
HAL Id: hal-04622237
https://univ-artois.hal.science/hal-04622237

Submitted on 24 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On the Computation of a Productive Partially Ordered
Possibilistic Repair

Ahmed Laouar, Sihem Belabbes, Salem Benferhat

To cite this version:
Ahmed Laouar, Sihem Belabbes, Salem Benferhat. On the Computation of a Productive Partially
Ordered Possibilistic Repair. DL 2024: 37th International Workshop on Description Logics, Ana
Ozaki; Laura Giordano; Jean Christoph Jung, Jun 2024, Bergen, Norway. �hal-04622237�

https://univ-artois.hal.science/hal-04622237
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

On the Computation of a Productive Partially Ordered
Possibilistic Repair
Ahmed Laouar1, Sihem Belabbes2 and Salem Benferhat1

1CRIL, Univ. Artois & CNRS, UMR 8188, Lens, 62300, France
2LIASD, IUT de Montreuil, Univ. Paris 8, Saint-Denis, 93200, France

Abstract
We deal with repairing inconsistent partially ordered lightweight ontologies in the possibilistic setting.
More specifically, we consider the closure-based C𝜋-repair method, which yields a more productive
partially ordered possibilistic repair and is tractable in DL-Liteℛ. In this work, we refine the characteri-
zation of the C𝜋-repair method and propose an equivalent algorithm that is more efficient. We illustrate
our findings with an experimental analysis. In particular, we highlight the main situations in which the
C𝜋-repair method achieves the best performance both in terms of productivity and computational cost.

Keywords
Lightweight Ontologies, Inconsistency, Partial orders, Data repairs

1. Introduction

Reasoning with inconsistent lightweight ontologies commonly consists in evaluating queries
over the repairs of the ABox, defined as maximal subsets of the ABox that are consistent with
respect to the TBox. Inconsistency-tolerant semantics are strategies for selecting which repairs
to query in order to derive valid conclusions from an inconsistent ontology. Some of the most
prominent semantics have been implemented in reasoning systems. For example, the CQAPri
system (Consistent Query Answering with Priorities) [1] resolves conjunctive queries in DL-
Liteℛ ontologies over the repairs of the ABox. It returns as valid conclusions the query answers
that follow: from every repair under the ABox Repair (AR) semantics [2], from the intersection
of all the repairs under the Intersection of ABox Repair (IAR) semantics [2], and from any repair
under the brave semantics [3]. Another example is the QuID system [4] which implements
conjunctive query answering under the IAR semantics in ontologies specified in DL-Lite𝒜.

The issue of inconsistency management in DL-Liteℛ has been investigated for both totally
ordered ontologies [1, 5] and partially ordered ontologies [6]. Some other methods focus on
a preference relation defined only over minimal inconsistent subsets of the ABox. The issue
was first investigated in prioritized databases [7] and then adapted to DL-Lite in [8]. Besides,
inconsistency has been considered within the framework of possibility theory. One can cite the
method for computing a totally ordered possibilistic repair [9], which infers all the assertions
that are strictly more certain than the first assertion that makes the ABox inconsistent. The

DL 2024: 37th International Workshop on Description Logics, June 18–21, 2024, Bergen, Norway
$ laouar@cril.fr (A. Laouar); belabbes@iut.univ-paris8.fr (S. Belabbes); benferhat@cril.fr (S. Benferhat)
� 0009-0002-0028-3234 (A. Laouar); 0000-0002-8159-7122 (S. Belabbes); 0000-0002-4853-3637 (S. Benferhat)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:laouar@cril.fr
mailto:belabbes@iut.univ-paris8.fr
mailto:benferhat@cril.fr
https://orcid.org/0009-0002-0028-3234
https://orcid.org/0000-0002-8159-7122
https://orcid.org/0000-0002-4853-3637
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

possibilistic repair is tractable in DL-Liteℛ, because its computation can be reduced to checking
the consistency of a subset of the ABox. This makes it more efficient than the other repairs that
apply to totally ordered ABoxes [9]. Furthermore, in the case of partially ordered ontologies,
there is the method for computing the partially ordered possibilistic repair (𝜋-repair) [10], and
its closure-based counterpart (C𝜋-repair) [11] which is more productive. In both methods,
the partial order over the ABox is interpreted as a family of total orders which define the
compatible totally ordered ABoxes that extend the partial order. The 𝜋-repair is obtained from
the intersection of the totally ordered possibilistic repairs of the compatible ABoxes, whereas
the C𝜋-repair intersects their closure. Note that the 𝜋-repair is included in the C𝜋-repair.

Equivalent characterizations have been proposed for the 𝜋-repair and the C𝜋-repair methods,
without exhibiting the all compatible ABoxes, and have been shown to be tractable in DL-Liteℛ.
The 𝜋-repair method is characterized by the notion of 𝜋-accepted assertion [12], which boils
down to checking the consistency of the said assertion together with the subset of all the
assertions that are at least equally certain or are incomparable to it. The C𝜋-repair method
is characterized using the notions of support and dominance [11] against the conflicts of the
ABox, which are minimal subsets of the ABox that are inconsistent with respect to the TBox.
Basically, a valid conclusion is an assertion that can be derived from consistent minimal subsets
of the ABox, called supports, that dominate (i.e., are strictly more certain than) all the conflicts.

