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ON THE EXCELLENCE FOR INSEPARABLE QUARTIC EXTENSIONS

AHMED LAGHRIBI1 AND DIKSHA MUKHIJA2

ABSTRACT. Let F be a field of characteristic 2. When K/F is a field extension of degree two
or three, it is known to be excellent for quadratic as well as bilinear forms. In this paper, we
discuss the excellence property when K/F is an inseparable quartic extension.

1. INTRODUCTION

Throughout this paper F denotes a field of characteristic 2. A field extension K/F is called
excellent for quadratic forms if for any quadratic form ϕ over F , the anisotropic part (ϕK)an of
the K-form ϕK is defined over F , i.e., there exists a quadratic form ψ over F such that (ϕK)an
is isometric to ψK . The same definition can be formulated for bilinear forms. Moreover, since
we are in characteristic 2, we need to consider a refinement of the above definition in the case
of quadratic forms (introduced in [18]). More precisely, the extension K/F is called (r, s)-
excellent if for any F -quadratic form ϕ of type (r, s), the K-form (ϕK)an is defined over F
(recall that a quadratic form is of type (r, s) if it is of dimension 2r + s and its quasilinear part
has dimension s). In particular, an extension which is excellent is necessary (r, s)-excellent
for any pair of positive integers r and s. Moreover, the excellence property holds for quadratic
forms of type (0, s) for any positive integer s, i.e., totally singular quadratic forms and any
field extension of F [11, Proposition 8.1(iii)]. Other known examples of excellent extensions
of F are: A purely transcendental extension, an algebraic extension of odd degree [8, Corollary
18.5], and multiquadratic purely inseparable extensions. This last result is due to Hoffmann for
quadratic and bilinear forms [9], [10].

For extensions given by function fields of quadrics, the case of 2-dimensional quadratic forms
is covered by quadratic extensions, which are excellent. For conics, one knows that any exten-
sion given by the function field of a nonsingular conic is excellent for both bilinear and quadratic
forms [12, Cor. 5.7]. Recently in [18] the two authors proved that the extension given by the
function field a singular conic is excellent for bilinear forms, and it is neither (2, s+1)-excellent
nor (3 +m, s) for m, s ≥ 0.

Our aim in this paper is to study the excellence of inseparable quartic extensions for quadratic
forms. These extensions split in four types as given in Section 3. We prove in Corollary 7.2
that quartic simple purely inseparable extensions are not (r, s)-excellent when r ≥ 2 and s ≥ 0.
To this end, we study the isotropy over such extensions using the work [5] of Aravire, Laghribi
and O’Ryan. For quartic inseparable extensions which are simple but not purely inseparable,
we use a transfer map that they induce in the setting of Kato-Milne cohomology (Corollary
5.6) to prove that these extensions are not (r, s)-excellent when r ≥ 2 and s ≥ 1 (Corollary
7.2). The other two types concern biquadratic extensions. The excellence of purely inseparable
biquadratic extensions is due to Hoffmann [10] as we said before. We are yet to ascertain the
excellence of mixed biquadratic extensions. For completeness we also give the proof that any
separable biquadratic extension is not (r, s)-excellent when r ≥ 2 and s ≥ 0 (Example 6.1).
This proof is an extension to characteristic 2 of that given by Sivatski in characteristic not 2,
and is based on a result of Rowen about indecomposable central simple algebras of degree 8
and exponent 2.
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2. BACKGROUND AND PRELIMINARIES

2.1. On quadratic forms. Any quadratic form ϕ over F can be written up to isometry as
follows:

(2.1) ϕ ' [a1, b1] ⊥ [a2, b2] ⊥ . . . ⊥ [ar, br] ⊥ 〈c1〉 ⊥ . . . ⊥ 〈cs〉,

where ' and ⊥ denotes the isometry and orthogonal sum of quadratic forms, and [a, b] (resp.
〈a〉) denotes the quadratic form ax2+xy+by2 (resp. ax2). The quadratic form 〈c1〉 ⊥ . . . ⊥ 〈cs〉
is unique up to isometry, we call it the quasilinear part of ϕ, and denote it by ql(ϕ). As in
equation (2.1), the form ϕ is called of type (r, s). We say that ϕ is:

• nonsingular (resp. totally singular) if s = 0 (resp. r = 0),
• singular if s > 0,

For a1, . . . , an ∈ F , let 〈a1, . . . , an〉 denote the totally singular quadratic form 〈a1〉 ⊥ . . . ⊥
〈an〉.

The Arf invariant ∆(ϕ) of a nonsingular form ϕ ' [a1, b1] ⊥ [a2, b2] ⊥ . . . ⊥ [ar, br] is
defined to be

∑r
i=1 aibi + ℘(F ) in F/℘(F ), where ℘(F ) = {α2 + α | α ∈ F}.

A quadratic form ϕ of underlying F -vector space V is called isotropic if there exists v ∈
V \ {0} such that ϕ(v) = 0, otherwise ϕ is called anisotropic.

For an integer n ≥ 0 and ϕ a quadratic form, let n×ϕ denote the quadratic form ϕ ⊥ . . . ⊥ ϕ︸ ︷︷ ︸
n times

.

