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Abstract

Discovering crystal structures with specific chemical prop-
erties has become an increasingly important focus in ma-
terial science. However, current models are limited in their 
ability to generate new crystal lattices, as they only consider 
atomic positions or chemical composition. To address this is-
sue, we propose a probabilistic diffusion model that utilizes a 
geometrically equivariant GNN to consider atomic positions 
and crystal lattices jointly. To evaluate the effectiveness of 
our model, we introduce a new generation metric inspired by 
Frechet Inception Distance, but based on GNN energy pre-
diction rather than InceptionV3 used in computer vision. In 
addition to commonly used metrics like validity, which as-
sesses the plausibility of a structure, this new metric offers a 
more comprehensive evaluation of our model’s capabilities. 
Our experiments on existing benchmarks show the signifi-
cance of our diffusion model. We also show that our method 
can effectively learn meaningful representations.

Introduction
Crystal materials play a crucial role in numerous technolog-
ical applications, such as the aerospace industry and semi-
conductors. As global warming poses a significant threat to 
our society, developing new materials can be vital to our 
ability to adapt to change and minimize our carbon footprint. 
To support the ecological transition, it is important to search 
for and generate new crystals, such as new semiconductors, 
that can be used to produce solar hydrogen or store hydro-
gen in solid form (Tournet et al. 2020; Rusman and Dahari 
2016). New methods, such as high-throughput screening, 
rely heavily on machine learning models to speed up the 
development process. Recently, there has been growing in-
terest in developing machine learning models to create new 
crystals (Noh et al. 2019; Dan et al. 2020; Long et al. 2021). 
In particular, Graph-based Neural Networks (GNNs) models 
have been proven effective for handling crystal structures. 
While, however, these models have shown excellent perfor-
mances for regression tasks and property prediction such as 
the formation energy or the band-gap (Xie and Grossman 
2018; Jørgensen, Jacobsen, and Schmidt 2018; Choudhary 
and DeCost 2021), the progress is still hampered by the lim-
ited extent to which generation is performed. As far as we

know, no existing model can perform sampling with a pre-
cise composition. This type of sampling is crucial for ex-
ploring the various phases of a material within a specific
composition and generating a convex hull. The ability to do
this is essential in searching for new materials (Kim et al.
2020). Our work is unique in enabling this type of sampling,
whereas other models are not as well-suited for this task.
In this paper, we propose an effective probabilistic sampling
diffusion process with GNN for crystal materials generation.

Crystals are periodic structures consisting of a minimal
set of atoms (unit cell) infinitely repeated in all directions
of 3D space. Contrary to organic chemistry, where diffu-
sion models have led to spectacular results on generation,
a key challenge when dealing with crystals is how the pe-
riodicity and the complex chemistry of materials are taken
into account and handled by the generative model. In (Xie
et al. 2021), a GNN-based model for material generation has
been proposed where the diffusion process is only applied
to atomic positions but not cells. Generating an appropriate
cell is crucial for crystals. A cell defines the repetition pat-
tern of a material and its density, which have an important
impact on the properties of the crystal lattice. To this end, we
propose a diffusion process on all the geometry of the struc-
tures (atomic positions and cells). In particular, our model
relies on a diffusion process in a torus (for the atoms) and
on a lattice (for the cells). We use a neural network based
on an equivariant vector field to create our lattices, which
sets us apart from others who only predict lattice parameters
from geometry. Additionally, we use an equivariant graph
neural network layer. This layer is equivariant to both E and
SL3(Z). Although introducing this diffusion process is chal-
lenging, we offer an elegant solution and explain how to re-
verse the process. Our model generates a more realistic lat-
tice, as confirmed by our experiments.

To assess the quality of the generated structure, several
metrics such as validity, density and formation energy are
commonly used (Xie et al. 2021; Court et al. 2020). The va-
lidity metric performs well when the generated crystals are
bad, i.e., to discard invalid materials having a poor valid-
ity ratio. When a generative model produces a good crystal
structure, this metric is no longer meaningful. The density
and formation energy are good metrics. However, they are
arbitrary and partially cover material characteristics. There
exist also metrics that compare the distributions of other
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2Univ. Artois, UR 2462, Laboratoire de Mathématiques de Lens (LML), F-62300 Lens, France.