In this work, we first implement a naive algorithm for the C𝜋-repair method, using the
tractable characterization based on the notions of support and dominance. We then provide
an improved equivalent algorithm by exploiting the fact that C𝜋-repair is composed of the
𝜋-repair and a complement set. We revise the notion of dominance by exploiting the partial
order relation in order to reduce the number of conflicts and supports that need to be processed
by the algorithm. Thus, computing C𝜋-repair amounts to computing the 𝜋-repair with the
tractable characterization of 𝜋-accepted assertions, and computing the rest by applying the
revised notion of dominance to the remaining assertions. We perform an experimental analysis
and confirm that computing the C𝜋-repair with the new algorithm benefits from the efficiency
of computing the 𝜋-repair. We highlight the main situations in which the C𝜋-repair method
achieves the best performance both in terms of productivity and computational cost.

This paper is structured as follows. Section 2 recalls some preliminaries then describes a
naive algorithm for the C𝜋-repair method. Section 3 studies properties of C𝜋-repair which
serve to introduce an improved algorithm. Section 4 provides an experimental evaluation of
these algorithms. A brief discussion concludes the paper.

2. Preliminaries: The C𝜋-repair method

DL-Liteℛ Syntax A DL-Liteℛ ontology [13] is a finite knowledge base (KB) 𝒦 = ⟨𝒯 ,𝒜⟩,
built by recursively applying the following grammar:

𝑅 := 𝑃 | 𝑃− 𝐸 := 𝑅 | ¬𝑅 𝐵 := 𝐴 | ∃𝑅 𝐶 := 𝐵 | ¬𝐵
where 𝐴 is a concept name, 𝑃 is a role name and 𝑃− is its inverse. The symbol ¬ designates a
complement set and ∃ denotes existential restriction on roles.
The TBox 𝒯 contains axioms of the form 𝐵 ⊑ 𝐶 and 𝑅 ⊑ 𝐸. The ABox 𝒜 contains assertions
of the form 𝐴(𝑎) and 𝑃 (𝑎, 𝑏), where 𝑎 and 𝑏 are individuals. The axioms in 𝒯 may be positive

inclusions of the form 𝐵1 ⊑ 𝐵2 or 𝑅1 ⊑ 𝑅2 which allow to derive new assertions from 𝒜.
The axioms in 𝒯 may also be negative inclusions of the form 𝐵1 ⊑ ¬𝐵2 or 𝑅1 ⊑ ¬𝑅2 which
serve to exhibit the conflicts in 𝒜. A conflict is a minimal subset of 𝒜 that is inconsistent with
respect to 𝒯 , with a size of (at most) two assertions in DL-Liteℛ [14]. Inconsistency refers to
the absence of a model for the KB. We omit the semantics of DL-Liteℛ for space considerations.

Partially preordered KB A partial preorder ⊵ over an ABox 𝒜 is a reflexive and transitive
binary relation. Let ▷ be the associated strict order. Let ◁▷ denote incomparability, i.e., for 𝜙𝑗

and 𝜙𝑘 two assertions, 𝜙𝑗 ◁▷ 𝜙𝑘 means that neither 𝜙𝑗 ⊵ 𝜙𝑘 nor 𝜙𝑘 ⊵ 𝜙𝑗 applies. The partially
preordered ABox is denoted by 𝒜⊵. In the rest of this paper, we deal with an inconsistent
partially preordered KB and denote it by 𝒦 = ⟨𝒯 ,𝒜⊵⟩.

Next, we provide an algorithmic definition for each of the core notions of the C𝜋-repair
method, namely the deductive closure, the conflict set and the support of an assertion.

2.1. Deductive closure of the ABox

The deductive closure of the ABox contains all the assertions that may be inferred from the KB
using the positive axioms of the TBox. The individuals included in the closure are limited to
those present in the ABox, which makes the closure finite. Algorithm 1 computes the deductive
closure of 𝒜⊵ by running a set of First Order SQL queries. For each concept or role name in an
axiom of the TBox, it creates a conjunctive query (CQ) 𝑞(−→𝑥) to retrieve the individuals in the
corresponding assertion (in line 3). Then, the algorithm reformulates the query into a union
of conjunctive queries (UCQ), under classical semantics, to get all the individuals present in
any subsume or subrole of the initial concept or role name. Any CQ-rewriting procedure may
be used. Here, we use the PerfectRef algorithm [13]. The results of the reformulation are then
executed on the ABox (in line 6). This corresponds to computing the set of the answers for each
query over ℐ𝒜⊵ , which is the interpretation that satisfies exactly the assertions of 𝒜⊵.

Algorithm 1: ComputeClosure

Input: 𝒦 = ⟨𝒯,𝒜⊵⟩: a KB
Output: 𝑐𝑙(𝒜⊵) : the deductive closure of 𝒜⊵.

1 𝑐𝑙(𝒜⊵)← ∅
2 foreach N : a concept name or role name in𝒯 do
3 𝑞(−→𝑥)← 𝛿(N)
4 PR← PerfectRef(𝑞, 𝒯)
5 foreach 𝑞𝑖(

−→𝑥) in PR do
6 foreach −→𝑎 ∈ ans(𝑞𝑖,ℐ𝒜⊵) do
7 𝑐𝑙(𝒜⊵)← 𝑐𝑙(𝒜⊵) ∪ {𝜆(N,−→𝑎)}

8 return (𝑐𝑙(𝒜⊵))

• 𝛿: a translation function mapping a con-
cept name 𝐵 with a variable 𝑥, and a
role name 𝑅 with the variables 𝑥1, 𝑥2

(adapted from [13]).

• ans(𝑞𝑖,ℐ𝒜⊵): the result of running the
query 𝑞𝑖 on the interpretation ℐ𝒜⊵ .

• 𝜆: a translation function mapping the
concept name or the role name 𝑁
with each of the answers −→𝑎 (adapted
from [13]).

