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Abstract

The All-Solution Satisfiability Problem (AllSAT) extends
SAT by requiring the identification of all possible solutions
for a propositional formula. In practice, enumerating all com-
plete models is often infeasible, making the identification of
partial models essential for generating a concise representa-
tion of the solution set. Deterministic Decomposable Nega-
tion Normal Form (d-DNNF) serves as a language for rep-
resentation known to offer polynomial-time algorithms for
model enumeration. Specifically, when a propositional for-
mula is encoded in d-DNNF, it enables iterative model enu-
meration with polynomial delay between models. However,
despite the existence of theoretical algorithms for this pur-
pose, no available implementations are currently accessible.
Furthermore, these theoretical approaches are nearly imprac-
tical as they solely yield complete models. We introduce a
novel algorithm that maintains a polynomial delay between
partial models while significantly enhancing efficiency com-
pared to baseline approaches. Furthermore, through experi-
mental validation, we demonstrate the superiority of compil-
ing a CNF formula Σ into a d-DNNF formula Σ′ and subse-
quently enumerating models of Σ′ over existing state-of-the-
art methodologies for CNF partial model enumeration.

1 Introduction
Propositional satisfiability (SAT) involves determining
whether a Boolean formula is satisfiable. The All-Solution
Satisfiability Problem (AllSAT) extends SAT by seeking
to identify all possible solutions of a propositional for-
mula. AllSAT finds applications across diverse domains, in-
cluding hardware and software verification (Khurshid et al.
2003; Jin, Han, and Somenzi 2005), artificial intelligence
(Lagniez, Lonca, and Mailly 2015; Spallitta et al. 2022),
model-based diagnosis (Darwiche 1998), data mining (Han
et al. 2007; Boudane et al. 2017), graph theory (Jabbour et
al. 2022), biology (Trinh et al. 2022), and more.

There are several versions of AllSAT, and this paper ad-
dresses the enumeration problem, which involves listing the
set of models of a propositional formula without redundan-
cies (disjoint AllSAT). Considering the often vast number of
complete models associated with a given formula, our focus
lies in enumerating partial models. A partial model provides
a compact representation of a model set by accommodating
incomplete truth value assignments to certain variables. To
qualify as a partial model, it must ensure that assigning any

truth value to an unassigned variable does not affect the sat-
isfiability of the assignment. As a result, a partial model
with m variables encompasses 2n−m complete models.

Given that allSAT extends SAT, numerous approaches
leverage SAT solvers to enumerate the models of a proposi-
tional formula. These SAT-based propositional enumeration
algorithms typically fall into two main categories: block-
ing solvers and non-blocking solvers. Blocking AllSAT
solvers utilize Conflict-Driven Clause Learning (CDCL) to
provide the complete set of satisfying assignments. They op-
erate by iteratively introducing blocking clauses to the for-
mula after each model is discovered until no further models
are found (McMillan 2002; Jin, Han, and Somenzi 2005;
Audemard, Lagniez, and Simon 2013; Yu et al. 2014). Con-
versely, non-blocking AllSAT solvers employ chronological
backtracking. This technique ensures that upon encounter-
ing a conflict, the solver backtracks on the search tree by
revising the most recently assigned variable. Chronologi-
cal backtracking ensures that the same model of a formula
is not covered multiple times (Li, Hsiao, and Sheng 2004;
Grumberg, Schuster, and Yadgar 2004; Spallitta, Sebastiani,
and Biere 2024).

Another approach to addressing the enumeration problem
is through the lens of knowledge compilation (Selman and
Kautz 1996), particularly utilizing the knowledge compila-
tion map introduced by Darwiche and Marquis (2002). The
objective is to target a language that enables more efficient
queries, theoretically speaking. Choosing the appropriate
target language can be guided by a knowledge compilation
map, which evaluates languages based on multiple criteria.
These criteria include the efficiency of queries and transfor-
mations supported by the languages in polynomial time, as
well as their relative succinctness (i.e., their ability to repre-
sent information using minimal space). For instance, when
the goal is to enumerate the (partial) models of a CNF for-
mula, it is feasible to compile it into a language that effi-
ciently satisfies this query, e.g. OBDD (Bryant 1986), DNNF
(Darwiche 2001), d-DNNF (Darwiche 2002), EADT (Ko-
riche et al. 2013), etc.

In (Toda and Soh 2016), the authors chose to utilize OBDD
as the target language for implementing an allSAT solver.
However, beyond this particular work, there have not been
many attempts to leverage knowledge compilation for enu-
merating all solutions of CNF formulas. This lack of ex-



ploration is partly due to the fact that the knowledge com-
pilation map is more of a theoretical tool than a practical
one. Selecting a target language that satisfies the enumera-
tion query is only one aspect of the challenge. It is equally
important to have a compiler capable of translating a given
CNF formula into this language. Moreover, while theoreti-
cally satisfying the enumeration query is significant, practi-
cal considerations come into play, especially when dealing
with a large number of solutions. In such cases, it is essen-
tial to have a dedicated tool that can efficiently address this
query.

In this study, we propose to use a compilation-based enu-
meration method with the targeted language being d-DNNF.
This choice is motivated by the fact that the d-DNNF lan-
guage satisfies the enumeration query, and notably, effi-
cient knowledge compilers exist to translate CNF formulas
into d-DNNF (Darwiche 2002; Muise et al. 2012; Lagniez
and Marquis 2017a). However, to the best of our knowl-
edge, there is a notable absence of tools designed to take a
d-DNNF as input and enumerate its (partial) models. More-
over, aside from the mostly theoretical result presented in
(Darwiche and Marquis 2002) (which serves as the baseline
approach in our subsequent discussions), we encountered
no algorithms detailing the enumeration of (partial) models
of a d-DNNF. In light of this gap, we introduce an algo-
rithm dedicated to the enumeration of (partial) models of a
d-DNNF Σ. Our algorithm leverages the DAG structure of
the d-DNNF to efficiently enumerate its models while en-
suring that the memory requirement for model enumeration
remains bounded by the size of Σ. Furthermore, we demon-
strate that the models are enumerated in a disjoint manner,
with a polynomial delay between two consecutive models
(once the CNF formula has been compiled into a d-DNNF
formula). Our experimental results underscore the superior-
ity of our approach, dubbed d4+model-graph, over other
solvers across a broad spectrum of benchmarks, showcasing
the tangible benefits of our method.