3Univ. Artois, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens, France.
{astrid.klipfel, yael.fregier, adlane.sayede, zied.bouraoui}@univ-artois.fr



physical quantities. Contrary to the validity metric, the com-
parison of statistical distributions is a good metric. However,
even though the compared quantities are carefully chosen
such as density and energy, they are not enough to assess the
quality of generated materials. Namely, other quantities such
as band-gap, magnetism, piezoelectricity and elasticity are
also relevant for characterizing materials. To this end, in ad-
dition to existing metrics, we add Frechet ALIGNN Distance
(FAD), which provides a more complete view for evaluating
crystals as it takes into account a large number of features.
This metric aims to provide a robust evaluation that is simi-
lar to the FID used for computer vision but using ALIGNN
(Choudhary and DeCost 2021) instead of inception v3.

The main contributions of this paper are as follows: (i) we
propose a diffusion process on the whole geometry of crys-
tal materials; (ii) we introduce a regression model that learns
the reverse process and generates materials; (iii) we propose
a new metric to evaluate the performance of material genera-
tive models; (iv) we performer deep experimental analysis of
our models on existing benchmarks; (v) we provide the code
to train our proposed model with diffusion and sampling of
crystalline structures ; (vi) we provide a tool to calculate the
generation metrics as an independent python package 1.

Related Works
Recent years have witnessed an important interest in de-
veloping machine learning models for material science in
both organic chemistry (Satorras, Hoogeboom, and Welling
2021; Igashov et al. 2022; Schneuing et al. 2022; Luo, Yan,
and Ji 2021; Shi* et al. 2020; Wu et al. 2021; Xu et al. 2022;
Trippe et al. 2023) and materials science (Xie and Gross-
man 2018; Jørgensen, Jacobsen, and Schmidt 2018; Choud-
hary and DeCost 2021; Klipfel et al. 2023a). Most state-of-
the-art generative methods can be divided according to the
material representation: fingerprint (Kim et al. 2020; Ren
et al. 2022; Nouira, Sokolovska, and Crivello 2019; Dan
et al. 2020; Zhao et al. 2021; Pathak et al. 2020; Sawada,
Morikawa, and Fujii 2019; Hu et al. 2021), voxel (Long et al.
2021; Noh et al. 2019; Kim, Lee, and Kim 2020; Court et al.
2020; Hoffmann et al. 2019) and graph-based representation
(Xie et al. 2021; Ekström Kelvinius, Armiento, and Lindsten
2022; Gibson, Hire, and Hennig 2022; Cheon et al. 2020).
The fingerprint or voxel-based models are, in general, built
upon VAE (Ren et al. 2022; Long et al. 2021; Noh et al.
2019) and GAN (Kim et al. 2020; Long et al. 2021; Zhao
et al. 2021). Although these models perform well, gener-
ated structures often lack stability and are subject to dif-
ferent constraints. For example, the generated crystals are
often limited to cubic cells (Zhao et al. 2021; Long et al.
2021; Chen and Pao 2019; Court et al. 2020), or have spe-
cific chemical composition (Kim et al. 2020; Long et al.
2021; Noh et al. 2019). With such constraints, a lot of data
is required on specific chemical composition and learned
knowledge cannot be easily transferred and reused. More-
over, Voxel-based models are, in general, very expensive to
train and difficult to use on large volumes of data. Finally,

1Supplementary materials are available at arxiv.org/abs/2401.
05402, source code are available at: github.com/aklipf/gemsdiff

with a diffusion process, we can often have very good per-
formance in generation while avoiding the risk of collapse
mode (the main problem with GAN-based models).

Recently, graph-based models with diffusion process have
shown impressive results in generation for organic chemistry
(Schneuing et al. 2022; Igashov et al. 2022; Wu et al. 2021).
However, there are few works for crystal generation (Xie
et al. 2021). There are only a few models that can accurately
predict lattice while remaining invariant to the E group (Xie
et al. 2021; Yan et al. 2022). However, these models tend to
not be invariant to the SL3(Z) group, which may limit their
prediction capabilities. In (Xie et al. 2021), the diffusion
process does not apply to cells and only concerns atomic
positions and atomic numbers. It is not designed to sample
a given chemical composition, i.e., sampling structures for
various atomic ratios. This is a clear limitation when con-
structing the convex hull of a given chemical composition.
Moreover, the training phase suffers from instability since
the diffusion is not clearly defined in the torus or on the
cell, which consequently lowers the precision of the pre-
dicted lattice parameters. These limitations prevent the ap-
plication of such diffusion models on real-world problems,
i.e., when studying chemical systems for a specific applica-
tion. Our goal is to create a model that can generate struc-
tures with specific chemical compositions but with varying
proportions. To accomplish this, our model allows us to per-
form sampling by adjusting the rate given as input.

