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Abstract. Community detection in social networks is a widely stud-
ied topic in Artificial Intelligence and graph analysis. It can be useful
to discover hidden relations between users, the target audience in dig-
ital marketing, and the recommender system, amongst others. In this
context, some of the existing proposals for finding communities in net-
works are agglomerative methods. These methods used similarities or
link prediction between nodes to discover the communities in graphs.
The different similarity metrics used in these proposals focused mainly
on common neighbors between similar nodes. However, such definitions
are missing in the sense that they do not take into account the connection
between common neighbors. In this paper, we propose a new similarity
measure, named α-Structural Similarity, that focuses not only on com-
mon neighbors of nodes but also on their connections. Afterwards, in
the light of α-Structural Similarity, we extend the Hierarchical Cluster-
ing algorithm to identify disjoint communities in networks. Finally, we
conduct extensive experiments on synthetic networks and various well-
known real-world networks to confirm the efficiency of our approach.

Keywords: Local similarity · Community detection · Social network ·
Agglomerative approaches.

1 Introduction

Over the years, graphs have been widely used to model various real-world ap-
plications where vertices represent objects and edges represent relationships be-
tween these objects. Social network analysis is one such application where the
automatic discovery of communities has been a major challenge in recent years
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[7]. Community detection involves identifying a set of nodes that are strongly
connected within but weakly connected outside a community [15]. Community
detection algorithms can be categorized into overlapping and non-overlapping
approaches, with the latter being of particular interest in this paper. Long ago,
various non-overlapping approaches have been studied. More precisely, Enright
et al. [5] introduced a novel approach called TRIBE-MCL. The authors used the
sequence protein similarity to detect the sequence protein families. Furthermore,
the well-known approach, coined LPA (Label propagation algorithm), was pro-
posed by Raghavan et al. [16] in which the nodes having the same label form
the same community. In addition, Rodrigo et al. [1] introduced a novel opti-
mized measure for detecting communities called surprise. In addition, Traag et
al. [21] introduced a novel method based on a new measure called significance for
detecting clusters. Moreover, Traag et al. [22] proposed a novel approach that
improved the Louvain algorithm [2]. The authors found that 25% of communities
are poorly connected, and then they presented a novel algorithm named LEI-
DEN to overcome this issue. Moreover, they enhanced the running time. Despite
exhibiting strong performance, these existing proposals are still limited in terms
of community quality, due to the wide variety of the real-world social network
structures. Notice also that other non-overlapping approaches exist, which are
based on local similarities and modularity maximization. Precisely, Yi-CHENG
CHEN et al. [4] developed an approach named Hierarchical Clustering (HC,
for short) used in the context of the influence maximization problem. Their al-
gorithm starts by considering each vertex as an initial community. Then, the
authors merged each pair of communities having the highest similarity values
whose merging gives the greatest increase in modularity. Afterwards, they ap-
plied a local Structural Similarity (in short 2S) having the same definition of the
Salton similarity [19] but utilizing differently defined neighborhood sets. Despite
the good results in terms of community quality demonstrated by the use of the
2S in the HC approach, there are cases where the definition of the 2S may not be
sufficient. This raises the question of whether the interaction between common
neighbors enriched with the definition of the 2S would ultimately improve the
quality of the detected communities. In this context, we propose a new simi-
larity measure, named α-Structural Similarity (α-2S), that focuses not only on
common neighbors of nodes but also on their connections. Ultimately, consid-
ering α-2S, we extended the HC algorithm to identify disjoint communities in
networks. In this paper, we introduce some formal notations in Section 2. Then,
in Section 3, we deal with a HC based on α-2S which we call α-HC. Section
4 presents our experiments on both synthetic and real-world datasets. Finally,
Section 5 concludes the paper with hints for future work.