Recall that any quadratic form ϕ over F uniquely decomposes as follows:

ϕ ' ϕan ⊥ i× [0, 0] ⊥ j × 〈0〉,

where ϕan is an anisotropic quadratic form. We call ϕan the anisotropic part of ϕ, and the
integer i (resp. j) is called the Witt index (resp. the defect index) of ϕ. We denote i and j by
iW (ϕ) and id(ϕ), respectively.

Two quadratic forms ϕ1 and ϕ2 are called Witt-equivalent, denoted by ϕ1 ∼ ϕ2, if there
exists m,n ∈ N such that ϕ1 ⊥ m× [0, 0] ' ϕ2 ⊥ n× [0, 0].

A quadratic form ϕ of underlying vector space V represents a scalar α ∈ F if there exists
v ∈ V such that ϕ(v) = α. We denote byDF (ϕ) the set of scalars in F ∗ := F \{0} represented
by ϕ.

We will need the following cancellation result:

Proposition 2.1. ([15, Proposition 1.2] for (1), [11, Lemma 2.6] for (2)) Let ϕ1, ϕ2 be two
quadratic forms (possibly singular). Suppose that one of the following conditions holds:

(1) ϕ1 ⊥ ψ ' ϕ2 ⊥ ψ for some nonsingular form ψ,
(2) ϕ1 ⊥ s× 〈0〉 ' ϕ2 ⊥ s× 〈0〉 for some integer s ≥ 0 such that id(ϕ1) = id(ϕ2) = 0.

Then, ϕ1 ' ϕ2.

We recall the definition of domination of quadratic forms that will often appear in the up-
coming sections [11, Definition 3.4].

Definition 2.2. Let ϕ and ψ be F -quadratic forms of underlying vector spaces V and W ,
respectively. We say that ϕ is dominated by ψ if there exists an injective isometry (V, ϕ) −→
(W,ψ).

For ϕ ∈ F [x1, x2, . . . , xn] an irreducible polynomial, let F (ϕ) be the field of fractions of the
quotient ring F [x1, . . . , xn]/(ϕ). We call it the function field of ϕ.

For a field extension K/F and a quadratic form ϕ over F , let ϕK denote the quadratic form
ϕ viewed as a quadratic form over K by scalar extension.
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For a1, . . . , an ∈ F ∗, let 〈a1, . . . , an〉b be the diagonal bilinear form defined by:

((x1, . . . , xn), (y1, . . . , yn)) 7→
n∑
i=1

aixiyi.

An n-fold bilinear Pfister form is a bilinear form of type 〈1, a1〉b⊗· · ·⊗〈1, an〉b for some ai ∈
F ∗; we write 〈〈a1, · · · , an〉〉b for short. An (n + 1)-fold quadratic Pfister form is a nonsingular
quadratic form of type 〈〈a1, · · · , an〉〉b ⊗ [1, b] for some ai ∈ F ∗, b ∈ F .

Any quadratic Pfister form π is round, i.e., x ∈ F ∗ is represented by π if and only if π ' xπ.
The same fact is true for bilinear Pfister forms. The set of quadratc forms isometric (resp.
similar) to n-fold quadratic Pfister forms will be denoted by PnF (resp. GPnF ).

Definition 2.3. A quadratic form ϕ is said to be a Pfister neighbor if there exist a quadratic
Pfister form π and a ∈ F ∗ such that aϕ ≺ π and 2 dimϕ > dimπ.

We summarize in the following proposition some properties of Pfister neighbors.

Proposition 2.4. ([16, Proposition 3.1])
(1) If π ∈ PnF and ϕ are anisotropic. Then, ϕ is a Pfister neighbor of π if and only if

dimϕ > 2n−1 and πF (ϕ) is isotropic.
(2) If ϕ is a Pfister neighbor of π, then we have the following:

(a) ϕ is isotropic if and only if π is also isotropic.
(b) π is uniquely determined by ϕ up to isometry.

Let W (F ) (resp. Wq(F ) ) be the Witt ring of regular symmetric F -bilinear forms (resp. the
Witt group of nonsingular F -quadratic forms). The group Wq(F ) is endowed with a W (F )-
module structure as follows. For B (resp. ϕ) a regular F -bilinear form of underlying vector
space V (resp. a nonsingular F -quadratic form of underlying vector space W ), we associate a
nonsingular quadratic form B ⊗ ϕ defined on V ⊗F W by:

(2.2) B ⊗ ϕ(v ⊗ w) = B̃(v)ϕ(w) for any (v, w) ∈ V ×W
and whose polar form is B ⊗Bϕ, where Bϕ is the polar form of ϕ.

For any integer n ≥ 1, let InF be the n-th power of the fundamental ideal IF of W (F ). We
take I0F = WF . For any integer n ≥ 0, let In+1

q F denote the W (F )-submodule of Wq(F )
given by InF ⊗Wq(F ). This submodule is additively generated by the (n + 1)-fold quadratic
Pfister forms 〈〈a1, · · · , an; b]] , where ai ∈ F ∗, b ∈ F .

For any field extension L/F , we denote by Wq(L/F ) the kernel of the homomorphism
Wq(F ) → Wq(L) induced by scalar extension. Similarly, let Inq (L/F ) (resp. I

n

q (L/F )) be
the kernel of the homomorphism Inq F −→ Inq L (resp. I

n

qF −→ I
n

qL).
We recall the following result known as the Hauptsatz of Arason and Pfister:

Theorem 2.5. ([6]) Let ϕ be a nonzero anisotropic quadratic form that belongs to Inq F . Then,
dimϕ ≥ 2n.