The remainder of the paper unfolds as follows: we begin
with formal preliminaries in Section 2, followed by the pre-
sentation of our enumerator for partial models of d-DNNF
formulas in Section 3. Section 4 offers an empirical eval-
uation of our approach, leading to the concluding section
(Section 5).

2 Formal Preliminaries
We consider a propositional language PROPPS in the stan-
dard manner, derived from a finite set PS of propositional
symbols and the standard logical connectives (∧, ∨, ¬).
PROPPS is interpreted classically. For any formula Σ in
PROPPS , Var(Σ) denotes the set of propositional vari-
ables present in Σ. Given a finite set X of variables, {0, 1}X
represents the set of all possible Boolean assignments to the
variables in X . Each propositional formula Σ in PROPPS

defines a Boolean function over Var(Σ), mapping Σ from
{0, 1}|Var(Σ)| to {0, 1}. Assignments to Var(Σ) that evalu-
ate to 1 under Σ are termed satisfying assignments or models
of Σ. ⊥ represents the formula which is always falsified and
⊤ the formula which is always satisfied.

A literal is defined as either a Boolean variable or its nega-
tion. For any literal ℓ, Var(ℓ) represents the variable x of ℓ
(Var(x) = x and Var(¬x) = x), and ∼ℓ denotes the com-
plementary literal of ℓ. In other words, for every variable x,
∼x = ¬x and ∼¬x = x. The conditioning of a formula Σ
by a literal ℓ = x (resp. ℓ = ¬x) results in the formula Σ[ℓ],
where each occurrence of x (resp. ¬x) in Σ is replaced by
⊤, and each occurrence of ¬x (resp. x) is replaced by ⊥.
After such replacement, simplification is carried out using
the semantics of the logical connectors (e.g., ⊤ ∨ Γ = ⊤,
⊤∧ Γ = Γ, etc.) until a fixed point is reached. Each assign-
ment µ is conceptualized as a (conjunctively interpreted) set
of literals. We differentiate between total assignments and
partial assignments based on whether all variables are as-
signed truth values or not, respectively. A partial assignment
µ′ is deemed a partial model of Σ if, for every total assign-
ment µ from Var(Σ) that extends µ′ (i.e., for every literal ℓ
in µ′, ℓ is also in µ), µ is a model of Σ.

Mod(Σ) represents the set of all models of Σ. Two for-
mulas Σ1 and Σ2 are considered equivalent if their sets of
models are identical, that is, if Mod(Σ1) = Mod(Σ2). This
equivalence is denoted as Σ1 ≡ Σ2. Partial models µ1 and
µ2 are defined as disjoint if there exists a literal ℓ in µ1 such
that its negation ∼ℓ is present in µ2. Modp(Σ) is termed
a shorten representation of the solution set Mod(Σ) if, for
every pair of partial models µ1 and µ2 in Modp(Σ), they are
disjoint. Additionally, for every model µ in Mod(Σ), there
exists a partial model µ′ in Modp(Σ) such that µ′ is a subset
of µ. Unlike Mod(Σ), Modp(Σ) is not necessarily unique.
Additionally, considering Modp(Σ) = Mod(Σ) can also be
viewed as a concise representation of the solution set.

A CNF formula Σ is a conjunction of clauses, where a
clause is a disjunction of literals. Every CNF is viewed as a
set of clauses, and every clause is viewed as a set of literals.
Example 1. Let Ψ = {a ∨ b,¬a ∨ ¬b, c ∨ b} be a CNF
formula. Var(Ψ) = {a, b, c, d} and the complete models of
Mod(Ψ) are:

{a,¬b, c, d} {¬a, b, c, d} {a,¬b, c,¬d}
{¬a, b, c,¬d} {a,¬b,¬c, d} {¬a, b,¬c, d}

Modp(Σ) given by the following set of partial models:
{a,¬b,¬c, d} {a,¬b, c} {¬a, b,¬c, d} {¬a, b, c}

is a possible concise representation of Mod(Ψ).
d-DNNF (deterministic Decomposable Negation Normal

Form) consists of Boolean circuits (Vollmer 1999) with a
single output, which serves as its root. It can be conceptu-
alized as a rooted Directed Acyclic Graph (DAG), denoted
as ⟨V,E⟩, where each input is either a literal or a Boolean
constant (⊥ or ⊤), and each internal gate is either a de-
composable ∧ gate or a deterministic ∨ gate. In a decom-
posable gate of the form N = ∧(N1, . . . , Nk), no com-
mon variable is shared between the sub-circuits rooted at
Ni and Nj for all i ̸= j. In a deterministic gate of the form
N = ∨(N1, . . . , Nk), the sub-circuits rooted at Ni and Nj

are jointly inconsistent for all i ̸= j. The size of a d-DNNF
Σ = ⟨V,E⟩, denoted by |Σ| is its number of edges |E|.
d-DNNF is universal, as it can accommodate every proposi-
tional theory (Darwiche 2002).



Example 2 (Example 1 cont’ed). Let us consider the CNF
formula Ψ given in Example 1, the following d-DNNF Σ is
equivalent to Ψ:

¬a b

∧

a ¬b

∧

∨

c

¬d d

∨

∧

¬c d

∧

∨

∧

decision-DNNF (decision Decomposable Negation
Normal Form) is defined similarly, but with decision gates
of the form N = ite(x,N1, N2) replacing deterministic ∨
gates. Here, x is the decision variable at gate N , absent in
the sub-circuits N1 or N2, and ite is a ternary connective
denoting ”if . . .then . . .else . . . ”. decision-DNNF
representations, also termed decomposable decision graphs
(Fargier and Marquis 2006), can be converted into spe-
cific d-DNNF representations in linear time. By replac-
ing a decision node of the form N = ite(x,N1, N2) in a
decision-DNNF representation with N = (¬x ∧ N1) ∨
(x ∧ N2), the resulting d-DNNF representation maintains
decomposable ∧ nodes (as x appears neither in N1 nor in
N2) and a deterministic ∨ node (since (¬x∧N1)∧ (x∧N2)
is inconsistent).
d-DNNF serves as a compelling language of representa-

tion due to its ability to efficiently handle various queries
and transformations, such as satisfiability and conditioning
in polynomial time. Notably, the models of a smooth d-
DNNF can be enumerated in polynomial time in the num-
ber of its models (Darwiche and Marquis 2002). A d-DNNF
satisfies the smoothness property if each disjunct of every
disjunction node in the d-DNNF references the same vari-
ables. In other words, if N1, . . . , Nm are the children of a
disjunction node N , then V ar(Ni) = V ar(Nj) for i ̸= j.
For example, in Example 2, the d-DNNF formula is smooth.
Any d-DNNF Σ can be smoothed in O(V ar(Σ)× |Σ|) time
(Darwiche 2001).