2.2. Conflict set of the ABox

In an inconsistent DL-Liteℛ KB, a conflict is a minimal subset of (at most) two assertions that are
contradictory in terms of the axioms [14]. In the following, we assume that a conflict contains

exactly two assertions, and denote the conflict set of the ABox 𝒜⊵ by Cf(𝒜⊵). Algorithm 2 uses
query generation and reformulation (similar to the algorithm in [15]) to compute the conflict
set. The algorithm creates a conjunctive query (𝑞𝑖(−→𝑥)) for each negative axiom in 𝒯 . Then it
performs CQ-rewriting under classical semantics, to get queries for the negative axioms that
are not explicitly stated in the TBox. The size of each query at this step is 2. After that, the
obtained queries are evaluated over the ABox to get the individuals (−→𝑎) that are present in both
assertions of any conflicting concept names or role names. −→𝑎 are substituted for the variables
−→𝑥 , and the set of atoms in 𝑞𝑖(

−→𝑎) are added to the conflict set.

Algorithm 2: ComputeConflicts

Input: 𝒦 = ⟨𝒯,𝒜⊵⟩: a KB
Output: Cf(𝒜⊵) : the conflict set of 𝒜⊵

1 Cf(𝒜⊵)← ∅
2 𝑄← ∅
3 foreach 𝛼: a negative axiom in 𝒯 do
4 𝑄← 𝑄 ∪ {𝑞𝑖(−→𝑥)← 𝛿(𝛼)}
5 PR←

⋃︀
𝑞𝑖∈𝑄 PerfectRef(𝑞𝑖, 𝒯)

6 foreach 𝑞𝑖(
−→𝑥) in PR do

7 foreach −→𝑎 ∈ ans(𝑞𝑖,ℐ𝒜⊵) do
8 Cf(𝒜⊵)← Cf(𝒜⊵) ∪ {{atoms(𝑞𝑖(−→𝑎))}}

9 return (Cf(𝒜⊵))

• 𝛿: a translation function from a nega-
tive axiom 𝛼 in 𝒯 to a conjunctive query
(defined in [13]).

• ans(𝑞𝑖,ℐ𝒜⊵): the result of running the
query 𝑞𝑖 on the interpretation ℐ𝒜⊵ .

• atoms(𝑞𝑖(−→𝑎)): the set of atoms in the
query 𝑞𝑖(

−→𝑎).

2.3. Support of an assertion

The support of an assertion in an ABox is a minimal consistent subset of the ABox that allows to
derive it. In DL-Liteℛ, a support consists of at most a single assertion of the ABox. Algorithm 3
computes the union of boolean queries that represent the instance checking queries of the
supports for a given assertion. This is achieved via the reformulation of the instance checking
query of the assertion under classical semantics (using the PerfectRef algorithm). The verified
instances are added to the set of supports of the assertion.

Algorithm 3: ComputeSupports

Input: 𝒦 = ⟨𝒯,𝒜⊵⟩: a KB, 𝐵(𝑎), resp. 𝑅(𝑎1, 𝑎2): an assertion in 𝑐𝑙(𝒜⊵)
Output: 𝒮 : the supports of 𝐵(𝑎), resp. 𝑅(𝑎1, 𝑎2), in 𝒜⊵

1 𝒮 ← ∅
2 𝑞(−→𝑎)← 𝐵(𝑎) /* resp. 𝑅(𝑎1, 𝑎2) */
3 PR← PerfectRef(𝑞, 𝒯)
4 foreach 𝑞𝑖(

−→𝑎) in PR do
5 if ans(𝑞𝑖,ℐ𝒜⊵) is 𝑡𝑟𝑢𝑒 then
6 𝒮 ← 𝒮 ∪ {{atoms(𝑞𝑖(−→𝑎)}}

7 return (𝒮)

2.4. C𝜋-repair algorithm

Given the notions of deductive closure, conflict set and support introduced in Algorithms 1 to 3,
the C𝜋-repair method also relies on the notion of dominance in 𝒜⊵ defined as follows.

Definition 1 (Dominance). Let two subsets ℬ1 and ℬ2 of 𝒜⊵. We say that ℬ1 dominates ℬ2 if
∀𝜙𝑗 ∈ ℬ1, ∃𝜙𝑘 ∈ ℬ2 s.t., 𝜙𝑗 ▷ 𝜙𝑘.

The C𝜋-repair method is characterized as the dominance of the supports of an assertion over
the conflicts of the ABox. The characterization solely applies when the KB is inconsistent.
Otherwise, The C𝜋-repair amounts to the deductive closure of the ABox.

Definition 2 (C𝜋-repair). A given assertion 𝜙 is in 𝑐𝜋(𝒜⊵) if ∀𝒞 ∈ Cf(𝒜⊵), ∃ℬ ⊆ 𝒜⊵ s.t. ℬ
supports 𝜙 (as per Algorithm 3), and ℬ dominates 𝒞 (as per Definition 1).

Note that in DL-Liteℛ, a support (a singleton) dominates a conflict (a pair) means that there is an
assertion in the ABox that is strictly more certain than at least one element of the conflict. Algo-
rithm 4 is a naive implementation of the C𝜋-repair method which applies the characterization
given in Definition 2 to each assertion of the closed ABox returned by Algorithm 1.