2.2. On differential forms. For any integer n ≥ 1, let Ωn
F =

n
∧ Ω1

F where Ω1
F is the F -vector

space of absolute 1-differential forms, i.e., the F -vector space generated by the symbols dda
with a ∈ F subject to the relations: d(a+b) = da+db and d(ab) = adb+bda for any a, b ∈ F .
We set Ω0

F = F . The differential operator d : Ωn
F −→ Ωn+1

F is given by: ada1 ∧ · · · ∧ dan 7→
da ∧ da1 ∧ · · · ∧ dan. The Artin-Schreier operator ℘ : Ωn

F −→ Ωn
F/dΩn−1

F is defined by:
ada1
a1
∧ · · · ∧ dan

an
7→ (a2 + a)da1

a1
∧ · · · ∧ dan

an
+ dΩn−1

F .
Let Hn+1

p (F ) denote the cokernel of ℘. Then, we have

Hn+1
p (F ) = Ωn

F/(℘(Ωn
F ) + dΩn−1

F ).
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To translate some results from differential forms to quadratic forms and vice-versa, we will
use the Kato’s isomorphism [14]:

Theorem 2.6. Let F be a field of characteristic 2. For every integer n ≥ 1 there exists an
isomorphism:

fn : I
n

qF → Hn+1
2 (F )

〈〈a1, . . . , an; b]] 7→ b
da1
a1
∧ . . . ∧ dan

an
.(2.3)

2.3. Preliminaries. In this section we recall certain results to be useful in the upcoming sec-
tions.

Proposition 2.7. ([1, Cor. 2.8]) Let ϕ be an anisotropic nonsingular F -quadratic form and
K = F (

√
b) for some scalar b ∈ F \ F 2. Then ϕK is hyperbolic if and only if ϕ is divisible by

〈1, b〉b.

Proposition 2.8. Let L/F be an extension, and z ∈ F . Let 〈〈x, y]] be an anisotropic 2-fold
Pfister form over F . We have:
(1) The following two statements are equivalent:

(a) x[1, y] ⊥ 〈1, z〉 is isotropic over L.
(b) z ∈ L2 or (z 6∈ L2 and 〈〈x, y]]L(√z) is isotropic).

(2) If L/F is a finite purely inseparable extension, then statements (a) and (b) are equivalent to
the following:

(c) z ∈ L2 or (z 6∈ L2 and there exists t ∈ F such that the Albert form x[1, y] ⊥ z[1, t] ⊥
[1, y + t] is hyperbolic over L).

Proof. (1) Let ϕ = x[1, y] ⊥ 〈1, z〉.
(b) =⇒ (a) If z ∈ L2, then 〈1, z〉L is isotropic, and thus ϕL is isotropic. So suppose z 6∈ L2

and 〈〈x, y]]L(√z) is isotropic. We have 〈〈x, y]]L(√z) ∼ 0.
(i) If 〈〈x, y]]L is isotropic, then ϕL is isotropic because the Pfister neighbor (x[1, y] ⊥ 〈1〉)L

is isotropic and dominated by ϕL.
(ii) If 〈〈x, y]]L is anisotropic, then we get by Proposition 2.7 and the roundness of Pfister

forms that 〈〈x, y]]L ' 〈〈z, t]] for some t ∈ L. Adding the form 〈1, z〉L in both sides of the
previous isometry, we get ϕL ⊥ [0, 0] ' 2 × [0, 0] ⊥ 〈1, z〉L. Canceling a hyperbolic plane
(Proposition 2.1) implies that ϕL is isotropic.

(a) =⇒ (b) Suppose that ϕL is isotropic. If id(ϕL) = 1 then 〈1, z〉L is isotropic and z ∈ L2.
If id(ϕL) = 0, then ϕL ' [0, 0] ⊥ 〈1, z〉L. Extending to L(

√
z) yields

(x[1, y] ⊥ 〈1〉)L ⊥ 〈0〉 ' [0, 0] ⊥ 〈1〉L ⊥ 〈0〉 .
Canceling the form 〈0〉 (Proposition 2.1), we get (x[1, y] ⊥ 〈1〉)L ' [0, 0] ⊥ 〈1〉L. Hence,
〈〈x, y]]L(√z) is isotropic.

(2) Now we assume that L/F is purely inseparable of finite degree.
(b) =⇒ (c) Suppose that z 6∈ L2 and 〈〈x, y]]L(√z) is isotropic. As we did in the proof of

the implication (b) =⇒ (a), there exists t ∈ L such that 〈〈x, y]]L ' 〈〈z, t]] (we take t = 0
when 〈〈x, y]]L is isotropic). Since L/F is purely inseparable of finite degree, there exists an
integer m ≥ 1 such that L2m ⊂ F . Hence, we may suppose t ∈ F because [1, t] ' [1, t2

m
].

Consequently, (〈〈x, y]] ⊥ 〈〈z, t]])L is hyperbolic, in particular (x[1, y] ⊥ z[1, t] ⊥ [1, y + t])L
is hyperbolic.