It is noteworthy that the enumeration algorithm is char-
acterized by polynomial delay, signifying that the time be-
tween the output of any two consecutive models is bounded
by a polynomial function of the input size, in the worst-case
scenario.

The baseline algorithm, which is described in Algorithm
1, leverages the polynomial-time satisfiability and condi-
tioning properties of a d-DNNF Σ to enumerate its solutions.
It takes a d-DNNF Σ and µ, a partial assignment represent-
ing the partial model under construction, as parameters. The
algorithm proceeds recursively, beginning with a check for
unsatisfiability of Σ. If Σ is unsatisfiable, the empty set is
return (line 1). If Σ evaluates to ⊤, µ is considered a partial
model of the initial formula and it is returned (line 2). Oth-

Algorithm 1: baseline-enum
Input: a d-DNNF Σ, µ a partial assignment
Data: ∆ the collected set of models.

1 if Σ ≡ ⊥ then return ∅
2 if Σ ≡ ⊤ then {µ}
3 else
4 Let x ∈ V ar(Σ)
5 return baseline-enum(Σ[x], µ ∪ {x}) ∪

baseline-enum(Σ[¬x], µ ∪ {¬x})

erwise, a variable is selected from V ar(Σ) (line 4), and the
algorithm is recursively called (line 5), considering the for-
mula Σ[x], where x is assigned true (expanding µ with x),
and the formula Σ[¬x], where x is assigned false (expanding
µ with ¬x).

This algorithm has a complexity of O(|V ar(Σ)| × |Σ| ×
|Mod(Σ)|), which is generally superior to the complex-
ity of the algorithm proposed in (Darwiche 1998), which
is O(|Σ| × |Mod(Σ)|2). Unfortunately, it does not per-
form well in practice, as it requires frequent querying and
transformation of the d-DNNF formula under consideration.
Subsequently, we introduce an algorithm designed to enu-
merate the models of a d-DNNF in polynomial time with
respect to the number of models and polynomial space with
respect to the size of the d-DNNF. Importantly, this algo-
rithm exhibits better practical performance as it operates di-
rectly on the circuit.

3 Enumerating Disjoint Partial Models using
Decision-DNNF

In the subsequent discussion, we set aside trivial cases of
d-DNNF (⊥ and ⊤), as the task of enumerating models
poses no challenge for them. For simplicity, our enumer-
ation algorithms assume that the d-DNNF circuits conform
to certain conditions: all internal nodes have exactly two
children, and no free variables are present (a variable x is
considered free if x /∈ V ar(Σ)). Additionally, the children
of internal nodes are ordered, and it is possible to retrieve
the left (resp. right) child of a node n using the function
left(n) (resp. right(n)). We further assume that our cir-
cuits have been simplified, meaning that all constants have
been propagated in the gates (∆ ∨ ⊥ = ∆ ∧ ⊤ = ∆,
∆ ∨ ⊤ = ⊤, and ∆ ∧ ⊥ = ⊥). This simplification process
can be efficiently performed in a bottom-up manner. The
presence of the constant ⊤ (resp. ⊥) in the d-DNNF occurs
only when the formula is equivalent to ⊤ (resp. ⊥).

Before delving into general d-DNNFs, let us focus on
smooth d-DNNFs, where the children of disjunction nodes
share identical variables. This characteristic enables the
computation of full models. We will relax this constraint
in a second step. Let us start by noting that the set of models
of a smooth d-DNNF can be simply constructed using a re-
cursive bottom-up algorithm. For any given node, its set of
models can be straightforwardly defined with respect to the
variables involved in its descendants:



• If the node is labeled with a literal, that literal stands as
its sole model (a trivial case);

• If the node is a conjunction node, its disjoint models en-
compass all possible combinations of a model from its left
child and a model from its right child. This is facilitated
by the decomposability property of the node, which guar-
antees the consistency of each such combination;

• If the node is a disjunction node, its set of disjoint models
comprises the union of the disjoint models of its children.
This is facilitated by the determinism property, which im-
plies that combining models of the two children results in
inconsistency, and by the smoothness property, which en-
sures that all variables in the descendants are involved in
both children (thus, no free variables exist).

Leveraging this algorithm at the root of a formula yields
the set of models for that formula. Remarkably, when seek-
ing a single partial model, it suffices to set the algorithm as-
sociated with disjunction nodes such that it returns the model
from one of its children:

• Leaves (literals) trivially define a single model;

• Conjunction nodes with children, each having a single
model, will yield a single concatenation of models;

• Disjunction nodes return a single model, meaning only
one descendant is considered for these nodes, as specified
previously.

Obviously enough, the model that is returned depends on the
choice of the partial models that are returned by the disjunc-
tion node.

While demonstrating such an algorithm in a bottom-up
fashion is straightforward, it is impractical for real-world
applications. This is because it necessitates memoizing all
models, which cannot guarantee that the algorithm operates
within space constraints bounded by the size of the d-DNNF
circuit. Employing a top-down algorithm like Depth First
Search (DFS) is also viable. Here is how it works: initiate
the search from the root, propagate it to both children if the
node is a conjunction, and to a single node if it is a disjunc-
tion. Every literal encountered during this traversal is a con-
stitute of the model. The trace left by this DFS algorithm,
which computes a model, can be viewed as a sub-graph of
the d-DNNF, termed a model graph.