Background
We first introduce background elements about crystalline
materials and the probabilistic diffusion process.

Crystalline Materials
Crystals are structures made up of a minimum number of
atoms called unit cell that are repeated infinitely in all di-
rections of space to form a lattice. This lattice can be seen
as an atomic point cloud, where an atom may be repeated
in multiple positions due to the space tilling. Hence, its local
environment can overlap with adjacent repetitions. To define
a crystal, we use the atomic positions xi, which are within
the range of [0, 1[3, the chemical feature space F that rep-
resents the chemical information of each atom zi ∈ F , and
the lattice ρ ∈ GL3(R) that represents the periodicity. The
infinite point cloud can be expressed as follows:

⟨M⟩ = {(ρ(xi + τ), zi)|τ ∈ Zd, i ∈ [1 . . n]} ⊆ Rd × F
(1)

Where τ acts as a Z3 vector that translates the point cloud.
The representation space of all possible materials with n
atoms is then defined as MF =

⋃
n∈N MF

n with

MF
n = {(ρ, x, z)|ρ ∈ GL3(R), x ∈ [0, 1[n×d, z ∈ Fn}

(2)
The cloud ⟨M⟩ can be rotated and translated by the Eu-

clidian group. However, we can also find an alternative tiling
of the space. Let ⟨M⟩ invariant in space, which corresponds
to an action of SL3(Z) on the materials, i.e., invariant under
the action of the lattice L = ρ · Zd ⊆ Rd. We recall action



groups that a GNN model should satisfy when manipulat-
ing crystal lattice (Klipfel et al. 2023a): (i) O(d) orthogonal
group acting by g ·(ρ, x, z) = (g ·ρ, x, z); (ii) the translation
group Rd acting by v · (ρ, x, z) = (ρ, [x+ v], z); (iii) the
euclidean group E(d) = Rd ⋊ O(d); (iv) the special linear
group SLd(Z) acting by g′ · (ρ, x, z) = (ρg′−1, [g′x], z). We
refer to (Klipfel et al. 2023a) for more details.

Probabilistic Diffusion
Diffusion models are generative models developed accord-
ing to the nonequilibrium thermodynamics (Sohl-Dickstein
et al. 2015; Ho, Jain, and Abbeel 2020), which define
Markovian diffusion process that incrementally introduces
noises to input data, and then learns from a reverse process
to distinguish data from noises. While it is relatively easy to
add noises to input data, such an operation generally engen-
ders information loss since several identical antecedents to
the function that added noises may hold. The forward pro-
cess or diffusion process is defined as a Markov chain that
incrementally adds noises to the x0 data. The diffusion pro-
cess is the posterior of a latent variable model and is usually
defined using a scheduler of variance β1, · · · , βT :

q(xt|xt−1) :=N
(√

1− βtxt−1, βtI
)
,

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1)
(3)

The reverse process and the joint distribution of the latent
variable with p(xT ) = N (0, I) can similarity be defined as
a Markov chain:

pθ(xt−1|xt) :=N
(
µθ(xt, t),Σθ(xt, t)

)
,

pθ(x0:T ) =p(xT )

T∏
t=1

pθ(xt−1|xt)
(4)

Similar to variational models, diffusion models can be
trained by minimizing the evidence lower bound (ELBO):

L = Eq[DKL
(
q(xT |x0)||pθ(xT )

)︸ ︷︷ ︸
LT

+
∑
t>1

DKL
(
q(xt−1|xt, x0)||pθ(xt−1|xt)

)︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]

(5)
Equation 5 can be simplified when the Markov chain is

defined with Gaussian distributions and the variance sched-
uler only depends on hyperparameters.

Lsimple := Eq

[
||µ̃t(xt, x0)− µθ(xt, t)||2

]
(6)

with µ̃t(xt, x0) :=
√
ᾱt−1βt

1−ᾱ x0 +
√
αt(1−ᾱt−1)

1−ᾱt
xt, αt :=

1−βt, ᾱt :=
∏t

s=1 αs and xt(x0, ϵ) =
√
ᾱtx0+

√
1− ᾱtϵ

with ϵ ∼ N (0, I).