Algorithm 4: ComputeC𝜋-repair
Input: 𝒦 = ⟨𝒯,𝒜⊵⟩: a KB
Output: 𝐶𝜋(𝒜⊵) : the C𝜋-repair of 𝒜⊵

1 𝑐𝑙(𝒜⊵)← ComputeClosure(𝒦)
2 Cf(𝒜⊵)← ComputeConflicts(𝒦)
3 if Cf(𝒜⊵) = ∅ then return 𝑐𝑙(𝒜⊵)
4 else
5 𝐶𝜋(𝒜⊵)← ∅
6 foreach 𝜙 in 𝑐𝑙(𝒜⊵) do
7 𝒮(𝜙)← ComputeSupports(𝜙,𝒦)
8 visited← ∅ /* visited: the set of visited conflicts */
9 repeat

10 select 𝒞 = {𝑐𝑖, 𝑐𝑗} from Cf(𝒜⊵)
11 Cf(𝒜⊵)← Cf(𝒜⊵) ∖ {𝒞}
12 visited ← visited ∪ {𝒞}
13 supported ← false /* supported: a boolean, true if 𝜙 has a support */
14 repeat
15 select {𝑠} from 𝒮(𝜙)
16 𝒮(𝜙)← 𝒮(𝜙) ∖ {𝑠}
17 if 𝑠▷ 𝑐𝑖 or 𝑠▷ 𝑐𝑗 then supported← true

18 until supported is true or 𝒮(𝜙) = ∅ /* exit when a support is found or there are no supports */
19 until supported is false or Cf(𝒜⊵) = ∅ /* exit after parsing all the conflicts or there is no support */
20 if supported is true then 𝐶𝜋(𝒜⊵)← 𝐶𝜋(𝒜⊵) ∪ {𝜙} /* 𝜙 is supported against each conflict */
21 Cf(𝒜⊵)← Cf(𝒜⊵) ∪ visited

22 return (𝐶𝜋(𝒜⊵))

Lemma 1. The algorithm ComputeC𝜋-repair (Algorithm 4) runs in polynomial time and space
in |𝒜⊵| (in data complexity) 1.
1Proofs of all propositions and lemmas are provided in the appendix.

3. Revisiting the C𝜋-repair method

In this section, we aim at computing C𝜋-repair more efficiently. Thus, we propose to improve
Algorithm 4 by exploring two ideas. First, we exhibit additional properties of the dominance
relation, in order to reduce the number of the processed conflicts and supports. We do so
by focusing on subsets of conflicts and of supports called dominant conflicts and dominant
supports. Second, since the C𝜋-repair contains the 𝜋-repair, we start by computing the 𝜋-repair
using its tractable characterization. We then complete the C𝜋-repair by applying the revised
characterization to the assertions that cannot be inferred from the 𝜋-repair.

Definition 3 (Dominant conflicts). The set of dominant conflicts, denoted Cf𝑑𝑜𝑚(𝒜⊵), is the
maximal subset Cf𝑑𝑜𝑚(𝒜⊵) ⊆ Cf(𝒜⊵) s.t. ∀𝒞𝑖 ∈ Cf(𝒜⊵), if ∃𝒞𝑗 ∈ Cf(𝒜⊵) s.t. 𝒞𝑗 dominates 𝒞𝑖,
then 𝒞𝑖 ̸∈ Cf𝑑𝑜𝑚(𝒜⊵).

The following proposition states that it is sufficient to consider only the dominant conflicts
within the conflict set to compute the C𝜋-repair. This stems from the fact that the dominance
relation is transitive, which follows from the transitivity of the partial preorder relation ⊵.

Proposition 1. A given assertion 𝜙 is in 𝑐𝜋(𝒜⊵) if and only if ∀𝒞 ∈ Cf𝑑𝑜𝑚(𝒜⊵), ∃ℬ ⊆ 𝒜⊵

s.t. ℬ supports 𝜙 and ℬ dominates 𝒞.

Definition 4 (Dominant supports). Let 𝒮(𝜙) be the set of supports of an assertion 𝜙 in 𝒜⊵.
The set of dominant supports of 𝜙, denoted 𝒮𝑑𝑜𝑚(𝜙), is the maximal subset 𝒮𝑑𝑜𝑚(𝜙) ⊆ 𝒮(𝜙) s.t.
∀ℬ𝑖 ∈ 𝒮(𝜙), if ∃ℬ𝑗 ∈ 𝒮(𝜙) s.t. ℬ𝑗 dominates ℬ𝑖, then ℬ𝑖 ̸∈ 𝒮𝑑𝑜𝑚(𝜙).

The following proposition states that it is sufficient to consider only the set of dominant
supports of any given assertion 𝜙 in order to check its membership in C𝜋-repair. This result
also follows from the transitivity of the partial preorder relation ⊵.

Proposition 2. Let 𝜙 be an assertion and let 𝒮(𝜙) be its set of supports in 𝒜⊵. 𝜙 is in 𝑐𝜋(𝒜⊵) if
and only if ∀𝒞 ∈ Cf𝑑𝑜𝑚(𝒜⊵), ∃ℬ ∈ 𝒮𝑑𝑜𝑚(𝜙) s.t. ℬ dominates 𝒞.

Proposition 2 entails that Algorithm 4 can actually consider (strict) subsets of the conflicts
and the supports. This has the potential for considerably reducing the number of elements over
which the algorithm iterates to check membership of an assertion in the C𝜋-repair. Furthermore,
we exploit two key properties of the C𝜋-repair [11] to improve Algorithm 4. First, the C𝜋-repair
(strictly) contains all the assertions of the 𝜋-repair [12], which is characterized as follows.

Definition 5 (𝜋-repair). Let 𝜙𝑖 ∈ 𝒜⊵ and Δ(𝜙𝑖) = 𝒜⊵ ∖ {𝜙𝑗 |𝜙𝑗 ∈ 𝒜⊵ s.t. 𝜙𝑖 ▷ 𝜙𝑗} be the
set of assertions that are at least equally certain or incomparable to 𝜙𝑖. Then 𝜙𝑖 ∈ 𝜋(𝒜⊵) if
⟨𝒯 , {𝜙𝑖} ∪Δ(𝜙𝑖)⟩ is consistent.

