
HAL Id: hal-04709539
https://univ-artois.hal.science/hal-04709539v1

Submitted on 25 Sep 2024 (v1), last revised 7 Oct 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Finding Counter-Models: Approach Based on
Instantiating Abstract Sets

Daniel Crowley, Daniel Le Berre, Olivier Roussel, Yakoub Salhi

To cite this version:
Daniel Crowley, Daniel Le Berre, Olivier Roussel, Yakoub Salhi. On Finding Counter-Models: Ap-
proach Based on Instantiating Abstract Sets. CRIL. 2024. �hal-04709539v1�

https://univ-artois.hal.science/hal-04709539v1
https://hal.archives-ouvertes.fr

On Finding Counter-Models: Approach Based on

Instantiating Abstract Sets
BLaSST ANR-21-CE25-0010, Deliverable D4.1
SMT-Solver Integrating SAT-Based Techniques

Daniel Crowley, Daniel Le Berre, Olivier Roussel, Yakoub Salhi

Univ. Artois, CNRS, UMR 8188, Centre de Recherche en Informatique de
Lens (CRIL), F-62300 Lens, France

{crowley, leberre, roussel, salhi}@cril.fr

1 Introduction

The tool set-sizing-for-counter-models was designed for aiding in finding counter-
models to B language machines by establishing adequate sizes for sets that are
abstract in the original specification. The canonical intention of the authors was
to use set-sizing-for-counter-models for preprocessing before using SMT-solvers
on its output.

The development of set-sizing-for-counter-models has been a part of the
Enhancing B Language Reasoners Using SAT and SMT Techniques (BLaSST)
project, funded by the ANR and involving Inria in Nancy, CRIL in Lens, and
the Montefiore Institute in Liège. The software is available under the GNU
Lesser General Public License.1

2 Set Sizing

The B language is founded on set theory and proves the validity of abstract B
language machines or refinements of abstract machines or of other refinements.
A machine can be populated with abstract or concrete sets, where the concrete
sets’ sizes are set by the length of the enumeration of their elements. Abstract
sets’ sizes are unknown and the verification of a machine requires for the proof
to hold for every possible size of the abstract sets. This situation can require
very large search spaces.

Some restrictions are placed on the sizes of the sets in the PROPERTIES sec-
tion of a machine. Only if these PROPERTIES obtain can a machine be shown
to be invalid. The purpose of set-sizing-for-counter-models is to seek precise

1https://github.com/crillab/set-sizing-for-counter-models

1

cardinalities for the abstract sets. With the supposition that constraints
regarding the sizes of sets are put forth in the PROPERTIES section and
not in other sections for premisses, set-sizing-for-counter-models claims to
provide counter-examples to B machines by instantiating the abstract sets with
concrete sets of sizes suitable for satisfying the PROPERTIES, and finding that
the goals fail to hold. This amounts to encoding and satisfying the constraints
in all of the Define tags in a POG file named “ctx”, “lprp”, “inprp”, or “sets”.

When a machine is invalid, it is good to know so and to get an instance of
the machine failing. Instantiating the abstract sets in the premisses can make
the task of finding such counter-models easier.

3 How set-sizing-for-counter-models Works

3.1 Pseudo-Boolean Encoding

This software serves as a preprocessing step using SAT-solving before passing
the machine to an SMT-solver. This is one way for SAT-solving techniques
to help SMT-solvers in finding counter-models to B language machines. The
chosen way to do this for set-sizing-for-counter-models was to translate the
inputs to OPB format, which is read by pseudo-Boolean solvers. More specif-
ically, they are translated to the restricted form used for the pseudo-Boolean
solver competition in 2024 [3]. This is one possible avenue for integrating SAT-
solving techniques, and pseudo-Boolean reasoning [4] is one appropriate choice
for putting cardinality to the fore.

3.1.1 Linear Pseudo-Boolean Problem

In general, a linear pseudo-Boolean problem instance is a conjunction of con-
straints of the following form: ∑

i

cixi ▷◁ α (1)

All of the xs are propositional variables that, in each pseudo-Boolean con-
straint, take either the value of 0 or 1 according to whether the variable is
valuated as true or false. Each integer constant ci is the multiplicative co-
efficient of each corresponding xi, and α, the degree of the constraint, is an
integral constant that is compared to the sum of the products of the variables
and their coefficients. Each ci and α can be positive or negative. Non-linear
pseudo-Boolean constraints additionally admit the product of variables, but
such constraints are unnecessary for this encoding.