Diffusion on a Torus with an Equivariant
Graph Neural Network

We need two steps to apply diffusion to crystal generation.
First, we define a diffusion on torus to handle the period-
icity of a material. Second, we introduce a model fθ that

can learn the reverse process. We use an Equivariant Graph
Neural Network fθ : MF

n × N → MF
n that takes as input a

crystal Mt = (ρ, x, z) ∈ MF
n at a diffusion step t ∈ N and

predicts a new cell ρ′ as well as new atomic positions x′.
This approximation of Mt−1 enables to denoise the step t of
the diffusion process. Since a crystal lattice forms a toroidal
space, we adapt diffusion to such a space using a loss of two
parts: A first part concerns the shape of the torus Lρ, and the
second part concerns the diffusion inside the torus Lx. The
final loss is the sum of the two parts: L := Lρ+Lx. We now
describe these different steps in more detail.

Equivariant Graph Neural Network
We start by introducing the map fθ which is an equivariant
GNN that takes a material and a diffusion step as input and
outputs a new material with the same chemical composition
but an updated lattice ρ and atomic position x.

fθ : MA
n × N → MA

n

(ρ, x, z, t) 7→ (ρ′, x′, z)

The goal of the map fθ is to enable inverting the
diffusion process one step at a time by parameterizing
the pθ(Mt−1|Mt). This map is then defined with a step-
dependent auto-encoder GNN.

GNNAE :GL3(R)× Tn × Fn × N → GL3(R)× Rn×3 × Fn

(ρ, x, z, t) 7→ (yρ, yx, yz)

The pair of action (yρ, yx) predicted by the GNN can be
used to update the geometry of the material as follows:

(ρ′, x′, z) = (yρ, yx, id)·(ρ, x, z) with
{
ρ′ := yρρ

x′
i := [xi + yxi ].

(7)
The auto-encoder defining the denoising task consists of

the composition of three maps:

GNNAE := Decod ◦ Encod ◦ emb.

The first map, emb, embeds the atoms for the network. This
embedding is built from the atomic number and the diffusion
step as emb : A×N → F , given by the following two cases:{

emb(z, t)2k = sin( t
n2k/demb

) + embz,2k
emb(z, t)2k+1 = cos( t

n2k/demb
) + embz,2k+1

(8)

With embz is a vector associated with the atomic num-
ber z. The embedding works by associating a vector to each
atomic number and adding t, the index of the diffusion step,
to this representation in the same way that positional encod-
ing works in a transform on tokens. The remaining maps
Encod and Decod are built with components of GNNenc
and GNNdec, two equivariant GNN architectures of the type
(Klipfel et al. 2023b). These components are combined as
follows:

zemb
i = emb(zi, t) (9a)

(·, ·, zenc) = GNNenc(ρ, x, z
emb) (9b)

(ρ′, x′, ·) = GNNdec(ρ, x, z
enc) · (ρ, x, ·) (9c)



We show that fθ is equivariant (proof in Appendix A).

fθ(g ·M, t) = g · fθ(M, t)|∀g ∈ E(3)× SL3(Z). (10)

In practice, we will use this architecture, but we decode ρ′
from a cubic cell of volume 1 rather than from ρ because we
found that more stable and produces better results. Notice
that while this modification breaks the equivariance between
the input and the output of the network, the GNN that con-
stitutes it remains equivariant. As such, we still benefit from
the GNN structuring factor. So, ρ′ is computed as follows:

(ρ′, x′, ·) = GNNdec(ρ, x, z
enc) · (I3, x, ·). (11)

Diffusion Process for Crystals
We first propose a diffusion on GL3(R), the space of lattices.
As the space is non-linear, we linearize with logarithm to
use the diffusion process of Rn and bring back the result of
the diffusion to GL3(R) using the exponential map. We then
show that the usual diffusion process in the Euclidian space
induces a diffusion process on the torus, enabling us to also
apply diffusion to atoms within a lattice.
Lattice Vector Space. One can see a cell ρ ∈ GL3(R) as
the image by the exponential map of an element g ∈ gl3(R),
i.e. as ρ = exp(g). By choosing a supplement sl3(R)\
of so3(R) ⊂ sl3(R), one can decompose the Lie algebra
gl3(R) as a direct sum:

gl3(R) = so3(R)⊕ sl3(R) \ so3(R)⊕ 13, (12)

with

• so3(R) ⊂ gl3(R): rotation algebra.
• sl3(R) \ so3(R) ⊂ gl3(R): a subspace of the special lin-

ear algebra supplementary to so3(R). One can choose its
elements to be responsible for the shape of the cell but
with a cell of volume 1 (det 1).