2 Preliminaries

In this paper, we consider a simple undirected graph G = (V,E), where V
is the set of vertices, and E is the set of edges. The set of neighbors of a
node u ∈ V is defined as N(u) = {v | (u, v) ∈ E}. The degree of u ∈ V
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is then |N(u)|. For a given node u ∈ V , we write adj(u) for the set of neigh-
bors of u including u itself, i.e., adj(u) = N(u) ∪ {u}. Given a set of nodes
X ⊆ V , a subgraph induced by X, denoted as GX = (X,EX), is a graph
over X s.t. EX = {(u, v) ∈ E | u, v ∈ X}. Further, let w : E → R>0 be
a function that maps each edge from E to a non negative real value which
∈ ]0..1]. We write Ew

max for the set of edges sets with a maximum weight w,
i.e., Ew

max = {{u, v} s.t. (u, v) ∈ E | ∄ (u′, v′) ∈ E s.t. w(u′, v′) > w(u, v)}. A
graph G = (V,E) is called a clique iff. ∀ u ∈ V, |adj(u)| = |V |. A graph G =
(V,E) can be splitted into numerous subgroups called communities, denoted as
CG = {c1, c2, . . . , cm}. Let P (V ) = 2V the power set of V . The Merge function
is defined as Merge : 2P (V ) × 2P (V ) → 2P (V ); (CG, E

w
max) 7→ Merge(CG, E

w
max)

returns a merged set of subsets i.e., Merge(CG, E
w
max) = { ci ∪ {u, v}, {u, v} ∈

Ew
max, ci ∈ CG, | ∀ 1 ≤ i ≤ m s.t. ci ∩ {u, v} ̸= ∅}. Let dmax be the maximum

degree of G, i.e., dmax = max|N(u)|{u ∈ V }. Besides, let dav be the average
number of neighbors of all the vertices in X, i.e., dav = 1

|X|

∑
u∈X

|N(u)|.

The similarity measure 2S [4] is a local function that uses the immediate neigh-
borhood between vertices as defined below.

Definition 1 (Structural Similarity). Let G = (V,E) be an undirected graph
and (u, v) ∈ E, then the 2S of u and v, denoted by s2(u, v), is defined as:

s2(u, v) =
|adj(u) ∩ adj(v)|√
|adj(u)| × |adj(v)|

(1)

For the quality of the set of communities, the modularity is formally defined as
follows:

Definition 2 (Modularity [4]). Let G = (V,E) be an undirected graph with
CG = {c1, c2, . . . , cm} is the set of communities of G and s be a general similarity
measure. The modularity is defined as:

Q(CG) =

m∑
i=1

[
ISi

TS
−
(
DSi

TS

)2
]

(2)

where ISi =
∑

u, v ∈ ci

s(u, v), DSi =
∑

u ∈ ci, v ∈ V

s(u, v), and TS =
∑

u, v ∈ V

s(u, v).

3 A Hierarchical Clustering Approach based on
α-Structural Similarity

We propose an extended version of the 2S. Indeed, we added another term in
Equation 1, which will denote the rate of interaction between common neighbors.
we added the concept of connection between common neighbors. Therefore, the
identification of communities will be more significant. To be more precise, let
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G = (V,E) be a graph and given (u, v) ∈ E. We consider the ratio between the
number of connections between common neighbors (i.e., adj(u)∩adj(v)) and the
minimum between the number of edges of the subgraph induced by adj(u) and
the one induced by adj(v). Then, the new version of the similarity metric, which
will be called α-2S is formally defined as follows:

sα2 (u, v) = (1− α)
|adj(u) ∩ adj(v)|√
|adj(u)| × |adj(v)|

+ α
|Eadj(u) ∩ adj(v)|

min(|Eadj(u)|, |Eadj(v)|)
(3)

where α is a parameter in [0..1]. It should be noted that sα2 (u, v) ∈ ]0..1].

The parameter α in Equation 3 ensures the trade-off between the notion of
common neighborhood and the rate of their interactions. Thus, it is interesting
to determine the value of α. It should be noted that when α = 0, the α-2S is
identical to the 2S. We illustrate the behaviour of our α-2S through the following
example. We set α = 0.8.

Example 1. Let us consider the undirected graph depicted in Figure 1.

u

xy

v k

r

p q

j

Then, we have that:

s
0.8
2 (u, v) = (1 − 0.8)

|adj(u) ∩ adj(v)|√
|adj(u)| × |adj(v)|

+ 0.8
|Eadj(u) ∩ adj(v)|

min(|Eadj(u)|, |Eadj(v)|)

= (1 − 0.8) ×
6

√
7 × 8

+ 0.8 ×
12

min(13, 14)

= (1 − 0.8) ×
6

√
56

+ 0.8 ×
12

13
= 0.89

Fig. 1. A simple undirected graph with α = 0.8.