The ▷◁ in Clause 1 can sometimes represent any comparison of equality or
directed inequality, but in the restricted format used for pseudo-Boolean solver
the possibilities are reduced to the operations of equality and being greater than
or equal to (= or ≥).

Another notable difference between the general and restricted formats is
that negative literals of propositional variables cannot appear in the restricted

2

format. These restrictions require at times extra steps in the encoding, but the
restricted encoding is favoured in order to simplify as much as possible the work
of the pseudo-Boolean solver.

As stated, the format describes instances of the pseudo-Boolean satisfiabil-
ity problem, and such files in the OPB format tend to be given the extension
.pbs. The aim of such solver is to find some interpretation of the variables
of the instance that makes all of the constraints true. The more difficult opti-
mization problem additionally requires the solver to find an interpretation that
minimizes a cost function. The format for optimization instances, usually given
the extension .pbo when in OPB format, differs from a .pbs file by including
as well a single line defining the cost function.

3.1.2 Encoding SETS

The sets of the B language machine are encoded as .pbo files elementwise.
When the upper bound is k, the set is given an array of k variables to represent
possible elements.

A set in the original specification could be either abstract without any infor-
mation about the cardinality that it must ultimately have, or concrete where its
elements are enumerated and its cardinality can be gathered thereby. When a
set is abstract, a constraint that the unweighted sum of its variables be at least
one is included because, in B language machines, abstract sets are non-empty
by design. On the other hand, concrete sets are constrained to have exactly
as many elements as are enumerated, so the unweighted sum of its variables is
equal to that number of enumerated values.

The cost function is determined based on the SETS section alone, and is
realized by fleshing out the following schema:

min :
∑

a∈AbsSets

k∑
i=1

xai. (2)

Here, k is the upper bound on how large an abstract set is allowed to be,
so the sum is over all of its allotted variables. The motivation is to find the
smallest satisfying cardinalities for the abstracts by minimizing the sum of the
union of the variables of all of the abstract sets.

3.1.3 Encoding PROPERTIES

Seeing as ultimately abstract sets will be replaced with concrete sets of selected
sizes, for this encoding to be correct, it must depend on the sizes of sets in the
interpretation and only be satisfiable if the original machine’s PROPERTIES are
satisfiable. Because of this, the focus in encoding the PROPERTIES is to reflect
their constraints as comparisons of set cardinalities. This can require, on top
of the already included abstract and concrete sets, new auxiliary sets. These
auxiliary sets each get their own array of propositional variables to represent
their potential elements, and differ from the concrete sets in not having, a priori,

3

a predefined size and from the abstract sets in that they are not necessarily non-
empty. When the upper bound on abstract set sizes is k, and there is no other
information about the intermediary set’s size, it is k-dimensional. Sometimes
an auxiliary set can be given a larger array if there is reason to do so, and
because the upper bound is for abstract sets. For example, if the auxiliary set
is known to represent a set with l more elements than a given abstract set, then
the auxiliary set’s array will be k + l-dimensional to allow for the possibility of
the bound on the abstract set’s size being tight.

Subsequently, the PROPERTIES constraints are encoded fundamentally as
comparisons of set sizes. Simply this would come to affirming the difference
between two sets being greater than a given integer according to the constraint
in question, and this would look like:∑

x∈ArrA

+1x+
∑

y∈ArrB

−1y ≥ α (3)

However, because of some auxiliary sets being defined relative to other sets
and some of the abstract and concrete sets’ cardinalities depending only indi-
rectly on other sets’ cardinalities, and because not every PROPERTIES constraint
is simple and encodable in one constraint, but rather being constraints depend-
ing on others, the naive constraint schema in Inequality 3 is not always adequate.

Instead, again more auxiliary variables are introduced to represent con-
straints that are used for reasoning but not necessarily affirmed unconditionally,
and that are designed to be true if and only if the constraint is true. This can
be formalized, with s as the auxiliary variable, as:

s⇔
∑

x∈ArrA

+1x+
∑

y∈ArrB

−1y ≥ α (4)

To ensure that this situation holds, all constraints of the type found in In-
equality 3 are replaced with two related constraints that bind s to a constraint
in both directions. This works by finding some reformulation of the original
constraint and including s with a large enough coefficient, M , that render the
other variables irrelevant for that constraint depending on the valuation of s.
Each M is determined by the sets being compared and the degree of their com-
parison. Because of this, the M can differ for every reifying auxiliary variable,
and even between the two directions of implication that are required to bind
the variable to the original constraint.