• 13 ⊂ gl3(R): the algebra composed of the identity matrix
singleton, which generates the volume of the cell.

This decomposition of the linear Lie algebra allows us to
define a lattice vector space where vectors are in 9 dimen-
sions with 3 dimensions controlling the orientation of the
cells, 5 dimensions for the shape of the cells and 1 dimension
for volume. Since linear spaces are of the same finite dimen-
sion, they are isomorphic. A linear isomorphism is given by
choosing a basis in gl3(R). An explicit basis π ∈ gl3(R)9
defining the following isomorphism is given in Section B of
the Appendix. Notice that this process is invertible.

π : R9 → gl3(R)
x 7→ πx.

(13)

Lattice Diffusion. Based on Equation 6 and 13, we can de-
fine the loss in the lattice vector space where xρ

0 is the vector
of original lattice ρ0 and xθ(Mt, t) is the predicted lattice
vector, resulting in:

L :=Eq

[
||µ̃t(x

ρ
t , x

ρ
0)− µθ(Mt, t)||2

]
=Eq

[√ᾱt−1βt

1− ᾱ
||xρ

0 − xθ(Mt, t)||2
] (14)

Finally, we cannot directly use the loss defined in Equa-
tion 14 as the operations exp and log do not have a well-
defined gradient in Pytorch due to the Eigenvalues decom-
position. We, therefore, define a loss of lattice reconstruc-
tion that is invariant to the actions of SO3(R), which has the
same minimum as the Equation 14 from the lattice predicted
by the model ρθ(Mt, t).

Lρ := Eq

[
d(exp(πµ̃t(x

ρ
t , x

ρ
0)), ρθ(Mt, t))] (15)

We choose as distance measure between the two lattices
d(ρ, ρ′) = ||p(ρ) − p(ρ′)|| with p : GL3(R) → R6 as an
application that associates the normalized crystallographic
lattice parameters (a, b, c, α, β, γ) to a lattice ρ.
Torus Diffusion. We now detail the forward process inside
a torus and the loss function. The principle is similar to the
classical diffusion process but with a periodic space.

Forward Process Inside a Torus: We define the torus as
a quotient space such that T = Rd/Zd where we con-
sider the embedding of Zd in Rd given by integer coor-
dinates. For a distribution P on Rd of density p, we use
[P ]T to denote the distribution P in the torus with density
pT(x) =

∑
τ∈Zd p(x + τ). We show that if P is a density,

then [P ]T is a density (proof in Appendix C).
Lemma 1 [N (µ, σI)]T −−−−−→

σ→+∞
U(0, 1)d

The proof of Lemma 1 is provided in Appendix D. Con-
sequently, we choose pθ(xT ) = U(0, 1). We can now intro-
duce our forward process with q such that.

q(xt|xt−1) := [N (x0, βt)]T then
q(xt|x0) = [N (x0, (1− ᾱt)I)]T (16)

Notice that there is no need to shift the norm because the
distribution tends towards a uniform distribution. Now the
reverse process with pθ in a similar way to equation 4:

pθ(xt−1|xt) := [N (µθ(xt, t), σ
2
t I)]T (17)

We deduce that we can sample xt−1 from xt and x0 di-
rectly as q(xt−1|xt, x0) = [N (x0, β̃tI)]T

Loss Function: The loss is composed of 3 parts from
equation 5: LT , Lt−1 and L0. LT is a constant because it
depends only on βt (variance scheduler). L0 is the same as
Lt−1 in our context. To perform the last diffusion step, we
use Lt−1 with a variance of 0. This leaves us Lt−1:

Lt−1 = Eq

[
DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))

]
(18)

Being periodic, the distributions q and pθ can shift by k ∈
Z3. We then obtain Equation 18 which is equivalent to the
Equation 19. Proofs are given in Appendix E.

Lk
t−1 := Eq,k

[ 1

2σ2
t

||x0 − xt − k − ϵθ(xt, t)||2
]

(19)

We can now define the final loss. As optimizing for any k
minimizes 18, we choose the k that minimizes the trajectory
performed by the atom. We then attend the targeted position
following the shortest path.