Definition 1 (model graph). Let Σ = ⟨V,E⟩ be a smooth
d-DNNF rooted at vroot ∈ V . A model graph ω = ⟨V ′, E′⟩
is a subgraph of Σ which is also a DAG, rooted at vroot, such
that for each v ∈ V ′:

• let Ev ⊆ E be the set of edges which source is v: Ev =
{ei = (v, vi) s.t. (v, vi) ∈ E};

• if v is labelled with ∧, then Ev ⊆ E′ and {vi} ⊆ V ′;
• if v is labelled with ∨, then there exists exactly one
(v, vi) ∈ Ev such that Ev ∩ E′ = {(v, vi)}, vi ∈ V ′

and for all (v, vj) ∈ (Ev \ {(v, vi)}), we have vj /∈ V ′.

Interestingly, the number of children the nodes of a model
graph admits only depends on their labels. Nodes labelled
with ∧ have exactly two children, the ones labelled with ∨
exactly one, while the ones labelled with literals have none.

Algorithm 2: build-model
Input : n, the root node of the model graph

ω = ⟨V,E⟩
Output: the model associated with ω

// leaf node
1 if {(n, n′) ∈ E} = ∅ then return {label(n)}

// internal node
2 ∆← ∅
3 for (n, n′) ∈ E do
4 ∆← ∆∪ build-model(n′, ω)
5 return ∆

This is consistent with the notion of model: since disjunc-
tions have a single child, they can be replaced by this child,
letting the formula contain only conjunctions and literals,
making it a term. This structure, in conjunction with the
property of decomposition of the conjunction nodes implies
that model graphs are not general graphs, but trees.

Proposition 1. A model graph is a tree.

Proof. Reductio ad absurdum. Let us suppose a model
graph is not a tree. Then, there exists a node v such that
this node has at least two parent nodes. Since the only nodes
with at least two children are conjunction nodes, then there
exists a ∧-labelled node such that v is in descendants of both
the children of the conjunction node. This implies that both
children of the conjunction node share variables, which is
incompatible with the decomposability property.

This ensures the computation of a model does not need a
number of steps larger than the size of the d-DNNF.

Corollary 1. Let Σ be a smooth d-DNNF. Computing a
model graph of Σ can be achieved in time linear to the size
of the formula.

Example 3 (Example 2 cont’ed). Let us examine the
d-DNNF Σ constructed in Example 2, representing the CNF
formula Ψ from Example 1. In Figure 1a, we present a model
graph extracted from Σ, where bold edges directly corre-
spond to the graph’s representation within Σ.

Algorithm 2 facilitates the retrieval of a model associated
with a model graph ω rooted at node n, operating in a recur-
sive manner. If n represents a literal, identified by being a
leaf node with a label distinct from ∨ and ∧, then the model
containing this literal is returned (line 1). However, if n is an
internal node, we iteratively explore its children to construct
the associated models (lines 2–4). Initially, the variable ∆ is
initialized as an empty set (line 2). Subsequently, for each
(n, n′) ∈ E, we recursively call the build-model func-
tion, considering n′ as the next node. It is important to note
that if label(n) represents an or-node, only one such n′

exists that satisfies the condition. Conversely, if label(n)
signifies an and-node, exactly two such n′ nodes exist that
meet the condition. The results of these recursive calls are
aggregated into ∆ and returned (line 5).
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Figure 1: Enumeration of the (ordered) model graphs of a smooth d-DNNF, and their correspondence in term of models.

Example 4 (Example 2 cont’ed). Figure 1 depicts all the
possible model graphs corresponding to Σ from Example 2.
Each sub-figure corresponds to a model of Σ.

Our goal is not solely to identify a single model of the
formula, but rather to systematically enumerate all models
in a disjoint manner. To accomplish this, we leverage the
following proposition, which establishes a one-to-one cor-
respondence between the model graphs of smooth d-DNNF
formulas and their respective models.
Proposition 2. Let Σ denote a smooth d-DNNF. There ex-
ists a one-to-one correspondence between the model graphs
of Σ and its models.

Proof. Every model of Σ can be computed using the DFS
algorithm presented above by selecting the disjunction node
children that are consistent with the model; thus each model
has its associated model graph. Every model tree leads
to a single model, since it gives the trace of the DFS al-
gorithm, including which children have been selected; the
model graphs are also mapped to a single model. Since the
disjunction nodes are deterministic, we can be confident that
two distinct model graphs correspond to two distinct models
of Σ.

Before proceeding further, let us define the function sub,
which, given a graph G = ⟨N,E⟩ and a node n ∈ N , re-
turns the sub-graph G′ = ⟨N ′, E′⟩ of G such that G′ con-
tains all nodes reachable from n, denoted as N ′ = {n} ∪

{np ∈ N | there exists a directed path between n and np},
and includes all edges that connect nodes in N ′, denoted as
E′ = {(ni, nj) ∈ E | ni ∈ N ′ and nj ∈ N ′}. Given two
graphs G = ⟨N,E⟩ and G′ = ⟨N ′, E′⟩, we define the union
of the two graphs as G′′ = ⟨N ∪N ′, E ∪ E′⟩.

To enumerate all models in a disjoint manner, we intro-
duce an approach that traverses through all model graphs
of a d-DNNF formula Σ, represented as a DAG rooted at
node n. The approach involves ordering the model graphs
and then iterating through them according to this order.
First, we define two functions, begin and end, which,
given a d-DNNF rooted at node n, determine the first
and last model graphs in this order, respectively. These
functions are defined recursively based on the type of node
under consideration. If n is a leaf node, both begin(Σ)
and end(Σ) return ⟨n, ∅⟩, as a leaf node has only one
model graph. If n is an or-node, we have begin(Σ) =
⟨{n}, {(n, left(n))}⟩ ∪ begin(sub(Σ, left(n))) and
end(Σ) = ⟨{n}, {(n, right(n))}⟩ ∪ end(sub(Σ, right(n))).
It is worth noting that the first model graph is arbitrar-
ily chosen as the leftmost one anchored with respect to
the or-node. Finally, if n is an and-node, f(n) returns
⟨{n}, {(n, left(n)), (n, right(n))}⟩ ∪ f(sub(Σ, left(n)) ∪
f(sub(Σ, right(n)), with f ∈ {begin, end}.

Example 5 (Example 2 cont’ed). Given the d-DNNFΣ con-
structed in Example 2, we observe that Figure 1a represents
begin(Σ), while Figure 1f represents end(Σ).