We conclude that Algorithm 4 does not need to consider all the assertions of the deductively
closed ABox in order to compute the C𝜋-repair. Instead, an improved version of the algorithm
first computes the 𝜋-repair 2, before iterating over the remaining assertions of the closed ABox.

2A suggested algorithm for computing the 𝜋-repair is provided in the appendix.

Moreover, we explore a second property of the C𝜋-repair in order to reduce the number of
remaining assertions that need to be checked by the algorithm. This relates to the set difference
between the C𝜋-repair and the deductive closure of the 𝜋-repair. In essence, if an assertion is
neither accepted in the 𝜋-repair nor its closure, it must have strictly more than one support to
be in the C𝜋-repair. This is formalized in the following lemma.

Lemma 2. Let 𝜙 be an assertion in 𝑐𝜋(𝒜⊵). Let 𝒮(𝜙) be the set of supports of 𝜙. If |𝒮(𝜙)| = 1,
then 𝜙 ∈ 𝑐𝑙(𝜋(𝒜⊵)).

The converse of Lemma 2 does not hold, a non-accepted assertion may have multiple supports.
Algorithm 5 (given in the next page) constitutes an improved version of Algorithm 4. It begins

by computing the closed ABox followed by the set of dominant conflicts. If the KB is consistent,
the closed ABox is returned. Otherwise, the algorithm computes the assertions of the 𝜋-repair
and inserts them in the C𝜋-repair. Next, it iterates over the assertions of the closed ABox minus
the 𝜋-repair, and for each such assertion, it computes its set of dominant supports. If one of
the supports is in the 𝜋-repair, the assertion is added to the C𝜋-repair. This step retrieves the
assertions that are in the closure of the 𝜋-repair. Otherwise, the algorithm checks whether the
assertion has more than one support. If it does, then for each conflict, the algorithm checks
whether the assertion has a support dominating the conflict (like in Algorithm 4).

Lemma 3. The algorithm ComputeC𝜋-repair (Algorithm 5) runs in polynomial time and space
in |𝒜⊵| (in data complexity).

4. Experimental evaluation

We implemented all the algorithms of this paper in Python. Our system relies on the RDFLib
library [16] to read the ontology, a SQLite3 relational DBMS [17] to store the ABox, and the
Rapid query rewriting engine [18] to reformulate queries. Our system is publicly available
at: https://github.com/ahmedlaouar/py_reasoner. We performed the experiments on an Intel
3.60GHz CPU with 32 GB RAM under Ubuntu, and provided instructions for reproducing them.
Let us first discuss how to elicit partial orders to obtain a partially ordered KB.

4.1. Directed acyclic graphs for partial orders

One way for implementing a partially ordered KB is to assign partially ordered priority degrees
to the assertions of the ABox [10]. These degrees can be represented graphically using Hasse
diagrams or directed acyclic graphs (DAGs). We opt for transitive DAGs [19], which explicitly
represent arcs within the graph. In a transitive DAG, nodes represent the degrees of a partially
ordered set (POS), an arc indicates the strict preference of a degree over the other, and the absence
of an arc expresses incompatibility of two degrees. A set of random DAGs was generated using
the R package bnlearn [20], based on different numbers of nodes ({50, 100, 500, 1000, 2500})
and different probabilities for the presence of arcs (0.1, . . . , 0.9). A probability indicates the
density of the DAG, hence a less dense DAG has more occurrences of incomparability.

https://github.com/ahmedlaouar/py_reasoner

Algorithm 5: ComputeC𝜋-repair
Input: 𝒦 = ⟨𝒯,𝒜⊵⟩: a KB
Output: 𝐶𝜋(𝒜⊵) : the C𝜋-repair of 𝒜⊵

1 𝑐𝑙(𝒜⊵)← ComputeClosure(𝒦)
2 Cf𝑑𝑜𝑚(𝒜⊵)← ComputeDominantConflicts(𝒦) /* the set given by Definition 3 */
3 if Cf𝑑𝑜𝑚(𝒜⊵) = ∅ then return 𝑐𝑙(𝒜⊵)
4 else
5 𝜋(𝒜⊵)← Compute𝜋-repair(𝒦)
6 𝑐𝑙(𝒜⊵)← 𝑐𝑙(𝒜⊵) ∖ 𝜋(𝒜⊵)
7 𝐶𝜋(𝒜⊵)← 𝜋(𝒜⊵)
8 foreach 𝜙 in 𝑐𝑙(𝒜⊵) do
9 𝒮𝑑𝑜𝑚(𝜙)← ComputeDominantSupports(𝜙,𝒦) /* the set given by Definition 4 */

10 if 𝒮𝑑𝑜𝑚(𝜙) ∩ 𝜋(𝒜⊵) ̸= ∅ then
11 𝐶𝜋(𝒜⊵)← 𝐶𝜋(𝒜⊵) ∪ {𝜙}
12 else
13 if size (𝒮𝑑𝑜𝑚(𝜙)) > 1 then
14 visited← ∅ /* visited: the set of visited conflicts */
15 repeat
16 select 𝒞 = {𝑐𝑖, 𝑐𝑗} from Cf𝑑𝑜𝑚(𝒜⊵)
17 Cf𝑑𝑜𝑚(𝒜⊵)← Cf𝑑𝑜𝑚(𝒜⊵) ∖ {𝒞}
18 visited ← visited ∪ {𝒞}
19 supported← false /* supported: a boolean, true if 𝜙 has a support */
20 repeat
21 select {𝑠} from 𝒮𝑑𝑜𝑚(𝜙)
22 𝒮𝑑𝑜𝑚(𝜙)← 𝒮𝑑𝑜𝑚(𝜙) ∖ {𝑠}
23 if 𝑠▷ 𝑐𝑖 or 𝑠▷ 𝑐𝑗 then supported← true