This is most straightforward when s implies the constraint. After, in order to
abide by the restricted format, avoiding negative literals by inserting s’ integral
complement in one instead of ¬s, the entailment of the original constraint by s
is assured by such inequalities as:

M(1− s) +
∑

x∈ArrA

+1x+
∑

y∈ArrB

−1y ≥ α (5)

The required M needs to be large enough for the constraint to be satisfied
whenever s, the antecedent variable, is false. Such a sufficiently large number

4

can be selected by starting from the degree, and adding the number of variables
that count as potential elements of the subtrahend set, that is, the degree plus
the size of the array of variables representing the second set or α + |ArrB|.
This would allow for the constraint to be made true once s is false, even if the
first set takes its lowest possible cardinality, which is zero when any of abstract,
concrete or, most notably, auxiliary sets are allowed for, and if the second set
takes its greatest possible cardinality, which is the size of the array of variables
that represents it. Plugging in this M expands to:

α+ |ArrB| − (α+ |ArrB|)s+
|ArrA|∑
i=1

+1xi +

|ArrB|∑
j=1

−1yj ≥ α (6)

Then, after rearranging for tidiness we arrive finally at Inequality 9.
Conversely, enforcing the disentailment of the original constraint by the

negation of s requires combining the negation of the original constraint with
s multiplied by some M . The negation of the original constraint is as laid out
as: ∑

x∈ArrA

+1x+
∑

y∈ArrB

−1y < α (7)

Yet, to suit the restricted format, some adjustments are called for. Both
sides are negated in order to reverse the comparison’s direction and one is added
to the smaller side to weaken the strict superiority. Continuing from there by
positioning the newly positive sum of the second set’s elements before the newly
negated sum of the first set’s elements, the prvious inequality is more felicitously
formulated as: ∑

y∈ArrB

+1y +
∑

x∈ArrA

−1x ≥ 1− α (8)

From this point in the derivation, one need only add s’ positive literal mul-
tiplied by some M , to arrive at where Inequality 5 is in the other direction.
The required M is once again the sum of the right-hand side of the inequality
and the coefficient of the subtrahend, and there is not even need to tidy up the
inequality thereafter, giving Inequality 10 as the result.

(−α− |ArrB|)s+
|ArrA|∑
i=1

+1xi +

|ArrB|∑
j=1

−1yj ≥ −|ArrB| (9)

(|ArrA|+ 1− α)s+

|ArrB|∑
j=1

+1yj +

|ArrA|∑
i=1

−1xi ≥ 1− α (10)

Equipped with these two inequalities, the PROPERTIES are explored recur-
sively, passing reifying auxiliary variables to higher constraints. If the constraint
is not depended upon by another constraint, but directly in the specification in
its own right, then the selector is asserted to be true in the following way:

5

+1s ≥ 1 (11)

An equality would be correct as well, but it is nice for solvers to favour
greater than or equal to when possible.

Small Example As a demonstration, let us take a small upper bound of
k = 4 and consider parts of the beginning of the following machine encountered
during the B MOOC2:

MACHINE

Club

SETS

REPORT = {yes, no};

NAME

...

PROPERTIES

capacity : NAT1 &

capacity <= 100 &

NAME : FIN(NAME) &

card(NAME) > capacity &

total : NAT1 & total > capacity &

MAX_NAME : NAT1 &

card(NAME) = MAX_NAME + 1

...
To the enumerated set REPORT are attributed the first variables, and, because

the set is known to have exactly two elements, these are x1 and x2, which must
both be true. This gives the constraint:

+1 x1 +1 x2 >= 2;

The abstract set NAME could have any super-zero cardinality up to k, so
receives the next four variables, at least one of which must be true:

+1 x3 +1 x4 +1 x5 +1 x6 >= 1;

Turning to the final constraint in PROPERTIES, one can read that the car-
dinality of NAME is one greater than MAX NAME. MAX NAME is first found in the
CONSTANTS section, which is important for the specification of a B machine,
but is significant to set-sizing-for-counter-models solely in so far as it occurs in
PROPERTIES. When a human reads the machine, it is evident that card(NAME)
- MAX NAME = 1 would suffice, but to facilitate reading POG files more au-
tonomously, an intermediate set is introduced for MAX NAME + 1.