In what follows, to show the effectiveness of our new similarity metric α-2S,
let us consider the case of two disjoint cliques C1 and C2. A set of links is then
added over C1 and C2 to form a new clique C3 overlapping with C1 and C2.
We will show how the two communities formed by the initial cliques C1 and
C2 remain identifiable when varying the set of links between C1 and C2. The
obtained graph will be coined k-linked-cliques graph.

Definition 3. Let G = (V,E) be a graph and k, n two integers s.t. 1 ≤ k ≤ n
and n ≥ 4. Then, G is called a k-linked-cliques graph iff. G is formed by three
cliques C1 = (V1, E1), C2 = (V2, E2), and C3 = (V3, E3) where:
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– V = V1 ⊎ V2 s.t. |V1| = |V2| = n, and E1 ∩ E2 = ∅

– V3 ⊆ V1 ∪ V2, |V1 ∩ V3| = k, and |V2 ∩ V3| = 2

In the sequel, we consider V2 ∩ V3 = {u0, v0}. Below we are interested in
computing the values of k making the similarity inside C1 and C2 higher than
the one of the edges of C3 using both 2S and α-2S metrics.

Proposition 1. Let G be a k-linked-cliques graph. ∀ (u1, v1) ∈ (E1 ∪ E2) and
(u2, v2) ∈ E3 \ (E1 ∪ E2), we have s2(u2, v2) < s2(u1, v1) iff. k < n− 1.

Proof. (Refer to Appendix A)

Proposition 2. Let G be a k-linked-cliques graph. ∀ (u1, v1) ∈ (E1 ∪ E2) and
(u2, v2) ∈ E3 \ (E1 ∪ E2), we have sα2 (u2, v2) < sα2 (u1, v1) iff. k ≤ n − 1 and
α > 0.06.

Proof. (Refer to Appendix B)

Proposition 1 states that for a k-linked-cliques graph, the 2S of edges linking
C1 and C2 is lower than the ones of edges within the two cliques C1 and C2 for
1 until n− 2. While in the proposition 2, α-2S is from 1 until n− 1 which makes
it better than the 2S on a k-linked-cliques graph.

Example 2. Let’s consider the k-linked-cliques graph depicted in Figure 2. This
figure illustrates an example of k-linked-clique graph for k = 1 to k = 4. As
shown, the similarity values of the linking edges (colored in purple) are lower
than the rest of the edges in the graph from k = 1 to k = 2 while according to
0.8-2S, it is from k = 1 to k = 3.

At k = 1 using 2S.
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At k = 4 using 2S
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Fig. 2. An example of k-linked-cliques with n = 4 and α = 0.8.

Based on α-2S, our approach follows the one HC where 2S is substituted with
α-2S. Algorithm 1 named α-HC describe our approach. First, we computed the
similarity for each edge in G. Second, we initialized the set of communities,
where each vertex is considered as community. Then, we calculated the corre-
sponding modularity. Third, at each iteration, we merged each pair of nodes
having the strongest similarity. Fourth, the modularity is recalculated on the
current merged set. If we have a modularity gain, then the process continue.
Otherwise, the previous result is considered as the best clustering set.
Algorithm 1: α-HC
Input: G(V,E), α
Output : CG

begin
for (u, v) ∈ E do

w(u, v)← sα2 (u, v)
end
CG ← ∅
for u ∈ V do

CG ← CG ∪ {{u}}
end
PreviousModularity ← Q(CG)
CurrentModularity ← PreviousModularity
C ← CG

while CurrentModularity ≥ PreviousModularity do
CG ← C
C ←Merge(C,Ew

max)
PreviousModularity ← CurrentModularity
CurrentModularity ← Q(C)

end
return CG

end

Computational complexity . Usually, clustering algorithms based on modu-
larity maximization require O((|E|+|V |)|V |) [12]. Similarity computation should
be considered. Indeed, the 2S requires O(|V |d3max) [14]. The extraction of edges
of an induced subgraph requires O(|X|dav) [13]. Then, α-2S requires O(|V |d3max+
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4|E||X|dav) and therefore α-HC requires O(|V |d3max+4|E||X|dav+(|E|+|V |)|V |).
The complexity is polynomial.