Lx := Eq

[
||x0 − xt − k∗ − ϵθ(xt, t)||2] (20)

with k∗ = argmin
k∈Zd

||x0 − xt − k||

Finally, we obtain a reconstruction loss where the network
is trained to move atoms back to their original position fol-
lowing the shortest possible path.



Parameter Value

batch size 128
epochs 512
learning rate 1e-3
knn 32
diffusion steps 100
(βρ

0 , β
ρ
T ) (1e-5, 1e-1)

(βx
0 , β

x
T ) (1e-6, 2e-3)

Table 1: Hyperparameters of GemsDiff

Experiments
We present an evaluation of our proposed models GemsDiff
We will, in particular, focus on experiments about diffusion
and evaluation based on Frechet distance. All experiments
were conducted on a subset of Materials Project (Jain et al.
2013), which is a dataset that contains crystalline materials
that have been studied with ab-initio calculations (physical
simulation). We follow the same setting as (Xie et al. 2021)
and filter the dataset by only keeping stable materials having
less than 20 atoms. We only keep stable materials as we aim
to assess the capability of our model to produce stable struc-
tures. We use the same training, validation and test splits as
(Xie et al. 2021) for comparable results.

Notice that in our research, we have chosen not to eval-
uate Perov-5 and Carbon-24 for various reasons. Perov-5 is
a dataset of perovskite structures with identical atomic posi-
tions but different compositions, which does not align with
the purpose of our research, which is to predict geometry
based on composition. Carbon-24 is a structured dataset sim-
ulated at 10GPa, which is equivalent to 100k atmospheric
pressure, and prediction models from the literature cannot
accurately predict the properties of materials under such dif-
ferent conditions. Lastly, our focus is on semiconductors,
and we are not interested in carbon structures.
Training The different hyperparameters we used for train-
ing are reported in Table 1. The training is performed fol-
lowing Algorithm 1, which uses the GNN and loss func-
tions provided in Section . The training time is estimated
to 36 hours on an Nvidia RTX 8000 GPU with 48Go. The
sampling of the test set, which contains 9046 crystals, takes
about 45 minutes, which is normal for a diffusion model.
Baselines. We evaluate GemsDiff against the state-of-the-art
baselines: CDVAE (Xie et al. 2021), FTCP (Ren et al. 2022),
PGCGM (Zhao et al. 2023), G-SchNet(Gebauer, Gastegger,
and Schütt 2019) and P-G-SchNet (Gebauer, Gastegger, and
Schütt 2019). We re-trained the CDVAE and FTCP to sam-
ple new crystals and calculate the Frechet ALIGNN distance
(FAD) (as described in section 5.2). For PGCGM (Zhao
et al. 2023), we used a pre-trained model that allows the gen-
eration of crystal materials. For G-SchNet and P-G-SchNet,
we report results from (Xie et al. 2021).
Sampling Process. To generate structures with GemsDiff,
we use chemical compositions of the test set. As such, ge-
ometrical information and chemical compositions have not
been seen by the models. We use the Langevin dynamics
with Algorithm 2 following the same parameters as in the
training. We generate a dataset having the same size as the

Algorithm 1: Training
Input: (ρ0, x0, z) ∈M
1: repeat
2: t ∼ U({1, · · · , T})
3: xρ

t ∼ q(xρ
t |π−1 log ρ0)

4: xt ∼ q(xt|x0)
5: (ρθ, ϵθ)← fθ(expπx

ρ
t , xt, z, t)

6: gradient descent step on∇L
7: until converged

Algorithm 2: Sampling
Input: z ∈ An

1: xT ∼ U(0, 1)
2: ρT ← exp(πxρ

T ) ,xρ
T ∼ N (0, 1)

3: for t← T, · · · , 1 do
4: (x′, ρ′)← fθ(ρt, xt, z, t)
5: xt−1 ← [x′ + σx

t ϵ], ϵ ∼ N (0, 1)
6: µρ ← µ̃t(π

−1 log ρt, π
−1 log ρ′)

7: ρt−1 ← exp
(
π(µρ + σρ

t ϵ)
)
, ϵ ∼ N (0, 1)

8: end for

test set to be able to compare them. The data generation is
performed from the checkpoint, which has the best loss in
validation. We use an exponential moving average of the
weights with a decay of 0.995. Then, we use a set of crystals
generated without filtering and without optimizing the ge-
ometry (without simulation methods to improve the geome-
try). We also do not search the space group or symmetries of
the structures to improve geometry.