(c) =⇒ (b) If the Albert form (x[1, y] ⊥ z[1, t] ⊥ [1, y + t])L is hyperbolic for some t ∈ F ,
then passing to L(

√
z) we deduce that 〈〈x, y]]L(√z) is isotropic. �

We recall the following result which is well known:
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Lemma 2.9. Let L/F be a finite purely inseparable field extension and x ∈ F . If x ∈ ℘(L),
then x ∈ ℘(F ). In particular, if ϕ is an F -quadratic form such that ∆(ϕL) = 0 ∈ L/℘(L),
then ∆(ϕ) = 0 ∈ F/℘(F ).

Proof. Let n ≥ 1 be an integer such that L2n ⊂ F . Since x ∈ ℘(L), we have x2n ∈ ℘(F ) and
thus there exists y ∈ F such that x2n = y2 + y. Since x2n , y2 ∈ F 2, we get y ∈ F 2. Hence,
x2

n
, y2 ∈ F 4, and thus y ∈ F 4. Repeating this argument n times, we get y ∈ F 2n . Thus,

x = z2 + z ∈ ℘(F ) where z2n = y. �

Theorem 2.10. ([20, Theorem 2]) Let ϕ be a nonsingular quadratic form over F.

(1) ϕ ∈ I2qF iff ∆(ϕ) = 0.

(2) If ϕ ∈ I2qF , then ϕ ∈ I3qF iff C(ϕ) ∼ 0.

3. ISOTROPY OF QUADRATIC FORMS OF DIMENSION ≤ 4 OVER QUARTIC EXTENSIONS

Let us recall that an inseparable quartic field extension K of F is one of the following mutu-
ally exclusive types (we refer to [13, Section 3] for more details):

(Type 1) Simple purely inseparable: K = F ( 4
√
b) for some b ∈ F \ F 2.

(Type 2) Simple but not purely inseparable: K = F (α) such that α is a root of an irreducible
polynomial x4 + ax2 + b ∈ F [x] such that 〈1, a, b〉 is anisotropic over F .

(Type 3) Purely inseparable biquadratic: K = F (
√
d1,
√
d2) for d1, d2 ∈ F \ F 2.

(Type 4) Mixed biquadratic: K = F (
√
b, α) such that b ∈ F \F 2 and α is a root of an irreducible

polynomial x2 + x+ a ∈ F [x].
In this section we discuss the isotropy of quadratic forms of small dimension over quartic

extensions of type 1. This will aid us in inspecting whether this field extension is excellent or
not for quadratic forms. As we will see, we are mostly interested in the isotropy of nonsingular
quadratic forms of dimension 4, but for completeness we consider the isotropy for all quadratic
forms of dimension at most 4. Recall that quartic extensions of type 3 are excellent by a result
of Hoffmann [10].

For the rest of this section, we fix K = F ( 4
√
b) such that b ∈ F \ F 2. We recall some results

that will help us to classify F -quadratic forms of dimension ≤ 4 that become isotropic over K.

Lemma 3.1. ([16, Lemma 4.3]) Let ϕ be a nonsingular quadratic form of dimension 4 and
a ∈ F such that 4(ϕ) = a + ℘(F ). Then, ϕL is isotropic if and only if ϕ is isotropic, where
L = F (℘−1(a)).

We deduce from the general result [5, Theorem 1.4] the following theorem:

Theorem 3.2. Let K be the quartic extension as above, and c ∈ F \ ℘(F ). Then, we have:

(3.1) H2
2 (K(℘−1(c))/F ) = H2

2 (K/F ) + cG1
K(1),

where G1
K(1) is the subgroup of Ω1

F additively generated by the differentials dx,y :=
x2

x2 + by2
dx

x
+

by2

x2 + by2
dy

y
for x, y ∈ F ∗.

This theorem can be rewritten as follows:

Corollary 3.3. Let K be the quartic extension as above, and c ∈ F \ ℘(F ). Then, we have:

(3.2) H2
2 (K(℘−1(c))/F ) = H2

2 (K/F ) + cνF (1) + c 〈dx,1 | x ∈ F ∗〉.
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Proof. It suffices to prove that νF (1) + 〈dx,1 | x ∈ F ∗〉 = G1
K(1). In fact, the group νF (1) is

contained in G1
K(1) because dx,x = dx

x
for all x ∈ F ∗. Conversely, let x, y ∈ F ∗. We have

dx,y =
x2

x2 + by2
dx

x
+

by2

x2 + by2
dy

y

=
(xy−1)2

(xy−1)2 + b

d(xy−1)

xy−1
+

(xy−1)2

(xy−1)2 + b

d(y−1)

y−1
+

b

(xy−1)2 + b

dy

y

=
(xy−1)2

(xy−1)2 + b

d(xy−1)

xy−1
+

dy

y
∈ νF (1) + 〈dx,1 | x ∈ F ∗〉 . �

Now applying the Kato’s isomorphism (2.3) to equation (3.2), we obtain:

Corollary 3.4. Let K be the quartic extension as above, c ∈ F \ ℘(F ). Then:

(3.3) I
2

q(K(℘−1(c))/F ) = I
2

q(K/F ) + IF ⊗ [1, c] +
∑
i

〈1, xi〉b ⊗
[
1,

cx2i
x2i + b

]
,

where xi ∈ F ∗.