4 Experiments

To validate our proposal, we propose an implementation [23]. We performed
two kinds of experiments. First, α-HC and HC were tested on artificial networks
called LFR networks [9] by changing a parameter called mixing parameter µ from
0.1 to 0.9. The parameter µ allows to control the mixture between communities.
When µ is growing the identification of the communities becomes harder. Our
goal is to identify how community quality is correlated to µ. In our setting,
for each value of µ, the value of α is varied from 0.1 to 1 to identify the best
value of α providing the best quality. The quality of the founded communities
were measured using the well-known F1-score [18] and NMI [6] metrics. In our
second experiment, α is fixed, and then we compare our approach with other
disjoint community detection approaches on 8 well-known real-world datasets.
We illustrated all the datasets in tables 1 and 2. We denote by AD the average
degree, GT the ground truth communities, and MinCS the minimum community
size.

Table 1. Real-world datasets
Datasets Nodes/Edges GT Source
Karate 34/78 2 [24]
Dolphin 62/159 2 [11]
Books 105/441 3 [8]

Citeseer 3264/4536 6 [3]
Email-Eu-Core 1005/25571 42 [10]

Cora 23166/89157 70 [20]
Amazon 334863/925872 75149 [10]
YouTube 1134890/2987624 8385 [10]

Table 2. LFR networks
µ AD MinCS Nodes Source

[0.1..0.9] 5 50 1000 [17]
[0.1..0.9] 5 50 5000 [17]
[0.1..0.9] 5 50 10000 [17]
[0.1..0.9] 5 50 50000 [17]

In the first phase of the experiment, α-HC is compared to HC according to
NMI and F1-score by considering various LFR networks. The figures 3, 4, 5, 6,
7, 8, 9 and 10 illustrates the obtained results. The histograms reveal that, for
µ ≥ 0.3, there is always at least an α ̸= 0 (more precisely, α ≥ 0.6) for which α-
HC outperforms HC in terms of NMI and F1-score. These findings suggest that
α-HC is more reliable than HC for detecting mixed communities, as confirmed
by the results of propositions 1 and 2.
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Fig. 3. HC vs. α-HC on LFR networks with 1000 nodes based on F1-score.
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Fig. 10. HC vs. α-HC on LFR networks with 50000 nodes based on NMI.

In the rest of the experiment, α is fixed to 1. We made two comparisons. First, 1-
HC with HC, then 1-HC with other some non-overlapping approaches mentioned
in section 1 like (Label Propagation Algorithm (LPA) [16], LEIDEN algorithm
[22], Surprise Communities (SC) [1], Significance Communities Approach (SCA)
[21] and Markov Clustering algorithm (MC) [5]) on 8 well-known real-world
datasets. Tables 3, 4, 5, and 6 illustrates the results.

Tables 3 and 4 show that 1-HC performs better than HC. Indeed, 1-HC out-
performs HC allowing a gain of 4% according to the NMI. For the F1-score, an
improvement of 4% is also obtained. The results shown in table 5 prove that
1-HC overpasses other state-of-the-art approaches considered in this paper. In-
deed, 1-HC exceeds on average 13%, 14%, 14%, 9%, and 23% LPA, LEIDEN,
SC, SCA, and MC respectively according to NMI. In table 6, 1-HC overpasses
the above mentioned approaches. In fact, 1-HC exceeds on average 4%, 6%,
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10%, 8%, and 13% LPA, LEIDEN, SC, SCA and MC respectively according to
F1-score. Therefore, 1-HC shows good results for communities compared to the
above-mentioned algorithms.

Despite the potentially fruitful results observed with 1-HC, there exist some
datasets where its performance is limited. This can be explained by the variety of
the structures of the networks. Furthermore, α = 1 is not universally applicable.
In fact it may be not the best optimal result. Then, it is important to search
the most appropriate α value that aligns with the structure of the considered
network.