Since Σ = ⟨N,E⟩ is a DAG, computing begin(n) and
end(n) for a node n ∈ N can be done in linear time relative
to the size of the sub-graph rooted at n.

Given the definitions of the first and last model graphs,
we can now define the function next. This function, given a
d-DNNF Σ = ⟨N,E⟩ and a model graph ω = ⟨Nω, Eω⟩ of
Σ rooted at n, returns the next model if it exists, or end(n)
if ω is the last model. Let us explore the different scenarios
based on the type of node n. If n is a leaf node, the next
model after ω is ω itself, as end(n) = ⟨{n}, ∅⟩ = ω.

If n is an or-node and (n,m) ∈ E′, we need to con-
sider two scenarios: whether end(sub(Σ,m)) is equal to
sub(ω,m) or not. If end(sub(Σ,m)) ̸= sub(ω,m),
there are still models to enumerate in the sub-graph asso-
ciated with m, and we can find the next model by recur-
sively calling the next function on sub(ω,m). Otherwise,
if end(sub(Σ,m)) = sub(ω,m), we need to determine
whether m = left(n) or m = right(n). If m = left(n),
all models in the left branch have been explored, and we
can start enumerating models from the right branch, starting
with begin(sub(Σ, right(n))). Finally, if m = right(n),
we have reached the end, and next(ω) returns ω.

Let us examine the scenario where n is an and-node.
If end(sub(Σ, left(n))) ̸= sub(ω, left(n)), there are
still models to enumerate on the left side of the and-node.
Therefore, we recursively call next on sub(ω, left(n))
to find the next model. If end(sub(Σ, left(n))) =
sub(ω, left(n)), it means that all models of the sub-
graph rooted at left(n) have been enumerated. In this
scenario, two possibilities arise depending on whether
end(sub(Σ, right(n))) is equal to sub(ω, right(n))
or not. If end(sub(Σ, right(n))) is not equal to
sub(ω, right(n)), there are still models to enumer-
ate on the right side. In this case, the next model
graph will consider the first model on the left, i.e.,
begin(left(n)), and the next model on the right side of
the and-node, i.e., next(sub(ω, right(n))). Finally, if
end(sub(Σ, right(n))) = sub(ω, right(n)) then ω is the
last model, and next(ω) returns ω.

Algorithm 3 delineates the function next as previously
outlined. It is a recursive procedure that operates on a
d-DNNF Σ = ⟨N,E⟩ and a model graph ω = ⟨Nω, Eω⟩
rooted at n of Σ, aiming to determine the subsequent model
graph following ω. The algorithm first handles the base case
where ω = end(Σ), encompassing scenarios where n is a
leaf. In such instances, the function returns ω.

Subsequently, it addresses the or-node case (lines 2–6).
Initially, it evaluates whether there are remaining models
to enumerate, signaled by end(sub(Σ,m)) ̸= sub(ω,m)
(line 4). If so, the function returns a model graph rooted
at n, linked to the subsequent model graph of its child,
i.e., next(sub(ω,m)) with (n,m) ∈ Eω (line 5). If
end(sub(Σ,m)) = sub(ω,m), and left(n) belongs to
Nω , it implies that the left branch has been exhausted, and
the function returns the model graph rooted in n, linked
to the first model graph of the sub-graph obtained from
right(n), i.e. begin(sub(Σ, right(n))). The scenario
where right(n) belongs to Nω and end(sub(Σ,m)) =
sub(ω,m) cannot transpire. In such an event, ω = end(Σ),

Algorithm 3: next
Input : a d-DNNF Σ = ⟨N,E⟩ and a model graph

ω = ⟨Nω, Eω⟩ rooted at n of Σ
Output: the next model graph that comes just after ω

// leaf node and case where ω = end(Σ)
1 if ω = end(Σ) then return ω

2 if n is an or-node then
3 Let m s.t. (n,m) ∈ Eω

4 if end(sub(Σ,m)) ̸= sub(ω,m) then
5 return ⟨{n}, {(n,m)}⟩ ∪ next(sub(ω,m))

6 return
⟨{n}, {(n, right(n))}⟩ ∪ begin(sub(Σ, right(n)))

7 if n is an and-node then
8 if end(sub(Σ, left(n))) ̸= sub(ω, left(n)) then
9 return ⟨{n}, {(n, left(n)), (n, right(n))}⟩ ∪

next(sub(ω, left(n))) ∪ sub(ω, right(n))

10 return ⟨{n}, {(n, left(n)), (n, right(n))}⟩ ∪
begin(sub(Σ, left(n))) ∪ next(sub(ω, right(n)))

and this condition is already addressed in line 1.
Finally, the and-node case is handled (lines 7–10). It

first determines if there are remaining models to enumer-
ate in the left branch. If so (lines 8–9), the function re-
turns the model graph, preserving everything except the seg-
ment of the sub-graph obtained from left(n), replaced by
the subsequent model graph, i.e., next(sub(ω, left(n)).
If there are no more models in the left part, the func-
tion returns the model graph rooted at n, linking to the
initial model graph of the sub-graph from left(n), i.e.,
begin(sub(Σ, left(n))), and the subsequent model graph
of the sub-graph from right(n), i.e., next(ω, right(n)).
Similar to the or-node case, it is unnecessary to consider the
scenario where sub(ω, right(n)) = end(Σ, right(n)) as
it is covered by the case addressed in line 1.

Example 6 (Example 2 cont’ed). With the smooth d-DNNF
Σ constructed in Example 2, Figure 3 presents all the model
graphs in the sequence they are generated using the function
next, commencing with begin(Σ) (1a) and concluding with
end(Σ) (1f).

In this version, Algorithm 3 operates in quadratic time
relative to |Σ|. To enhance efficiency, we can precompute a
boolean flag for each node n in ω, updating them whenever
ω changes. These flags indicate whether a descendant of n
branches on a left node. With this preprocessing step, check-
ing end(sub(Σ,m)) ̸= sub(ω,m), with (n,m) ∈ Eω , be-
comes a constant-time operation. The subsequent proposi-
tion shows that the function next can run in linear time
relative to the size of the circuit provided as a parameter.

Proposition 3. When invoking next(ω) with a smooth
d-DNNF Σ = ⟨N,E⟩ and a model graph ω = ⟨Nω, Eω⟩
of Σ rooted at n the operation runs in linear time relative to
|Σ|.