To complete the kernels given in Corollary 3.4, we recall the kernels I
2

q(K/F ) and I2q (K/F )
studied by Sobiech:

Theorem 3.5. Let L be the quartic extension as above. We have:
(1) ([22, Corollary 5.2]) The kernel I

2

q(K/F ) is additively generated by the classes 〈〈u, bu2]]
and 〈〈b, v]] for u, v ∈ F ∗.
(2) ([22, Theorem 5.3]) The kernel I2q (K/F ) coincides with the W (F )-module generated by
the forms 〈〈u, bu2]] and 〈〈b, v]] for u, v ∈ F ∗.

Now we treat the isotropy of F -quadratic forms of dimension ≤ 4 over K.

Theorem 3.6. Let ϕ be an anisotropic F -quadratic form of dimension ≤ 4, and let K be as
mentioned above. Then, ϕK is isotropic if and only if one of the following conditions holds:
(1) ϕ is totally singular and α 〈1, b〉 ≺ ϕ for some α ∈ F ∗.
(2) ϕ is a Pfister neighbor of a 2-fold Pfister form which is isotropic over K.
(3) ϕ ' x[1, y] ⊥ 〈1, z〉 for some x 6= 0, y, z ∈ F such that z ∈ F 2(b) or (z 6∈ F 2(b) and there
exists t ∈ F such that the Albert form x[1, y] ⊥ z[1, t] ⊥ [1, y + t] is hyperbolic over K).
(4) ϕ is of type (2, 0) and there exist ψ ∈ I2q (K/F ) and x1, . . . , xs, y ∈ F for some integer
s ≥ 1 such that

(3.4) ϕ ⊥ y[1, c] ⊥ ψ ⊥
s∑
i=1

〈1, xi〉b ⊗
[
1,

cx2i
x2i + b

]
∈ I3qF,

where c ∈ F satisfies ∆(ϕ) = c+ ℘(F ).

Proof. When ϕ is of type (2, 0), we take c ∈ F such that ∆(ϕ) = c + ℘(F ), and consider the
separable quadratic extension F (α) given by α2 + α = c.

– If ϕ is totally singular, then ϕK is isotropic iff α 〈1, b〉 ≺ ϕ for some α ∈ F ∗ [17, Lemma
2.10]. For the rest of the proof we suppose that ϕ is not totally singular.

– If ϕ is of type (1, 0) and ϕK is isotropic, then ∆(ϕK) = 0. Lemma 2.9 implies ∆(ϕ) = 0,
i.e., ϕ is isotropic, which is excluded.

– If ϕ is of type (1, 1). Modulo a scalar we may suppose ϕ ' x[1, y] ⊥ 〈1〉 for some
x, y ∈ F ∗. Since ϕ is a Pfister neighbor of π := 〈〈x, y]], it follows that ϕK is isotropic iff πK is
isotropic (Proposition 2.4).

– If ϕ is of type (1, 2), then the assertion is a consequence of Proposition 2.8.
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– Now suppose that ϕ is of type (2, 0) and ϕK isotropic. It follows that ϕK(α) is hyperbolic
since ∆(ϕF (α)) = 0. In particular, we have (ϕ ⊥ [1, c])K(α) ∼ 0, and thus ϕ ⊥ [1, c] + I3qF ∈
Ī2q (K(α)/F ). We now use Corollary 3.4 with Theorem 3.5 to get:

ϕ ⊥ [1, c] ⊥ ψ ⊥
s∑
i=1

〈1, xi〉b ⊗
[
1,

cx2i
x2i + b

]
⊥ ρ⊗ [1, c] ∈ I3qF,

where ψ ∈ I2q (K/F ) and ρ ∈ IF . Let y ∈ F ∗ be such that det ρ = yF ∗2 and use ρ ⊥ 〈1, y〉b ∈
I2F to get:

ϕ ⊥ y[1, c] ⊥ ψ ⊥
s∑
i=1

〈1, xi〉b ⊗
[
1,

cx2i
x2i + b

]
∈ I3qF.

Conversely, if ϕ satisfies statement (4), then extending the equation (3.4) to K(α) yields
ϕK(α) ∼ 0 by the Hauptsatz. Hence, Lemma 3.1 implies that ϕK is isotropic. �

Remark 3.7. In the formulation of the statements (2), (3) and (4) of Theorem 3.6, we use some
forms satisfying the hyperbolicity hypothesis over K. These forms are classified by Theorem
3.5.

4. NONEXCELLENCE OF QUARTIC EXTENSIONS OF TYPE 1

Our inspiration to build an example of a non-excellent quartic simple purely inseparable
extension K/F is motived by statement (4) of Theorem 3.6 where some forms in P2(F ) that
become hyperbolic over K appear in equation (3.4). Starting with such a 2-fold Pfister form
and modifying the Arf invariant, we get our example of nonexcellence as follows:

Example 4.1. Let F0 be a field of characteristic 2 and x, y, z be variables over F0. Over the
field F := F0(x, y, z), let us consider the F -quadratic form:

ϕ =

[
1, z2 +

z2x2

x2 + y

]
⊥ x

[
1,

z2x2

x2 + y

]
.

Then, for K = F ( 4
√
y) we have the following:

(1) ϕ is anisotropic over F .
(2) ϕ is isotropic over K.
(3) (ϕK)an is not defined over F .
In particular, the extension K/F is not (2, 0)-excellent.

Proof. (1) Let us take u = z2x2

x2+y
. Then, ϕ = [1, z2 + u] ⊥ x[1, u] viewed as a quadratic

form over F0(x, y, z) = F0(x, u, z) (obviously, x, u, z remain variables over F0). Since the
forms [1, z2 + u] and [1, u] are anisotropic over F0(u, z), we deduce that ϕ is anisotropic over
F = F0(x, u, z).