We can see structures generated by GemsDiff and from
Materials Project in Figures 1 and 2. We can observe sev-
eral well-known lattice systems having different constraints:
cubic cell, monoclinic, orthorhombic, tetragonal, and, more
importantly, hexagonal with 60° and 120° angles as lattice
parameters. It is important to notice that there is no explicit
rule in our model that facilitates the generation of such con-
straints in the lattice parameters. Interestingly enough, many
lattices fall in a known system with a precision of less than
0.5 Angstrom and 0.1 Angstrom. Moreover, we can see that
atoms of the materials make patterns like alignment, cubic
geometry, or circular ring composed of 6 atoms. One can
observe that the geometrical shape are coherent, i.e. often
composed of the same type of elements. We stress the fact
that there are no explicit constraints encoded in our model
to encourage obtaining such structures. It is an emerging be-
havior that appears during training. Moreover, the observed
characteristic of real materials is present in the generated
data without any explicit bias encoded in our model. This
offers an excellent indicator of the quality of the generated
structures.

Evaluation on Validity, Earth Mover Distance
(EMD) for Density and Energy
To assess the quality of the generated crystals, we first
rely on existing metrics: Validity and Earth Mover distance
(EMD) for density and energy. EMD is calculated from the
structure generated without filtering where the same amount
of structures as in the test set (9048) is generated. Validity



Method Validity (%) density (EMD g/cm3) energy (EMD eV/atom)

FTCP∗ 88.18 1.586 0.8281
PGCGM 99.03 0.89 1.51
G-SchNet 99.65 3.034 42.09
P-G-SchNet 77.51 4.04 2.448
CDVAE 100.0 0.6875 0.2778
GemsDiff 99.05±0.20 0.3331±0.0327 0.1984±0.0086

Table 2: Results for different models in terms of validity, density and energy. For FTCP baseline, we report the results that we
obtained, which are better than the original value reported in (Xie et al. 2021).

Figure 1: Sampling with GemsDiff and Langevin Dynamics

(Court et al. 2020) refers to the percentage of structures that
don’t have two atoms with a relative distance less than 0.5
Angstrom. This metric evaluates the percentage of structures
that are incoherent as physically having a distance lower
than 0.5 Angstrom is impossible. Even if it is not a good
metric, it at least allows us to spot the badly generated crys-
tals. EMD, also called Wasserstein distance (or Wasserstein
1), allows the comparison of the distance between two statis-
tical distributions. A generative model should be able to gen-
erate a structure distribution with properties that are close to
its training distribution. So, the farther the distance between
the distribution of properties of the generated structures to
the distribution of the trained properties, the more different
the generated data from the trained data. Consequently, the
smaller the EMD, the better the result. We consider density
distribution and energy distribution for the EMD metrics. As
it is difficult to obtain and very expensive to simulate, some
GNNs allow us to estimate it. We can use the same GNN
for the Fréchet distance (ALIGNN) to estimate the energy
(Section 5.2). The results are reported in Table 2. Our model
outperforms the baselines on all the properties. EMD of the
formation energy is significantly better than CDVAE. We
also notice that the biggest gain is made for the density of
the generated structures. We can explain this by the fact that
our model does diffusion on the cell as well as on the atomic

Figure 2: Crystals from materials project

positions. In this case, our model generates a volume that is
more adapted to the composition of the structures. The va-
lidity is lower for our model than for CDVAE, but this metric
is limited and our model remains very competitive.

Frechet Distance with ALIGNN (FAD)
We generate a vector of the latent space with a GNN
(ALIGNN) to which we remove the last prediction layer and
we compute the Frechet distance as in (Heusel et al. 2017).
We use a pre-trained model. Table 3 contains all FAD for the
generated data. To test the relevance of the Frechet distance,
previous works on computer vision test the generated data
with distortion or with different levels of scattering. In the
case of materials, distortion and scattering are very similar.
We perform a test for diffusion because it will also allow us
to make a link between the FAD and the distance of the gen-
erated structures with equilibrium positions. To this end, we
apply several levels of diffusion to see the associated FAD.
We recall that the lower the FAD, the more similar the distri-
butions are. So the lower the FAD, the more the set of tested
materials contains materials close to their equilibrium. As
we can see in Figure 3, the FAD is almost zero for t = 0, i.e.
without diffusion. In contrast, the more t increases, the more
the FAD increases. From a certain level of scattering, the
FAD reaches a plateau and does not progress anymore. This