Proof. First, let us recall that the function begin operates in
linear time relative to the size of Σ. Now, suppose we have



Algorithm 4: model-graph enumerator
Input : Σ a smooth d-DNNF
Output: Mod(Σ)

1 ∆← ∅
2 mg ← begin(Σ)
3 while mg ̸= end(Σ) do
4 ∆← ∆ ∪ {build-model(mg)}
5 mg ← next(mg)

6 return ∆ ∪ {build-model(mg)}

a constant-time oracle for checking if a model graph has a
successor, i.e., it contains at least one or-node branching on a
left node. The number of operations needed to complete the
call to the function next depends on the recursive calls made
in lines 5, 9, and 10. Since in all cases next is called with
a sub-graph of ω, we can be certain that it is not possible to
visit more nodes than those in ω.

Now, equipped with the means to enumerate the models
of a d-DNNF by leveraging its representation as a graph,
Algorithm 4 outlines the process for enumerating all disjoint
models of a smooth d-DNNF. It initializes ∆ to accumulate
models (line 1) and mg to represent the first model graph of
Σ (line 2). Then, as long as mg is not the last model graph
of Σ, it is added to ∆ (line 4), and the next model graph is
obtained and stored in mg using the next function (line 5).
Once all model graphs have been visited in the while loop,
the last model is added to ∆ and ∆ is returned (line 6).

Now, let us establish that Algorithm 4 is sound, complete,
and terminates within O(|Σ| ×Mod(Σ)) time.

Proposition 4. Given a smooth d-DNNF formula Σ, Algo-
rithm 4 enumerates all models of Σ in a disjoint manner. It
concludes within O(|Σ| ×Mod(Σ)) time.

Proof. First, let us show that Algorithm 4 enumerates all
models of Σ in a disjoint manner. The proof is by induction
on the number k of nodes of Σ. First assume k = 1, that is
Σ is a literal ℓ (let us recall that we left aside the trivial cases
where Σ is a constant). In this case, Algorithm 4 returns the
sole model {ℓ}, establishing the base case of the induction.

Let us consider Σ = Σ1 op Σ2, a d-DNNF rooted at
n, where op ∈ {∧,∨} and both Σ1 and Σ2 are smooth
d-DNNFs, with |Σ1| ≤ k and |Σ2| ≤ k. When op = ∨,
in Algorithm 4, mg initially corresponds to the model graph
linking n with the first model graph of Σ1 rooted at m1, ob-
tained with begin(Σ1). Then, while mg ̸= end(Σ), next
is called on mg and it is updated accordingly. Now, let us
delve into the next function outlined in Algorithm 3. As Σ
is rooted at an or-node, we focus on lines 2–6. Here, as long
as not all model graphs of Σ1 have been considered (line 4),
next is called on the model graph of Σ1. By induction hy-
pothesis, iterative calls to next on Σ1 will visit all its model
graphs disjointly, thereby adding all models of Σ1 to ∆.

Once all models of Σ1 have been considered, the condi-
tion in line 4 of Algorithm 3 becomes false, triggering the
execution of line 6. This returns the model graph linking n
with the first model graph of Σ2 rooted at m2. Similar to

Σ1, all models of Σ2, except end(Σ2), which is added to ∆
in line 6 of Algorithm 4, will be added to ∆. At the end of
Algorithm 4 (line 7), ∆ contains two sets of disjoint mod-
els, ∆1 and ∆2, representing respectively the models of Σ1

and Σ2. Or-nodes of Σ being deterministic, ∆1 and ∆2 are
disjoint, and thus ∆ consists of all disjoint models of Σ.

Now, let us explore the case where op = ∧. Since Σ
is a d-DNNF, and-nodes are decomposable. To enumerate
models of Σ, it suffices to associate each model of Σ2 with
all models of Σ1, i.e., Mod(Σ) = {m ×Mod(Σ1) | m ∈
Mod(Σ2)}. Let us demonstrate that iteratively calling next
on mg achieves precisely this. Initially, mg links n with the
first model graphs of both Σ1 and Σ2, obtained with begin.
As n is an and-node, we focus on lines 7–10 in Algorithm
3. By calling next on sub(ω,m1), all models ∆1 of Σ1 are
enumerated due to the induction hypothesis. Then, lines 8–
9 ensure that each model of Σ1 is associated with a specific
model of Σ2. As ∆1 consists of disjoint models, the result-
ing models, concatenated with a specific model of Σ2 and
added to ∆ (line 4 in Algorithm 4), remain disjoint. Once
this is done for a particular model of Σ2, line 8 is falsified,
and line 10 is executed. This assigns the next model graph
linking n with the first model graph of Σ1 and the next model
graph of Σ2, obtained with next on sub(ω,m2). This pro-
cess continues until sub(ω,m2) = end(sub(Σ,m2)), i.e.,
until ω = end(Σ). By the induction hypothesis, all models
∆2 of Σ2 are covered. Moreover, as models of ∆2 are dis-
joint, the newly added models in ∆ will also remain disjoint
from those added so far.

Finally, let us show that Algorithm 4 concludes within
O(|Σ| ×Mod(Σ)) time. As each call of next takes time
linearly bounded by the size of |Σ|, it follows directly that
Algorithm 4 operates within O(|Σ| ×Mod(Σ)) time.

So far, we have outlined an algorithm for enumerating
complete models of a smooth d-DNNF. Interestingly, em-
ploying the same algorithm on general d-DNNF iterates over
partial models of the formula. Following the same rationale
as in the proof of Proposition 4, we can demonstrate that all
partial models enumerated by Algorithm 4 are disjoint. Fur-
thermore, any model of the formula can be constructed by
extending one of these partial models.

Indeed, without the smoothness property, the children of
disjunction nodes may involve different sets of variables. In
other words, some variables may be missing in one child or
in another; these are free variables, for which any literal can
be added to form a model. Considering our model graphs,
these variables cannot be brought by other nodes: if they
were brought by an ancestor conjunction node (the only kind
with an arity of more than one), then switching the child of
the non-smooth disjunction node would break the decom-
posability property of this conjunction node.