2https://mooc.imd.ufrn.br/course/the-b-method

6

Because of previous sets and variables, MAX NAME happens to be encoded by
the four Boolean variables from x33 to x36, and (+)(1,MAX NAME) is encoded
by the five Boolean variables from x44 to x48, both times inclusive. The vari-
able reifying the state of affairs where the new set is at least one greater than
MAX NAME is x56, and the variable reifying the fact that MAX NAME is at most one
less than the new array is x57. Both variables are encoded and asserted. The
variable x56 is encoded as follows, and x57 is treated analogously.

-5 x56 +1 x44 +1 x45 +1 x46 +1 x47 +1 x48 -1 x33 -1 x34 -1 x35 -1 x36 >= -4;

+6 x56 +1 x33 +1 x34 +1 x35 +1 x36 -1 x44 -1 x45 -1 x46 -1 x47 -1 x48 >= 0;

+1 x56 >= 1;

The handling of the equality of NAME and (+)(1,MAX NAME) is again similar.

Version 0
This version handles:

• both binary predicates,

• some expression comparisons,

• quantified expressions if they are existential,

• the unary predicate, and

• both n-ary predicates.

3.2 From OPB to POG

By running a pseudo-Boolean solver on the encoding from the previous subsec-
tion, the software looks for set sizes of abstracts sets in a machine with which
the constraints set by the hypotheses can be satisfied. If definite sizes are found
that fulfill these requirements and the goal fails to be satisfied, then the machine
is known to be invalid, and the instantiated sets are themselves a counter-model
to the machine.

This software helps get to the desired state by finding models of the pre-
misses. As in Algorithm 1, set-sizing-for-counter-models explores the SETS and
PROPERTIES sections of a POG file, and when the encoding from the previous
subsection is ready, it is passed to a pseudo-Boolean solver that attempts to find
a solution. The successful situation arises when the solver finds such a solution,
which can then be used for setting concrete sizes in a new POG file. This will
be returned if found. If not, either there is none to be found or the upper bound
is too low to find one.

7

Algorithm 1 set-sizing-for-counter-models

pog ← input POG file
k ← upper bound on set size
enc← k-parameterized, pseudo-Boolean encoding of pog’s sets and prerequi-
sites
model← model output by pseudo-Boolean solver run on enc
if model is not nil then

outpog ← pog with abstract sets replaced with concrete sets of found sizes
Return outpog

else
Return nil

end if

4 Full Pipeline

set-sizing-for-counter-models accepts input in POG format, meaning the XML
files translated to with the full pogenerate command (or po, both with argu-
ment 0 after the machine name) of ClearSy’s Atelier B3 from machines written
in the B language.

If suitable sizes are found, the tool can output a POG file with the abstract
sets replaced with appropriate concrete sets.

4.1 Bigger Picture

To integrate the outputs of set-sizing-for-counter-models into an SMT-solving
tool, the concretized POG file can be translated into SMT-lib (or TPTP) format
using ClearSy’s pptranspog4 tool. If the SMT problem instance is satisfiable,
then the model it returns is a counter-model to the machine. Such a pipeline
for this purpose can be read from Algorithm 2.

5 Experimentation

As another part of the BLaSST project, ClearSy has provided anonymized POG
files from 5434 real-life B language machines defined for clients’ purposes.

Unless there are mistakes, all of the machines were valid, and should never
have counter-models. This would make set-sizing-for-counter-models irrelevant
for any of the examples, so the data need to be preprocessed for experimentation.
A machine is a miracle machine if its premisses are contradictory, and so will
be trivially valid regardless of the quality of its goals. If a machine is originally
valid, then, as long as it is not a miracle machine, negating its goals will lead
to an invalid machine.