Method Fréchet Distance

PGCGM 30.692
FTCP 16.562
CDVAE 1.777
GemsDiff 1.509±0.115

Table 3: To ensure consistent crystal quality in our training
process, we repeat the training eight times and calculate the
mean and standard deviation. This computation is carried
out on 9048 structures without any filtering.

result is interesting because we observe a behavior close to
the FID in the diffusion models used in computer vision (Ho,
Jain, and Abbeel 2020). We also notice that the FAD reaches
a lower plateau, i.e. the values are globally lower than for
the FID in computer vision. This difference can be simply
explained by the fact that the vectors used in inceptions are
of size 2048 while the latent vectors produced by ALIGNN
are only of size 256. To validate the number of instances be-
tween two samples, we compute the FAD by progressively
increasing the sample size. We evaluate how the metric be-
haves and try to see when the FAD is close enough to 0. This
is a trick that has already been done for the FID, and it al-
lows us to be sure that the metric will not be too disturbed
by statistical fluctuations. We can see the results for several
sample sizes in figure 4. As for the FID, we can see that
about 10000 samples are largely sufficient to have a reliable
FAD measurement. So we will compare with sample sizes of
9046 (test set). In Table 3, we can see that our model has the
best result for the Frechet distance. This result consolidates
the results of the other table with a new metric. To allow
a better justification of our architecture, an ablation test is
proposed in Appendix F.

Discussion
Our work has the focus of prioritizing specialized tasks in-
stead of generating compositions. Unlike other models that
aim to create stable structures without composition con-
straints, our model is less suited for this purpose. However,
chemists require models that can generate structures with
certain compositions as they seek to find different meta-
stable phases for a specific composition. Our model is spe-
cialized in generating compositions and, therefore, is more
suitable for this type of task. Additionally, chemists are in-
terested in determining the convex hulls of certain chemical
compositions, which our model is very suitable for. Con-
straints on chemical composition, such as excluding rare
and expensive elements, are also important considerations
for chemists. Although some models are good at generating
chemical compositions, it can be positive not to be able to
generate compositions in certain cases. By breaking down
the lattice in a Lie algebra and producing the lattice from an
invariant vector field, the generation of the lattice appears
to be enhanced. As Table 3 shows, there is a significant im-
provement in density, making it much more comparable to
the initial distribution. In the future, decomposing the lattice
could have other applications. For instance, it may be feasi-

Figure 3: FAD and diffusion step.

Figure 4: FAD for multiple sample sizes

ble to construct structures that are part of a particular space
group and guarantee that the shape of the lattice is compati-
ble with that space group using characteristics of the vector
that represents the lattice in the Lie algebra’s space vector.
The FAD aims to create a standardized metric for compar-
ing crystal features, rather than relying on manually selected
statistics. The features used are generated by the highly ac-
curate ALIGNN, making them relevant for predicting ma-
terial properties. However, assessing the consistency of the
model’s generated features is challenging if ALIGNN is re-
trained. To address this, we suggest using a pre-trainer ver-
sion with consistent parameters and features for FAD calcu-
lation. To evaluate FAD quality, we can compare it to other
metrics for generative model evaluation. Our experimental
results show that FAD ranking aligns with other metrics, in-
dicating its relevance for measuring generation quality.

Conclusion
We have introduced a generative model for crystal materi-
als with a diffusion process adapted to periodic structures
based on an equivariant architecture that allows us to learn
the reverse process. Our diffusion process performs on the
whole crystal geometry (atomic position and cells) allow-
ing us to improve the density prediction and hence obtain
more realistic lattices compared to a simple model that pre-
dicts lattice parameters. Our diffusion model is particularly
adapted to convex envelope sampling tasks, which is an im-
portant issue in materials science (Gubaev et al. 2019; Anelli
et al. 2018). Finally, we have also proposed a new metric for
evaluating crystal geometry inspired by works on computer
vision which are based on a Frechet distance and diffusion
model. Our model produces interesting generated structures,
each of which has a FAD that suggests its closeness to the
equilibrium position (relatively stable structure).
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