24 until supported is true or 𝒮𝑑𝑜𝑚(𝜙) = ∅ /* exit when support is found or no support */
25 until supported is false or Cf𝑑𝑜𝑚(𝒜⊵) = ∅ /* exit if all conflicts parsed or no support */
26 if supported is true then
27 𝐶𝜋(𝒜⊵)← 𝐶𝜋(𝒜⊵) ∪ {𝜙} /* 𝜙 is supported against each conflict */

28 Cf𝑑𝑜𝑚(𝒜⊵)← Cf𝑑𝑜𝑚(𝒜⊵) ∪ visited

29 return (𝐶𝜋(𝒜⊵))

4.2. Experimental setting

We used an OWL ontology as the TBox. We opted for the DL-Liteℛ version of the modified
LUBM benchmark (LUBM∃

20) [21] (available at https://home.uni-leipzig.de/clu/). Since this
version does not contain negative axioms, we added a set of negative axioms to the TBox in
order to create conflicts. Next, we used the Extended University Data Generator (EUDG) [21] to
generate three ABoxes of different sizes, and transformed each ABox into a SQLite database.
Then, we introduced inconsistency by adding contradictory assertions in each ABox as follows.
For each negative axiom inferred from the TBox, we contradict the presence of an individual in a
concept assertion (resp. role assertion) with probability 𝑝 (resp. 𝑝

2). We used different values of 𝑝
in order to create five different situations within each ABox in terms of inconsistency, which is
measured with by the number of conflicts. For each execution of the algorithms, degrees from a
previously generated DAG are randomly assigned to the assertions of each ABox. We refer to

https://home.uni-leipzig.de/clu/

ID #A # Cf Cf (s) #𝜋 𝜋 (s) #𝑐𝜋 𝑐𝜋 (s) 𝑐𝜋++ (s)
u.5p5e-6 9156 111 1.08 8078 1.24 22740 27.65 11.26
u.5p1e-5 9158 387 1.42 5344 1.33 15859 30.56 18.15
u.5p5e-5 9193 1268 1.43 742 1.28 2473 30.15 30.86
u.5p5e-4 9228 3372 1.6 1102 1.41 3651 30.75 29.35
u.5p1e-3 9375 7733 1.7 442 1.57 1475 28.83 28.65
u1p5e-6 75671 753 2.51 36083 4.36 66867 203.59 53.45
u1p1e-5 75678 3049 2.77 22804 8.38 46257 261.47 74.74
u1p5e-5 75718 10388 4.14 5856 5.07 14992 267.33 130.9
u1p15e-5 75842 28553 4.84 2378 6.54 6834 258.71 168.25
u1p5e-4 76255 83863 6.5 988 6.9 2994 251.23 170.61
u5p5e-6 463349 4505 22.48 74511 39.39 167473 6635.11 2160.48
u5p1e-5 463400 8327 23.6 30204 38.89 78857 6711.89 2941.02
u5p5e-5 463684 57054 26.3 8693 35.85 25921 5772.07 3105.82
u5p1e-4 464060 121621 29.76 6213 34.12 18794 6492.42 3566.24
u5p5e-4 466785 544500 49.95 1470 95.88 4713 5868.32 3956.46

Table 1
ABoxes in terms of: size (#A), conflicts number (# Cf) and computation time (Cf (s)), 𝜋-repair size (#𝜋)
and computation time (𝜋 (s)), C𝜋-repair size (#𝑐𝜋) and computation time (𝑐𝜋 (s) and 𝑐𝜋++ (s)).

the 𝜋-repair (Definition 5) and Algorithms 4 and 5 by 𝜋, 𝑐𝜋 and 𝑐𝜋++, respectively. We consider
three different cases for the evaluation:

Case 1: We analyse both the performance of the algorithms as a function of the size of the ABox
and the impact of the number of conflicts on the size of the repairs and the running
time (for computing the repairs). The results are presented in Table 1 and Figure 1.

Case 2: We consider different configurations for the associated DAG (POS). We analyze the
impact of changing the size and density of the DAG. This allows us to measure the
difference 𝑐𝜋(𝒜⊵) ∖ 𝑐𝑙(𝜋(𝒜⊵)). We point out the main situations where the C𝜋-repair
is more productive than the 𝜋-repair. The results are depicted in Figure 2 [left].

Case 3: We use ABox u.5 to compare the proportion of time spent in each step of Algorithms 4
and 5. For each ABox by number of conflicts, we computed the median time from
different executions. The results are presented in Figure 2 [middle] and [right].

4.3. Experimental results

Impact of the number of conflicts (Case 1) First, we compare the running time of Al-
gorithms 4 and 5 (𝑐𝜋 and 𝑐𝜋++) to compute the C𝜋-repair, and can see that the improved
method largely outruns the naive method. Mainly, in situations of weakly conflicting ABoxes,
which correspond to ABoxes with (111, 387) conflicts for u.5, (753, 3049) conflicts for u1
and (4505, 8327) for u5. For these ABoxes, the improved method reduces the running time to
a mere 25% of the naive method’s. This can be observed in Figure 1 [left], with (753, 3049)
conflicts. This also holds for large sized ABoxes, as ABox u5 in Table 1. Moreover, for highly
conflicting ABoxes, the improved method takes at most half of the time taken by the naive one.
In these ABoxes, the 𝜋-repair becomes smaller and more assertions must be checked using the
C𝜋-repair characterization. We can observe in Figure 1 [left] that the 𝜋-repair is computed in a
stable time. This is because it runs a constant time verification step for each ABox assertion.