To conclude, let us note that the worst-case time complex-
ity of O(|Σ| ×Mod(Σ)) rarely occurs. Typically, the func-
tion next operates in a time complexity that is at worst pro-
portional to the longest path in the DAG. Since d-DNNFs
are predominantly comprised of or-nodes, traversal of the
DAG tends to focus on a single path.



Additionally, it is worth mentioning that the binary node
condition is chosen here for simplicity of the presentation.
In practice, this constraint is not necessary. If we relax this
condition and aggregate nodes of the same type, such as Σ1∧
(Σ2 ∧Σ3) into Σ1 ∧Σ2 ∧Σ3, while still ensuring constants
to be absent in Σ, it is easy to demonstrate that Algorithm
4 operates in O(2 × |V ar(Σ)| ×Mod(Σ)). Indeed, if all
these conditions are adhered to, the model graphs can only
contain a number of nodes that is less than twice the number
of propositional variables of Σ.

4 Empirical Evaluation
We have realized all the concepts elucidated in this paper
into a software tool named model-graph. Developed in
Rust, the tool’s library and its documentation is accessible
at https://crates.io/crates/decdnnf rs. It accommodates vari-
ous output modes: quiet (which solely touches discovered
solutions without outputting them), compact (which pro-
vides partial model output), and full (which outputs com-
plete models). Extensive testing has been conducted, achiev-
ing a code coverage of 96.9% as measured by kcov for the
library. Additionally, fuzz testing has been performed for
the binaries.

To systematically enumerate all partial solutions of a
given CNF formula Σ, we employ a two-step proce-
dure referred to as d4+model-graph. It first com-
piles Σ into a decision-DNNF Γ utilizing the knowledge
compiler d4 (available at https://github.com/crillab/d4v2),
leveraging preprocessing techniques that preverse equiva-
lence, including backbone simplification and CNF simpli-
fication (vivification and occurrence elimination)(Lagniez
and Marquis 2014; Lagniez and Marquis 2017b). Sub-
sequently, Γ is passed to model-graph to enumerate
its partial models. To assess the efficacy of employ-
ing model-graph over the baseline approach for enu-
merating partial models from decision-DNNF, we con-
duct a comparative analysis with the baseline method
termed d4+baseline. Our evaluation involves a com-
parison between d4+model-graph and state-of-the-art
approaches such as BDD (https://www.disc.lab.uec.ac.jp/
toda/code/cnf2obdd.html) and TabularAllSAT (https://
zenodo.org/records/10397723), which have demonstrated
superior performance over other methods in experiments de-
tailed in (Spallitta, Sebastiani, and Biere 2024). It is worth
noting that all solvers in our comparison solely identify dis-
covered solutions without outputting them. Instead, each
model is stored in an array, allowing users to retrieve and
manipulate them as needed in their applications.

We examined a total of 2403 CNF instances, consist-
ing of 1940 instances from previous enumeration stud-
ies (Spallitta, Sebastiani, and Biere 2024), 246 instances
from the three most recent model counting competitions
(https://mccompetition.org/), and 197 from the benchmark
set used to evaluate the knowledge compiler d4 (Lagniez and
Marquis 2017a). The first set is divided into four datasets:
Binary Clauses (binary - 50 instances), random 3-SAT prob-
lems (rnd3sat - 410 instances), Random-3-SAT Instances
with Controlled Backbone Size (CBS - 1000 instances),

and Random-3-SAT Instances and Backbone-minimal Sub-
instances (BMS - 500 instances) (https://www.cs.ubc.ca/
∼hoos/SATLIB/). The instances from the model counting
competitions, collected in the competition repository,
were specifically chosen to be solvable within a 1-hour time-
out and a 32GiB memory limit by d4. We also selected
benchmarks with model counts requiring 20 digits or fewer
for representation. From the compilation repository in
(Lagniez and Marquis 2017a), we included 2 datasets: Plan-
ning (190 instances) and Qif (7 instances for Quantitative
Information Flow analysis - security). All benchmarks are
available at https://zenodo.org/records/11085774.

All experiments were conducted on a cluster equipped
with quad-core bi-processors Intel(R) Xeon(R) CPU E5-
2637 v4 @ 3.50GHz and 128 GiB of memory, running Cen-
tOS 8 with Linux version 4.18.0-301.1.el8.x86 64 kernel.
The compilers used was g++ version 13.2.0 and Rust 1.72.1.
Hyperthreading was disabled, and no cache sharing between
cores was permitted. To ensure a fair comparison, we set a
timeout of 1200 seconds and a memory limit of 7.6 GiB, al-
lowing other approaches the opportunity to manage bench-
marks that exceeded these limits.

Table 1 presents the solver performance, indicating the
number of instances solved by each solver within the spec-
ified timeout period. Here, ’solved’ denotes the success-
ful enumeration of a complete set of disjoint partial mod-
els covering all total models. Additionally, the table in-
cludes counts of timeouts and memory outs for each solver
across different benchmark sets. Firstly, it is evident that
d4+model-graph outperforms other solvers by solving
the highest number of instances across all benchmark sets.
Notably, it exhibits superior efficiency compared to the base-
line approach, which proves to be the least effective in our
experiments. Comparing against BDD, our approach signifi-
cantly surpasses it, solving strictly more instances.

In comparison to TabularAllSAT, which closely re-
sembles our approach in effectiveness, we observe a dis-
tinct advantage for TabularAllSAT that never experi-
ences memory outs, making it favorable when memory re-
sources are limited. Indeed, compiled-based approaches of-
ten need to store a representation of the input formula, which
can grow exponentially in size compared to the original for-
mula. In contrast, TabularAllSAT processes models in-
dividually, resulting in lower memory requirements. While
it is feasible to design solvers that enumerate models with
a memory footprint polynomial in relation to the input for-
mula, TabularAllSAT’s clause learning feature may oc-
casionally exceed this polynomial limit in practice, although
this is rare.

