Foundations of Com-
puter Security (FCS04) pp. 41–60 (2004)

OrBAC Ontology 15

8. Cuppens, F., Cuppens-Boulahia, N., Ghorbel, M.B.: High level conflict manage-
ment strategies in advanced access control models. Electronic Notes in Theoretical
Computer Science 186, 3–26 (2007), proceedings of the First Workshop in Infor-
mation and Computer Security (ICS 2006)

9. Dean, M., (eds.), G.S.: OWL Web Ontology Language Reference. World Wide Web
Consortium, Recommendation REC-owl-ref-20040210 (February 2004)

10. Gatt, A., Krahmer, E.: Survey of the state of the art in natural language generation:
Core tasks, applications and evaluation. Journal of Artificial Intelligence Research
61, 65–170 (2018)

11. Gatt, A., Reiter, E.: Simplenlg: A realisation engine for practical applications.
In: Proceedings of the 12th European workshop on natural language generation
(ENLG 2009). pp. 90–93 (2009)

12. Harris, S., (eds.), A.S.: SPARQL 1.1 Query Language. World Wide Web Consor-
tium, Recommendation REC-sparql11-query-20130321 (March 2013)

13. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. World
Wide Web Consortium, Member Submission SUBM-SWRL-20040521 (May 2004)

14. Howcroft, D.M., Belz, A., Clinciu, M., Gkatzia, D., Hasan, S.A., Mahamood, S.,
Mille, S., Van Miltenburg, E., Santhanam, S., Rieser, V.: Twenty years of confusion
in human evaluation: Nlg needs evaluation sheets and standardised definitions. In:
13th International Conference on Natural Language Generation 2020. pp. 169–182.
Association for Computational Linguistics (2020)

15. Jabal, A.A., Davari, M., Bertino, E., Makaya, C., Calo, S., Verma, D., Russo, A.,
Williams, C.: Methods and tools for policy analysis. ACM Computing Surveys
(CSUR) 51(6), 1–35 (2019)

16. Kalam, A.A.E., Baida, R.E., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte,
Y., Miege, A., Saurel, C., Trouessin, G.: Organization based access control. In:
Proceedings POLICY 2003. IEEE 4th International Workshop on Policies for Dis-
tributed Systems and Networks. pp. 120–131. IEEE (2003)

17. Laouar, A., Belabbes, S., Benferhat, S.: Tractable closure-based possibilistic repair
for partially ordered DL-Lite ontologies. In: European Conference on Logics in
Artificial Intelligence. pp. 353–368. Springer (2023)

18. Laouar, A., Belabbes, S., Benferhat, S.: Conflict handling strategies for partially
ordered access control security policies. In: 2024 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing (PACRIM). pp. 1–6 (2024)

19. Mohamed, A.K.Y.S., Auer, D., Hofer, D., Küng, J.: A systematic literature review
for authorization and access control: definitions, strategies and models. Interna-
tional Journal of Web Information Systems 18(2/3), 156–180 (2022)

20. Proctor, M.: Drools: a rule engine for complex event processing. In: Applications of
Graph Transformations with Industrial Relevance: 4th International Symposium,
AGTIVE 2011, Budapest, Hungary, October 4-7, 2011, Revised Selected and In-
vited Papers 4. pp. 2–2. Springer (2012)

21. Sandhu, R., Ferraiolo, D., Kuhn, R.: The nist model for role-based access control:
Towards a unified standard. In: Proceedings of the Fifth ACM Workshop on Role-
Based Access Control. p. 47–63. RBAC ’00, Association for Computing Machinery,
New York, NY, USA (2000)

	An Ontology-Based Approach for Handling Inconsistency in Explainable and Prioritized Access Control Models