Regarding the size of the obtained repairs, we observe that a large subset of assertions is
discarded when the number of conflicts exceeds 10% of the size of the ABox (1268 for ABox

Figure 1: Evolution of repair time [left] and repair size [right] w.r.t. the number of conflicts (ABox u1).

u.5, 10388 for ABox u1 and 57054 for ABox u5). This is confirmed by Figure 1 [right]. This
outcome is expected. Moreover, it is true even for the IAR semantics, which is considered by
nature to be more productive than possibilistic repairs (for more details on IAR, see [4, 1]).

Impact of the used partial order (Case 2) In order to point out the main situations where
the C𝜋-repair is more productive than the 𝜋-repair, we illustrate the size of the 𝜋-repair (𝜋),
the closure of the 𝜋-repair (𝑐𝑙(𝜋)) and the additional assertions that are only in the C𝜋-repair
(only 𝑐𝜋), as a function of the density of the used POS. Figure 2 [left] depicts the results of
these executions. Note that in this case, we used ABox u1 with 753, 3049 and 10388 conflicts.
The evaluation of the density shows that lower probabilities, which indicate a higher presence
of incomparabilities, lead to a more productive C𝜋-repair. When the probability of having a
strict preference between two degrees in the POS is lower than 0.5, the C𝜋-repair is larger than
the 𝜋-repair. Conversely, POSs with higher probabilities corresponds to a decreased likelihood
of C𝜋-repair being more productive than the 𝜋-repair, such partial orders approximate a total
order. This result illustrates Lemma 2, with more incomparabilities, there is a higher chance
for an assertion to have different supports dominating different conflicts. This is the case
for the assertions that are only in the C𝜋-repair. We can also observe that, for POSs with
many incomparabilities, the C𝜋-repair returns more answers when the 𝜋-repair is empty. This
can be observed in Figure 2 [left], with the densities 0.1 and 0.3. Furthermore, we concluded,
trough multiple executions with different POS densities, that the C𝜋-repair returns an important
number of assertions in 80% of the cases where the 𝜋-repair contains less than 10% of the
ABox assertions. In addition, for weakly conflicting ABoxes, the C𝜋-repair provided additional
assertions in 10% of the times. This percentage falls under 5% for the highly conflicting ABoxes.

Proportion of time spent by Algorithms 4 and 5 (Case 3) Figure 2 ([middle] and [right])
illustrates the running time taken by each step of Algorithms 4 and 5. For both algorithms, the
computation of the ABox closure is achieved in constant time. The time taken to compute the
set of conflicts increases slightly as their number increases. This also results in an increase
in total time, as there are more conflicts to go through. In the improved method (Figure 2
[right]), computing the 𝜋-repair is run in constant time with respect to the changing number of
conflicts, whereas computing its closure is more time-consuming in weakly conflicting ABoxes.
Computing the supports involves processing each assertion in the ABox closure through multiple

Figure 2: Proportion of assertions in each repair vs POS density [left]. Proportion of repair time for
ABox u.5, using Algorithm 4 [middle] and Algorithm 5 [right].

SQL queries to retrieve them. Although significantly faster in the improved algorithm, as shown
in the results of Table 1, supports computation is the most time-intensive step of the process.

5. Concluding discussions

In this paper, we conducted an experimental study of data repair methods for partially ordered
possibilistic knowledge bases, including three principal phases. Initially, it involved developing
suitable algorithms for the computation of repairs. Subsequently, we delved into examining
the inherent properties of the repair strategies and the algorithms’ to enhance their efficiency.
Finally, we tested the algorithms across various scenarios to evaluate their performance. We
provided an algorithmic investigation, complemented by experimental analysis of the closure-
based partially ordered possibilistic repair. Starting with the repair’s characterization, we showed
that leveraging certain properties allows for a more efficient repair process. Our experiments,
conducted across diverse ABoxes, featuring a varying number of conflicts and configuration of
partial orders, led to the insight that the C𝜋-repair is particularly beneficial in cases where the
partial order defined over the ABox incorporates numerous incomparabilities and its subset,
the 𝜋-repair, includes fewer assertions. Furthermore, the algorithms we developed are capable
of batch processing, enabling an incremental computation of repairs for larger ABoxes. Future
work involves checking whether polynomial time complexity holds also in combined complexity.

Acknowledgments

This research was supported by the European Union’s Horizon research and innovation pro-
gram under the MSCA-SE (Marie Skłodowska-Curie Actions Staff Exchange) [grant agreement
101086252]; Call: HORIZON-MSCA-2021-SE-01; Project title: STARWARS (STormwAteR and
WastewAteR networkS heterogeneous data AI-driven management).
Ahmed Laouar’s PhD is supported by the French national project ANR (Agence Nationale de
la Recherche) Vivah (Vers une intelligence artificielle à visage humain) [grant number ANR-
20-THIA-0004]. This research has also received support from the French national project ANR
(Agence Nationale de la Recherche) EXPIDA (EXplainable and parsimonious Preference models
to get the most out of Inconsistent DAtabases) [grant number ANR-22-CE23-0017].
The authors would like to thank the reviewers for their useful comments.