For the benchmarks from (Spallitta, Sebastiani, and
Biere 2024), TabularAllSAT and d4+model-graph
demonstrate almost equivalent effectiveness. However,
across the other benchmark sets, d4+model-graph ex-
hibits slightly higher efficiency. The Virtual Best Solver
(VBS), a hypothetical algorithm that always selects the best
solver from the tested pool, solves 2271 instances. The pri-
mary contributors to the VBS are TabularAllSAT and
our approach. Notably, our method independently solves an
additional 29 instances.

https://crates.io/crates/decdnnf_rs
https://github.com/crillab/d4v2
https://www.disc.lab.uec.ac.jp/toda/code/cnf2obdd.html
https://www.disc.lab.uec.ac.jp/toda/code/cnf2obdd.html
https://zenodo.org/records/10397723
https://zenodo.org/records/10397723
https://www.cs.ubc.ca/~hoos/SATLIB/
https://www.cs.ubc.ca/~hoos/SATLIB/
https://zenodo.org/records/11085774


TabularAllSAT BDD d4+model-graph d4+baseline

Dataset #solve (#TO, #MO) #solve (#TO, #MO) #solve (#TO, #MO) #solve (#TO, #MO)

binary (50) 21 (29, 0) 21 (3, 26) 33 (17, 0) 18 (32, 0)
BMS (500) 499 (1, 0) 485 (0, 15) 500 (0, 0) 470 (30, 0)
CSB (1000) 1000 (0, 0) 999 (0, 1) 1000 (0, 0) 1000 (0, 0)
rnd3sat (410) 410 (0, 0) 381 (22, 7) 410 (0, 0) 308 (102, 0)
competition (246) 118 (128, 0) 37 (42, 167) 124 (59, 63) 65 (123, 58)
compilation (197) 144 (53, 0) 85 (32, 80) 155 (31, 11) 84 (102, 11)
Total (2403) 2192 (211, 0) 2008 (99, 296) 2222 (107, 74) 1945 (389, 69)

Table 1: Table reporting the number of instances solved by each solver within the timeout time (1200 seconds).
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Figure 2: Scatter plots comparing CPU times of d4+model-graph with other solvers. Each dot represents an instance. The x-coordinate
(resp. y-coordinate) shows the time (in seconds) for the solver on the x-axis (reps. y-axis). Both axes are log-scaled.

Figure 2 provides additional insights into the results pre-
sented in Table 1 by examining the runtime performance of
the solvers compared to d4+model-graph. Each point
represents an instance, with the time (in seconds) required
to solve it using d4+model-graph (x-axis) and the time
needed by other solvers (y-axis). To enhance readability,
all instances solved in less than 1 second have been rep-
resented as solved within 1 second in the figures. Figures
2b and 2a clearly illustrate that d4+model-graph outper-
forms both BDD and d4+baseline in terms of runtime.
In particular, the points on the left side of the graphs il-
lustrate that d4+model-graph significantly outperforms
these two competitors. Each dot signifies an instance that
d4+model-graph solves in less than 1 second, while
other approaches generally take much longer. The points
at the top of the graphs clearly show that other methods fre-
quently time out on the tested benchmarks.

When comparing with TabularAllSAT, Figure 2c il-
lustrates that d4+model-graph demonstrates exceptional
efficiency on the benchmarks from (Spallitta, Sebastiani,
and Biere 2024). However, the results for the other two sets
of benchmarks are somewhat mixed, particularly for the test
set competition, where no single solver appears to con-
sistently outperform the others. This observation can be at-
tributed to the fact that, as noted in (Audemard, Lagniez,
and Simon 2013), on certain instances containing few par-
tial models, employing a SAT solver for model enumeration
proves to be more efficient than using a compiler.

To compare the performance difference between
d4+model-graph and TabularAllSAT, we present
a scatter plot depicting the number of partial models
computed by each approach. Each data point represents an
instance, with the number of partial models enumerated by
d4+model-graph plotted on the x-axis and the number
enumerated by TabularAllSAT plotted on the y-axis.
The plot clearly illustrates that d4+model-graph gener-
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Figure 3: Scatter plot comparing number of partial models gener-
ated by d4+model-graph and TabularAllSAT.



ally requires fewer partial models to cover the entire search
space of the formula. This observation can be attributed to
the heuristic utilized by d4, which is specifically designed
for knowledge compilation.

To conclude, it is worth noting that 99% of the bench-
marks solved by d4+model-graph require a compilation
time of less than one second. d4 successfully compiles 2386
benchmarks before the timeout, with 2300 taking less than
10 seconds. Memory outages do not always stem from d4,
but can occur during the representation of the d-DNNF in
the internal structure of model-graph. This issue could
be mitigated by directly integrating our technique into d4,
eliminating the need for disk I/O operations in the process.

5 Conclusion and Perspectives
In this paper, we introduce model-graph, an approach
leveraging decision-DNNF compilation for enumerat-
ing disjoint partial models of propositional formulas. By
harnessing the graph representation inherent in d-DNNFs,
we devised a method capable of efficiently enumerating
all models in a disjoint manner. Our experiments validate
the efficacy of our two-step approach, which first compiles
a CNF formula into d-DNNF and then enumerates partial
models from the d-DNNF. Results demonstrate that our ap-
proach generally outperforms state-of-the-art methods, con-
sistently delivering faster performance. Additionally, our
approach typically generates a significantly smaller number
of partial disjoint models compared to other competitors.

This work could be extended in several directions. Ex-
ploring parallelization techniques offers a promising avenue
to accelerate the model enumeration process, especially for
complex d-DNNFs. Utilizing multiple threads or proces-
sors can harness the power of modern computing architec-
tures, potentially achieving a linear speedup. A notable
drawback of our approach is that if the compilation phase
fails, no partial models will be returned. To address this lim-
itation, one interesting approch is to explore the possibility
of enumerating partial models as they become available dur-
ing the compilation phase. This proactive approach could
mitigate the impact of compilation failures and enhance the
robustness of the overall methodology. Finally, to further
enhance our approach’s performance, we plan to explore
additional preprocessing techniques such as gate elimina-
tion (Lagniez and Marquis 2014) and definability (Lagniez,
Lonca, and Marquis 2016; Lagniez, Lonca, and Marquis
2020; Lagniez and Marquis 2023). While preprocessing
techniques that preserve equivalence can safely simplify the
input formula, techniques like gate elimination or definabil-
ity are more complex as they necessitate reconstructing each
solution afterward. Solution reconstruction is polynomial
for gate elimination but NP-hard for definability. Conse-
quently, the feasibility of using such preprocessing tech-
niques is uncertain and involves balancing the initial com-
pilation time against the subsequent postprocessing required
for solution reconstruction.
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