(2) Extending ϕ to K, we get

ϕK =
[
1, z2 +

z2x2

x2 + y

]
K
⊥ x

[
1,

z2x2

x2 + y

]
K

'
[
1, z +

zx

x+
√
y

]
⊥ x

[
1,

zx

x+
√
y

]
∼ [1, z]K ⊥ 〈1, x〉b ⊗

[
1,

zx

x+
√
y

]
.

Using the fact that
√
y ∈ K2 and [2, Lemma 2.1], we get

ϕK ∼ [1, z]K ⊥ 〈1, x+
√
y〉b ⊗ [1, z]

∼ ((x+
√
y)[1, z])K .

7



Moreover, the anisotropy of [1, z] over F implies that [1, z]K is anisotropic since K/F is
purely inseparable. Hence, ϕK is isotropic and (ϕK)an ' ((x+

√
y)[1, z])K .

(3) Suppose that (ϕK)an is defined over F . Then, there exists α ∈ F ∗ such that

(4.1) (〈1, x+
√
y〉b ⊗ [1, z])K ' (α[1, z])K .

Consider the F -linear map s : K → F given by: 1 7→ 0, 4
√
y 7→ 0, ( 4

√
y)3 7→ 0 and

√
y 7→ 1.

We compute C1 := s∗(〈α〉b) and C2 := s∗(
〈
x+
√
y
〉
b
) with respect to the ordered F -basis

{1, 4
√
y,
√
y, ( 4
√
y)3} of K, we obtain

C1 =


0 α 0 0
α 0 0 0
0 0 α 0
0 0 0 αy

 , C2 =


1 x 0 0
x y 0 0
0 0 x y
0 0 y xy

 .

Applying the transfer map s∗ to (4.1) and using the Frobenius reciprocity, we get C1 ⊗ [1, z] '

C2 ⊗ [1, z]. Since C1 ∼
(
α 0
0 αy

)
, hence C2 ⊗ [1, z] is isotropic over F . But C2 is anisotropic

over F since its corresponding totally singular form C̃2 ' 〈1, y, x, xy〉 is anisotropic over F .
SinceC2 is defined over F0(x, y), the formC2⊗[1, z] remains anisotropic over F = F0(x, y)(z),
which is a contradiction. This finishes the proof of the example. �

5. NONEXCELLENCE OF QUARTIC EXTENSIONS OF TYPE 2

In this section, we build an example of a quartic extension K/F of type 2 which is not
excellent. Our example will not be inspired from the isotropy problem as we did for the quartic
extensions of type 1, because we have no answer to the isotropy of nonsingular F -quadratic
forms of dimension 4 over inseparable quartic extensions of type 2. For this reason our example
will be given in dimension 5 using a transfer argument. More precisely, starting from the usual
trace map of the separable quadratic extension of F contained in K, we first construct in the
setting of Kato-Milne cohomology a transfer map from K to a quadratic inseparable extension
of F . This construction is stated in a general setting in the subsection 5.1 below.

5.1. A generalized transfer map. Let K = F (α) be an extension of F which is inseparable
but not purely inseparable. One knows that min(α, F ) = g(x2

l
), where l ≥ 1 and g(x) ∈ F [x] is

a separable polynomial of degree n ≥ 2. Let us write g(x) = xn+an−1x
n−1+· · ·+a1x+a0 and

let L = F 2(a0, . . . , an−1) with [L : F 2] = 2d. Then, there exist 0 ≤ i1 < i2 < . . . < id ≤ n− 1
such that L = F 2(ai1 , . . . , aid), and thus ai1 , . . . , aid are 2-independent. Moreover, we suppose
that n is even. Note that there exist an odd integer i ∈ {1, . . . , n− 1} such that ai 6= 0 (because
g(x) is separable). Let β = α2l .

We thus have a sequence of fields F ⊂ M := F (β) ⊂ K = F (α) = M( 2l
√
β), where

M/F is separable and K/M is purely inseparable. Moreover, we choose a 2-basis B of F
such that B = {e1 = ai1 , . . . , ed = aid , · · ·} = {ei | i ∈ I} for a suitable set I . Since M/F
is separable, B remains a 2-basis of M . Since ai1 , . . . , aid are 2-dependent over K, we may
choose C := (B \ {ai1}) ∪ {α} as a 2-basis of K. We have Ωm

M = Ωm
F ⊕

⊕
1≤i≤n−1 β

iΩm
F . In

fact, since M/F is separable we can replace β by β2, that is, Ωm
M = Ωm

F ⊕
⊕

1≤i≤n−1 β
2iΩm

F .

Notation 5.1. (1) Let LmF be the subgroup of Ωm
F whose differentials are free from dai1 .

(2) Clearly, (Ωm
M)K = {(w0 +

∑n−1
i=1 β

2iwi)K | wi ∈ LmF }. We denote the group (Ωm
M)K by Ω̂m

K .

(3) Let S denote the field F (
√
ai2 , · · · ,

√
aid).

We then have the following result:
8



Lemma 5.2. Let S and K be as mentioned above. Then, there exists a well-defined F -linear
map s : Ω̂m

K → (Ωm
F )S given by:(

w0 +
n−1∑
i=1

β2iwi

)
K

7→

(
n−1∑
i=1

Tr(β2i)wi

)
S

where wi ∈ LmF for all 0 ≤ i ≤ n− 1.