3https://www.atelierb.eu/en/atelier-b-tools/
4https://github.com/CLEARSY/pptranspog

8

Algorithm 2 Seeking Counter-Models

inpog ← input POG file
k ← upper bound on set size
newpog ← set-sizing-for-counter-models(inpog, k)
if newpog is not nil then

smt← pptranspog(newpog)
state← SMT-solver(smt)
if state is sat then

counter model← satisfying model
Return counter model

end if
end if
Return failure

This negation was applied to all of the provided POG files. This application
does not guarantee that each proof obligation will be invalid (because only one
needs to be invalid to invalidate the machine), or that any will be (because it
could have been a miracle machine), so the new generations had to be checked for
validity by other means. In particular, two SMT-solvers, cvc55 and z36, were run
on the pptranspog translations of the generations. When either solver returned
unsat, the proof obligation was taken to be valid, and so was removed from the
test suite. A solver returning sat could fortify credence in the proof obligation
being invalid, but in fact this very rarely happened. Instead, answers of unknown
or timeouts were common. This fact implies that there is not certainty about the
invalidity of the proof obligations used in the experiments, which is unfortunate,
but if the SMT-solvers had easily found invalidity on their own, such a result
would undermine the value of set-sizing-for-counter-models in the first place.

For experimentation, set-sizing-for-counter-models was run on the negations
that are not yet believed to be valid and that include abstract sets in their
specification. These constraints reduce the usable machines from 5434 to 3809.

The experiments tested how efficacious and efficient the tool is when applied
to the use case of helping churning out counter-models from POG files using
SMT-solvers after SAT-based preprocessing.

1. First the POG files were input to set-sizing-for-counter-models with a
maximum set size of 50 elements, which possibly output encodings as
pseudo-Boolean optimization problem instances.

2. These optimization problem instances were input to Exact7 with the func-
tion to minimize being the sum of all the variables representing possible
elements of the originally abstract sets.

3. If Exact successfully produced a model, new POG files were generated

5https://github.com/cvc5/cvc5
6https://github.com/Z3Prover/z3
7https://gitlab.com/nonfiction-software/exact, [2]

9

Table 1: Summary of Results with Upper Bound of 50

Number Avg. time (ms)

Encoding as .pbo 231 10.2251

UNSAT PB 90

Optimal models 141 47.994

To POG 141 6.42553

To SMT-lib 141 29.5035

With cvc5 104 274062

With Z3 113 319.28

Successes 117 137285

that were instances of the original machine substituting all abstract sets by
small concrete sets that were still large enough to satisfy the PROPERTIES.

4. Finally, these new generations were translated to SMT-lib with pptrans-
pog, before the same two SMT-solvers as earlier were run on them. Specif-
ically, the exact calls for each were:

• cvc5 --incremental --mbqi --tlimit-per 180000 --stats <smt2 file>

and

• z3 -t:180000 -st <smt2 file>.

5.1 Results

Table 1 contains the results from running these steps as the software currently
stands. Of the 3809 POG files run on, 231 are successfully encoded to the OPB
format. Obstacles to the others can be the software finding already that the
maximum set size is insufficient and gives up, or it encounters operations in
the PROPERTIES that it is not confident about handling. It is important that
the satisfiability of output encodings be sound, so only if it is guaranteed that
the constraints be as strong as in the original specification can an output be
trusted. Some operations will always be risky, such as those related to universal
quantification, but others may just not yet be implemented. There were no
timeouts during this part of the experiment.

More than half of the SAT-encodings were optimally solved by Exact. An-
other solver, minisat+8, did not manage to decide as many instances within
the time limits. Another possibility for a solver is to return a model without
guaranteeing that it optimizes function, but this did not happen for Exact. The
final possiblity for a solver is to return unsat, which Exact did 90 times, and
this means that the supremum may need to be increased for those instances.

8https://github.com/niklasso/minisatp, [1]

10

Table 2: SMT Solving by Proof Obligation

Number Avg. Time (ms) Best Time (ms)

PO 3255 (23.0851)

With cvc5 104 (505,2515,235) 274062 7654.54

With Z3 113 (348,2528,379) 319.2889 8.9936

In fact, 50 of these were due to a set being equated to the set of natural num-
bers or integers, which would be out of our reach. For smaller numbers, it is
important to find a balance between a high upper bound which runs less risk
of forcing unsat, and a low upper bound which makes the search space smaller
for the solver. If an average of the headers of these 231 encodings is taken,
it comes to * #variable= 4892.4 #constraint= 5340.61 #equal= 7.4632

#intsize= 8.23377 (although, of course, each value is natural in actuality).
The row after the ones concerning pseudo-Boolean solution regards the time

taken to read the sizes of the abstract sets from the output model and to replace
these sets appropriately in the POG file. The following row deals with pptrans-
pog’s times for translating to the SMT-lib format. Overall, this results in a not
very long expected time of preprocessing before running an SMT-solver.