Table 3. 1-HC vs. HC based on NMI
Comparison based on NMI

Datasets HC 1-HC
Karate 0.579 0.777

Email-Eu-Core 0.705 0.660
Citeseer 0.098 0.069
Dolphin 0.429 0.509
Books 0.49 0.474

Amazon 0.635 0.752
Cora 0.623 0.613

YouTube 0.127 0.199
Average 0.46 0.50

Table 4. 1-HC vs. HC based on F1
Comparison based on F1-score

Datasets HC 1-HC
Karate 0.669 0.919

Email-Eu-Core 0.164 0.280
Citeseer 0.147 0.099
Dolphin 0.470 0.660
Books 0.606 0.345

Amazon 0.425 0.415
Cora 0.085 0.102

YouTube 0.178 0.287
Average 0.34 0.38

Table 5. 1-HC vs. others based on NMI
Comparison based on NMI

Datasets 1-HC LPA LEIDEN SC SCA MC
Karate 0.777 0.207 0.202 0.220 0.462 0.164

Email-Eu-Core 0.660 0.180 0.593 0.648 0.671 0.428
Citeseer 0.069 0.087 0.128 0.102 0.093 0.080
Dolphin 0.509 0.436 0.098 0.120 0.164 0.090
Books 0.474 0.534 0.573 0.441 0.441 0.526

Amazon 0.752 0.579 0.206 0.539 0.586 0.601
Cora 0.613 0.551 0.472 0.552 0.584 0.337

YouTube 0.199 0.393 0.616 0.307 0.286 0.008
Average 0.50 0.37 0.36 0.36 0.41 0.27

Table 6. 1-HC vs. others based on F1
Comparison based on F1-score

Datasets 1-HC LPA LEIDEN SC SCA MC
Karate 0.919 0.630 0.560 0.490 0.490 0.735

Email-Eu-Core 0.280 0.065 0.217 0.075 0.387 0.159
Citeseer 0.099 0.074 0.286 0.081 0.073 0.046
Dolphin 0.660 0.585 0.480 0.360 0.256 0.320
Books 0.345 0.656 0.776 0.590 0.435 0.696

Amazon 0.415 0.397 0.028 0.318 0.370 0.084
Cora 0.102 0.221 0.238 0.257 0.255 0.032

YouTube 0.287 0.112 0.005 0.087 0.164 0.007
Average 0.38 0.34 0.32 0.28 0.30 0.25

5 Conclusion and future work

In this paper, we extended the HC method called α-HC based on α-2S to find
disjoint communities. While using 2S in HC takes only into account the neigh-
borhood, our approach improves such formula by taking into account the number
of interactions between common neighbors. We proved theoretically that for a
k-linked-cliques graph, identifying the two cliques using α-2S is better than using
2S. Experimentation evaluation showed that our approach surpasses the above-
mentioned methods. In a future work, we plan to use our approach in the context
of the Influence Maximization problem to find the seed nodes. Another direction
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for future work is to develop an adaptive approach can predict the value of α
which provides the best quality based on machine learning solutions.
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A Appendix A

We have s2(u2, v2) =
k+2√

(n+2)(n+k)

if (u1,v1) ∈ E2, we can distinguish two cases:

– |{u1,v1} ∩ {u0,v0}| ≠ 1. In this case, we have s2(u1, v1) = 1. Then,
k+2√

(n+2)(n+k)
< 1⇔ (k + 2)2 < (n+ 2)(n+ k)⇔ k < (n− 2) +√

(2− n)2 + 4(n2 + 2n− 4). k.t. (n − 2) +
√
(2− n)2 + 4(n2 + 2n− 4) >

n =⇒ s2(u2, v2) < s2(u1, v1) ∀ 1 ≤ k ≤ n.

– |{u1,v1} ∩ {u0,v0}| = 1. In this case, we have s2(u1, v1) =
n√

n(n+k)
. Then,

k+2√
(n+2)(n+k)

< n√
n(n+k)

⇔ (k+2)2

(n+2)(n+k) < n
(n+k) ⇔ (k + 2)2 < n(n + 2) ⇔

k+2 <
√

n(n+ 2)⇔ k <
√
n(n+ 2)−2. k.t.

√
n(n+ 2)−2 < n−1 ∀ n ≥

4 =⇒ s2(u2,v2) < s2(u1,v1) iff. k < n− 1.

if (u1,v1) ∈ E1, there are also two cases:

– |{u1,v1} ∩ {u2,v2}| = 0 or (u1,v1) ∈ E1 ∩E3. In this case, s2(u1, v1) = 1.
Then, s2(u2, v2) < s2(u1, v1) ∀ 1 ≤ k ≤ n. (proved).