Proof. Suppose (w0 +
∑n−1

i=1 β
2iwi)K = (w′0 +

∑n−1
i=1 β

2iw′i)K , where wi, w′i ∈ LmF . Hence,∑n−1
i=0

β2iwi +
∑n−1

i=0 β
2iw′i ∈ Ker(Ωm

M → Ωm
K). Using [4, Proposition 5.3], we get in Ωm

M :

(5.1)
n−1∑
i=0

β2i(wi + w′i) = dβ ∧ (η0 + dai1 ∧ η1),

such that η0 ∈ M.Lm−1F , η1 ∈ M.Lm−2F . Since β is a root of g(x) and there exists an odd
integer i ∈ {1, . . . , n − 1} such that ai 6= 0, we pass to the derivative of g(β) = 0, we get
dβ ∈

∑d
i=1M.daij . Note that the left hand side of equation (5.1) is free from dai1 , we thus get∑n−1

i=0 β
2i(wi + w′i) ∈

∑d
j=2M.daij ∧ η0. Hence, for all 0 ≤ i ≤ n − 1, we have wi + w′i ∈∑d

j=2 daij ∧ Ωm−1
F , which implies that (wi + w′i)S = 0. Consequently, (

∑n−1
i=1 Tr(β2i)wi)S =

(
∑n−1

i=1 Tr(β2i)w′i)S . Hence, s is a well-defined map. �

Lemma 5.3. We keep the same notations as mentioned above. Then, dΩ̂m
K ⊂ Ω̂m+1

K and
s(dΩ̂m

K) ⊂ d(Ωm
F )S .

Proof. Let w = (w0 +
∑n−1

i=1 β
2iwi)K ∈ Ω̂m

K , where wi ∈ LmF . Since we are over K, we
may suppose that wi =

∑
σ cσ

deσ
eσ

is free from dai1 and each cσ ∈ F does not contain an odd
power of ai1 in its expansion in B. Hence, dwi ∈ Lm+1

F for all 0 ≤ i ≤ n − 1. Consequently,
dw = (dw0 +

∑n−1
i=1 β

2idwi)K ∈ Ω̂m+1
K . We have

s(dw) =

(
n−1∑
i=1

Tr(β2i)dwi

)
S

=

(
n−1∑
i=1

(Tr(βi))2dwi

)
S

= d

((
n−1∑
i=1

(Tr(βi))2wi

)
S

)
∈ d(Ωm

F )S. �

Lemma 5.4. We keep the same notations as mentioned above. Then, s(℘(Ω̂m
K)) ⊂ ℘((Ωm

F )S) +
d(Ωm

F )S .

Proof. Let w = (w0 +
∑n−1

i=1 β
2iwi)K ∈ Ω̂m

K , where wi ∈ LmF . We have ℘(w) = ℘(w0)K +∑n−1
i=1 ℘(β2iwi)K , that is,

℘(w) = ℘(w0)K +
n−1∑
i=1

((β2i)2w
[2]
i + β2iwi)K + dλ(5.2)

for some λ ∈ Ωm−1
K .

We claim that dλ ∈ dΩ̂m−1
K . In fact, we have λ ∈ Ωm−1

K = K.Ωm−1
M ⊕K.Ωm−2

M ∧ dα. Recall
that K.Ωm−1

M = Ωm−1
M ⊕

⊕2l−1
i=1 αiΩm−1

M . Thus

λ ∈ Ωm−1
M ⊕

2l−1⊕
i=1

αiΩm−1
M ⊕K.Ωm−2

M ∧ dα.
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Note that wi are free from α and dα, so we get dλ = (dµ)K , where µ ∈ Ωm−1
M . Now

since equation (5.2) is considered over K and each wi belongs to LmF , we may take µ = δ0 +∑n−1
i=1 β

2iδi such that δi =
∑

σ ci,σ
deσ
eσ
∈ Lm−1F and each ci,σ has no odd power of ai1 in its

expansion in B. Hence, dλ ∈ dΩ̂m−1
K . Lemma 5.3 implies that s(dλ) ∈ d(Ωm−1

F )S .
Now we apply the map s to equation (5.2), we get:

s(℘(w)) =
n−1∑
i=1

(Tr((β2i)2)w
[2]
i + Tr(β2i)wi) + s(dλ)

=
n−1∑
i=1

(Tr(β2i)2w
[2]
i + Tr(β2i)wi) + s(dλ)

= ℘(
n−1∑
i=1

Tr(β2i)wi) + s(dλ)

= ℘(s(w)) + s(dλ) ∈ ℘((Ωm
F )S) + d(Ωm

F )S. �

Notation 5.5. For any field extension E2/E1, let

Hm+1
2,E1

(E2) := (Ωm
E1

)E2/(℘((Ωm
E1

)E2) + d(Ωm−1
E1

)E2).

A consequence of the last three lemmas is the following corollary:

Corollary 5.6. Let K, M and S be as mentioned above. Then, the map s defined above extends
to a group homomorphism T̃r∗ : Hm+1

2,M (K)→ Hm+1
2,F (S) given by:

w 7→ s(w).