The next rows give the average time spent by SMT solvers per POG file. The
times make the SMT solution the longest part of the pipeline, and especially
so when the solver used is cvc5. Table 2 gives a finer grained overview of the
performance of the solvers. The first row shows the count of all proof obligations
shared among the 231 POG files, with the average number of proof obligations
per POG file in parentheses. The following rows again compare the SMT solvers
but include information about how many individual proof obligations are found
sat, unsat or unknown in parentheses. The average time is, as in Table 1, for
whole POG files, whereas the best time is the average time for at least one proof
obligation in a file to be found sat.

5.2 Discussion

5.2.1 Runtimes

The average time for getting to a counter-model is prohibitively long for most
applications of a counter-model finder. This is due to the runtimes of SMT
solvers.

The time for SMT solution in Table 1 is considering whole POG files, which
can have several goals. Each goal is checked separately in SMT, and although
one goal may have been found sat, invalidating the whole machine, the solver
continues to check each subsequent goal, even when there are many and some
are difficult. The runtime could be shortened greatly (and, in practice, would
have to be shortened) by returning the first model found instead.

Table 2 gives a clearer notion of how performance would be if POG files were

11

not read incrementally, but rather were first split into proof obligations, then all
of these proof obligations were run on in parallel, and the tool returned a model
as soon as one were found for any of the proof obligations. Because verifying
the machine requires all of the proof obligations to be proved, it would suffice
to find a counter-example to one of them.

Even when considered proof obligation by proof obligation, cvc5 gives a
significantly longer average best time than Z3. Comparing the number of sat
proof obligations, cvc5 succeeds to finding models to more hard instances, and
its average times to success are heavily influenced by the difficulty of these
instances. Nevertheless, there are only four POG files for which cvc5 finds some
counter-example but Z3 does not. There are several possibilities about how
it would be best to organize the solvers: maybe Z3 would be sufficient alone,
maybe both should be run as a portfolio, maybe it would be best to know in
advance how difficult a problem instance is and to choose a solver accordingly,
maybe something else.

Although the mean times are quite high with respect to the rest of the tool
chain, very often the times are much shorter even for the SMT solvers.

5.2.2 Specific Notes about SMT Translation and Solution

The translation to SMT-lib does not use the currently public version of pptrans-
pog. When using the version available on GitHub, both solvers are unable to
respond sat for any of the instances, and so cannot produce counter-models.
Instead, a version that is currently under development was used, and the results
are much improved. One can expect that in the future such functionality will
be shared with all.

Some of the times that cvc5 reported unknown, it still output a model. These
models were instantiations of the constraints without accounting for quantifica-
tion. It could arise that these are sufficient, depending on how quantification
occurs in the machine, so could be an aspect to look into for improvement.
These tentative models cannot be trusted as easily as the not-necessarily-optimal
models of pseudo-Boolean solvers, but they may be a starting point for further
exploration.

6 Final Remark to Remember

It is important to consider limits to the tool. If, even with the maximal size of
set considered, the tool does not find the premisses to be satisfiable, it does not
mean that the proof obligation is trivially valid, but rather that the hypotheses
cannot be satisfied with sizes below the maximum considered. It could still be
the case that they are satisfiable with greater sizes.

On the other hand, when the tool finds suitable set sizes and the goal is found
to be valid with respect to those sizes, it is not at all an informative situation for
verification. Because only one of the possible combinations of sizes is considered,
it does not rule out the refutability of the goal in other interpretations.

12

The only interesting result is when sizes are found that can satisfy the pre-
misses while the goal can still be falsified.

7 Bibliographic References

[1] Niklas Eén and Niklas Sörensson. “Translating pseudo-boolean constraints
into SAT”. In: Journal on Satisfiability, Boolean Modeling and Computation
2.1-4 (2006), pp. 1–26.

[2] Jan Elffers and Jakob Nordström. “Divide and Conquer: Towards Faster
Pseudo-Boolean Solving.” In: IJCAI. Vol. 18. 2018, pp. 1291–1299.

[3] Olivier Roussel. Restricted OPB Format in Use in the PB Competitions.
2024. url: https://www.cril.univ-artois.fr/PB24/OPBcompetition.
pdf.

[4] Olivier Roussel and Vasco Manquinho. “Pseudo-Boolean and cardinality
constraints”. In: Handbook of satisfiability. IOS Press, 2021, pp. 1087–1129.

13