– |{u1,v1} ∩ {u2,v2}| = 1. In this case, s2(u1, v1) =
n√

n(n+2)
. Then,

k+2√
(n+2)(n+k)

< n√
n(n+2)

⇔ (k + 2)2 < n(n + k) ⇔ k <
(n−4)+

√
n(5n−8)

2 ⇔

k ≤ n− 1 <
(n−4)+

√
n(5n−8)

2 ⇔ s2(u2, v2) < s2(u1, v1) iff. k ≤ n− 1.

B Appendix B

sα2 (u2, v2) = (1− α) k+2√
(n+2)(n+k)

+ α (k+2)(k+1)
min(n(n−1)+4k+2, n(n−1)+(k+2)(k+1)−2)

It should be noted that min(n(n− 1)+ 6, n(n− 1)+ 4) = n(n− 1)+ 4 iff k = 1
and min(n(n−1)+4k+2, n(n−1)+(k+2)(k+1)−2) = n(n−1)+4k+2 iff k ≥ 2

if (u1,v1) ∈ E2, we have the same cases as mentioned in the proof of 2S:

– |{u1,v1} ∩ {u0,v0}| ≠ 1. In this case, we have sα2 (u1, v1) = 1. Then,

https://github.com/2x254/CDP
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• if k = 1: k.t. 3√
(n+2)(n+1)

< 1 ∀ n ≥ 4 ⇔ (1 − α) 3√
(n+2)(n+1)

≤ (1 −

α) ∀ α ∈ [0..1] and k.t. 6
n(n−1)+4 < 1 ∀ n ≥ 4 ⇔ α 6

n(n−1)+4 < α ∀ α ∈
]0..1]⇔ (1− α) 3√

(n+2)(n+1)
+ α 6

n(n−1)+4 < 1 ∀ α ∈ ]0..1]

• if k ≥ 2: k.t. k+2√
(n+2)(n+k)

< 1 ∀ 1 ≤ k ≤ n (proved)⇔ (1−α) k+2√
(n+2)(n+k)

≤ (1 − α) ∀ 1 ≤ k ≤ n, ∀ α ∈ [0..1] and wtp (k+2)(k+1)
n(n−1)+4k+2 < 1 iff.

k < n. (k+2)(k+1)
n(n−1)+4k+2 < 1 ⇔ (k + 2)(k + 1) < n(n − 1) + 4k + 2 ⇔

k2 + 3k + 2− 4k < n2 − n+ 2⇔ k2 − k < n2 − n⇔ k < n.
⇔ α (k+2)(k+1)

n(n−1)+4k+2 < α iff. k < n, ∀ α ∈ ]0..1] ⇔ (1 − α) k+2√
(n+2)(n+k)

+

α (k+2)(k+1)
n(n−1)+4k+2 < 1 iff k < n, ∀ α ∈ ]0..1].

– |{u1,v1} ∩ {u0,v0}| = 1. We have sα2 (u1, v1) = (1− α) n√
n(n+k)

+ α. Then,

• if k = 1 : k.t. (1 − α) 3√
(n+2)(n+1)

≤ (1 − α) n√
n(n+1)

∀ n ≥ 4, ∀ α ∈

[0..1] and α 6
n(n−1)+4 < α ∀ n ≥ 4, ∀ α ∈ ]0..1]⇔ (1−α) 3√

(n+2)(n+1)
+

α 6
n(n−1)+4 < (1− α) n√

n(n+1)
+ α ∀ α ∈ ]0..1].

• if 2 ≤ k < n− 1 : k.t. k+2√
(n+2)(n+k)

− n√
n(n+k)

< 0 iff. k < n−1 (proved)

and (k+2)(k+1)
n(n−1)+4k+2 − 1 < 0 iff. k < n. (proved) ⇔ (1− α)[ k+2√

(n+2)(n+k)
−

n√
n(n+k)

] ≤ 0 iff. k < n− 1, ∀ α ∈ [0..1] and α[ (k+2)(k+1)
n(n−1)+4k+2 − 1] < 0 iff.

k < n, ∀ α ∈ ]0..1]⇔ (1−α)[ k+2√
(n+2)(n+k)

− n√
n(n+k)

]+α[ (k+2)(k+1)
n(n−1)+4k+2−

1] < 0 iff. k < n−1, ∀ α ∈ ]0..1]⇔ (1−α) k+2√
(n+2)(n+k)

+α (k+2)(k+1)
n(n−1)+4k+2 <

(1− α) n√
n(n+k)

+ α iff. k < n− 1, ∀ α ∈ ]0..1].