References

[1] M. Bienvenu, C. Bourgaux, F. Goasdoué, Querying inconsistent description logic knowledge
bases under preferred repair semantics, in: Proceedings of the AAAI Conference on
Artificial Intelligence, volume 28, 2014, pp. 996–1002.

[2] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D. F. Savo, Inconsistency-tolerant semantics
for description logics, in: Web Reasoning and Rule Systemss, RR 2010, Bressanone/Brixen,
Italy, 2010, pp. 103–117.

[3] M. Bienvenu, R. Rosati, Tractable approximations of consistent query answering for robust
ontology-based data access, in: IJCAI, 2013, pp. 775–781.

[4] R. Rosati, M. Ruzzi, M. Graziosi, G. Masotti, Evaluation of techniques for inconsistency
handling in OWL 2 QL ontologies, in: The Semantic Web–ISWC 2012: 11th International
Semantic Web Conference, Boston, MA, USA, November 11-15, 2012, Proceedings, Part II
11, Springer, 2012, pp. 337–349.

[5] S. Benferhat, Z. Bouraoui, K. Tabia, How to select one preferred assertional-based repair
from inconsistent and prioritized DL-Lite knowledge bases?, in: International Joint
Conference on Artificial Intelligence (IJCAI), Buenos Aires, Argentina, 2015, pp. 1450–
1456.

[6] S. Belabbes, S. Benferhat, J. Chomicki, Elect: An inconsistency handling approach for
partially preordered lightweight ontologies, in: Logic Programming and Nonmonotonic
Reasoning (LPNMR), Philadelphia, USA, 2019, pp. 210–223.

[7] S. Staworko, J. Chomicki, J. Marcinkowski, Prioritized repairing and consistent query
answering in relational databases, AMAI 64 (2012) 209–246.

[8] M. Bienvenu, C. Bourgaux, Querying and repairing inconsistent prioritized knowledge
bases: Complexity analysis and links with abstract argumentation, in: Principles of
Knowledge Representation and Reasoning (KR), Virtual Event, 2020, pp. 141–151.

[9] A. Telli, S. Benferhat, M. Bourahla, Z. Bouraoui, K. Tabia, Polynomial algorithms for
computing a single preferred assertional-based repair, KI-Künstliche Intelligenz 31 (2017)
15–30.

[10] S. Belabbes, S. Benferhat, Computing a possibility theory repair for partially preordered
inconsistent ontologies, IEEE Transactions on Fuzzy Systems (2021) 1–10.

[11] A. Laouar, S. Belabbes, S. Benferhat, Tractable closure-based possibilistic repair for partially
ordered dl-lite ontologies, in: European Conference on Logics in Artificial Intelligence,
Springer, 2023, pp. 353–368.

[12] S. Belabbes, S. Benferhat, Characterizing the possibilistic repair for inconsistent par-
tially ordered assertions, in: Information Processing and Management of Uncertainty
in Knowledge-Based Systems - 19th International Conference, IPMU 2022, Milan, Italy,
Proceedings, Part II, volume 1602, 2022, pp. 652–666.

[13] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and
efficient query answering in description logics: The DL-Lite family, Journal of Automated
Reasoning 39 (2007) 385–429.

[14] D. Calvanese, E. Kharlamov, W. Nutt, D. Zheleznyakov, Evolution of DL-Lite knowledge
bases, in: International Semantic Web Conference (1), Shanghai, China, 2010, pp. 112–128.

[15] M. Bienvenu, C. Bourgaux, F. Goasdoué, Computing and explaining query answers over

inconsistent dl-lite knowledge bases, Journal of Artificial Intelligence Research 64 (2019)
563–644.

[16] D. Krech, G. A. Grimnes, G. Higgins, J. Hees, I. Aucamp, N. Lindström, N. Arndt, A. Som-
mer, E. Chuc, I. Herman, A. Nelson, J. McCusker, T. Gillespie, T. Kluyver, F. Ludwig,
P.-A. Champin, M. Watts, U. Holzer, E. Summers, W. Morriss, D. Winston, D. Pert-
tula, F. Kovacevic, R. Chateauneu, H. Solbrig, B. Cogrel, V. Stuart, Rdflib, 2023. URL:
https://zenodo.org/record/6845245.

[17] R. D. Hipp, SQLite, 2020. URL: https://www.sqlite.org/index.html.
[18] A. Chortaras, D. Trivela, G. Stamou, Optimized query rewriting for owl 2 ql, in: Automated

Deduction–CADE-23: 23rd International Conference on Automated Deduction, Wrocław,
Poland, July 31-August 5, 2011. Proceedings 23, Springer, 2011, pp. 192–206.

[19] G. Gutin, Acyclic digraphs, Classes of Directed Graphs (2018) 125–172.
[20] M. Scutari, Learning bayesian networks with the bnlearn r package, arXiv preprint

arXiv:0908.3817 (2009).
[21] C. Lutz, I. Seylan, D. Toman, F. Wolter, The combined approach to OBDA: taming role

hierarchies using filters, in: The Semantic Web - ISWC 2013 - 12th International Semantic
Web Conference, Sydney, Australia, 2013, pp. 314–330.

https://zenodo.org/record/6845245
https://www.sqlite.org/index.html

	1 Introduction
	2 Preliminaries: The Cπ-repair method
	2.1 Deductive closure of the ABox
	2.2 Conflict set of the ABox
	2.3 Support of an assertion
	2.4 Cπ-repair algorithm

	3 Revisiting the Cπ-repair method
	4 Experimental evaluation
	4.1 Directed acyclic graphs for partial orders
	4.2 Experimental setting
	4.3 Experimental results

	5 Concluding discussions