• if k = n− 1 : let be a = (1 − α) n+1√
(n+2)(2n−1)

+ α (n+1)n
(n+4)(n−1)+2 and

b = (1−α) n√
n(2n−1)

+α⇔ a−b = (1−α) n+1√
(n+2)(2n−1)

+α (n+1)n
(n+4)(n−1)+2−

(1 − α) n√
n(2n−1)

− α = [ n+1√
(n+2)(2n−1)

− n√
n(2n−1)

] − α[ n+1√
(n+2)(2n−1)

−
n√

n(2n−1)
+ 1− (n+1)n

(n+4)(n−1)+2 ]

⇔ a− b < 0 iff. α >
n+1√

(n+2)(2n−1)
− n√

n(2n−1)

n+1√
(n+2)(2n−1)

− n√
n(2n−1)

+1− (n+1)n
(n+4)(n−1)+2

. Let’s consider

f(n) =
n+1√

(n+2)(2n−1)
− n√

n(2n−1)

n+1√
(n+2)(2n−1)

− n√
n(2n−1)

+1− (n+1)n
(n+4)(n−1)+2

a continuous decreasing func-

tion on [4,+∞[. Calculating the limits : lim
n→+∞

f(n) = 0 and lim
n→4

f(n) ≈
0.06⇔ 0 ≤ f(n) ≤ 0.06. Then, a < b iff. α > 0.06.
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• if k = n : let be a = (1−α)
√

n+2
2n +α and b = (1−α) 1√

2
+α. Let’s con-

sider g(n) =
√

n+2
2n a continuous and strictly positive decreasing function

on [4,+∞[. Calculating the limits : lim
n→+∞

g(n) =
1√
2

and lim
n→4

g(n) =√
3

4
⇔ 1√

2
≤ g(n) ≤

√
3

4
⇔ g(n) ≥ 1√

2
⇔ (1 − α) g(n) + α ≥

(1− α)
1√
2
+ α⇔ a ≥ b⇔ if k = n, sα2 (u2, v2) ≥ sα2 (u1, v1) ∀ α ∈ [0..1].

=⇒ sα2 (u2,v2) < sα2 (u1,v1) iff. k ≤ n− 1 and α > 0.06.

if (u1,v1) ∈ E1, there are also two cases, which are the same in the proof of
2S:

– |{u1,v1} ∩ {u2,v2}| = 0 or (u1,v1) ∈ E1 ∩E3. In this case, sα2 (u1, v1) = 1.
Then, sα2 (u2, v2) < sα2 (u1, v1) iff k < n (proved).

– |{u1,v1} ∩ {u2,v2}| = 1. In this case, sα2 (u1, v1) = (1 − α) n√
n(n+2)

+ α.

Then,

• if k = 1: k.t. 3√
(n+2)(n+1)

< n√
n(n+2)

⇔ (1 − α) 3√
(n+2)(n+1)

≤ (1 −

α) n√
n(n+2)

∀ α ∈ [0..1], ∀ n ≥ 4. k.t. 6
n(n−1)+4 < 1 ⇔ α 6

n(n−1)+4 <

α ∀ α ∈ ]0..1] ⇔ (1 − α) 3√
(n+2)(n+1)

+ α 6
n(n−1)+4 < (1 − α) n√

n(n+2)
+

α ∀ α ∈ ]0..1], ∀ n ≥ 4.

• if k ≥ 2: k.t. k+2√
(n+2)(n+k)

< n√
n(n+2)

iff k ≤ n − 1 (proved) ⇔ (1 −

α) k+2√
(n+2)(n+k)

≤ (1− α) n√
n(n+2)

iff k ≤ n− 1, ∀ α ∈ [0..1]. k.t.
(k+2)(k+1)

n(n−1)+4k+2 < 1 iff k < n. (proved) ⇔ α (k+2)(k+1)
n(n−1)+4k+2 < α ∀ α ∈ ]0..1]

⇔ (1 − α) k+2√
(n+2)(n+k)

+ α (k+2)(k+1)
n(n−1)+4k+2 < (1 − α) n√

n(n+2)
+ α iff k ≤

n− 1 ∀ α ∈ ]0..1]⇔ sα2 (u2, v2) < sα2 (u1, v1) iff. k ≤ n− 1.
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