5.2. An application. Our aim in this subsection is to apply the above construction to get a
counterexample to the excellence of quartic inseparable extensions of type 2. So let K = F (α)
be a quartic extension of F , where min(α, F ) = x4 + bx2 + d ∈ F [x] such that 〈1, b, d〉 is
anisotropic.

As in the previous subsection, we let: L = F 2(b, d) and M = F (β), where β = α2. Our
2-basis of F is B = {b, d} ∪ {ei | i ∈ I}, and C = {b, α} ∪ {ei | i ∈ I} is a 2-basis of K. We
consider the sequence of fields: F ⊂ M := F (β) ⊂ K = M(

√
β). Finally, our field S would

be F (
√
b).

Example 5.7. We keep the same notations as above. Let ϕ = [1, t−11 ] ⊥ [b, t−12 ] ⊥ 〈d〉 be
a quadratic form over E := F ((t1))((t2)) the field of iterated Laurent series in the variables
t1, t2. Then, we have:

(1) ϕ is anisotropic over E.
(2) ϕE(α) is isotropic but (ϕE(α))an is not defined over E.

Proof. (1) It is easy to verify that ϕ is anisotropic over E since the form 〈1, b, d〉 is anisotropic
over F .

(2) Extending ϕ to E(α), we get:

ϕE(α) ' [α4, α−4t−11 ] ⊥ [bα2, α−2t−12 ] ⊥ 〈d〉
' [α4 + bα2, α−4t−11 ] ⊥ [bα2, α−2t−12 + α−4t−11 ] ⊥ 〈d〉
' [α4 + bα2 + d, α−4t−11 ] ⊥ [bα2, α−2t−12 + α−4t−11 ] ⊥ 〈d〉
' H ⊥ b[1, bt−12 + bα−2t−11 ] ⊥ 〈d〉 .

Claim. The 2-fold Pfister form π :=
〈〈
bd, bt−12 + bα−2t−11

]]
is not defined over E.
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This claim implies that the form ψ := b[1, bt−12 + bα−2t−11 ] ⊥ 〈d〉 is anisotropic and not
defined over E. This proves that (ϕE(α))an ' ψ is not defined over E. So it remains to prove
the claim.

Suppose that
〈〈
bd, bt−12 + bα−2t−11

]]
is defined over E. Then, there exists θ := x[1, y] ⊥

[1, z] an E-quadratic form such that π ' θE(α). Comparing Arf invariants yields ∆(θE(α)) =
0. Lemma 2.9 implies that ∆(θE(β)) = 0. Hence, ∆(θ) ∈ {℘(E), b−2d + ℘(E)} because
M = F (β) = F (℘−1(b−2d)). If necessary, we may change z by z + b−2d and suppose that
θ ∈ GP2(E). By roundness, we take θ ' 〈〈x, y]]. Now we have this isometry of 2-fold Pfister
forms:

〈〈x, y]]E(α) '
〈〈
bd, bt−12 + bβ−1t−11

]]
E(α)

(recall that β = α2). Consequently, we get in H2
2 (E(α))

(
y

dx

x

)
E(α)

=

(
(bt−12 + bt−11 β−1)

d(bd)

bd

)
E(α)

(∗)
=

(
(b2t−22 + b2t−21 β−2)

d(bd)

bd

)
E(α)

.

(∗): We apply the Frobenius operator.

Hence, there exist u ∈ Ω2
E(α) and v ∈ Ω1

E(α) such that

(5.3)
(
y

dx

x

)
E(α)

+

(
(b2t−22 + b2t−21 β−2)

d(bd)

bd

)
E(α)

= ℘(u) + dv.

The extension E(α)/E(β) is inseparable quadratic. Hence, using the same arguments as in
the proof of [3, Proposition 2], we may suppose that u ∈ Ω2

E(β) and v ∈ Ω1
E(β). This means that

we have

(
y

dx

x

)
E(α)

=

(
(b2t−22 + b2t−21 β−2)

d(bd)

bd

)
E(α)

in H2
2,E(β)(E(α)).(5.4)

Notice that Tr(β−2) = b2d−2. Now applying T̃r∗ to equation (5.4), we get:

0 =

(
b4t−21 d−2

d(bd)

bd

)
E(
√
b)

=

(
b2t−11 d−1

d(bd)

bd

)
E(
√
b)

in H2,E(E(
√
b)).

Using Kato’s isomorphism (2.3) with the Hauptsatz, we get
〈〈
bd, b2t−11 d−1

]]
E(
√
b)
∼ 0, that is,

[1, b2t−11 d−1]E(
√
b) ' bd[1, b2t−11 d−1]E(

√
b). Now taking the first residue form with respect to the

t1-adic valuation of E(
√
b), we get:

〈1〉F ((t2))(
√
b) ' 〈bd〉F ((t2))(

√
b) ' 〈d〉F ((t2))(

√
b) .

In particular, the form 〈1, d〉F (
√
b) is isotropic, which implies that 〈1, b, d〉 is isotropic, a contra-

diction. �

6. NONEXCELLENCE OF SEPARABLE BIQUADRATIC EXTENSIONS

For completeness we mention the case of biquadratic separable extensions. In general, such
extensions are not excellent for quadratic forms. The counterexample concerns dimension 4
and is essentially due to Sivatski [21]. He assumed the characteristic to be different from 2 but
the construction goes through basically without any change to characteristic 2 with the help of
a result of Rowen.
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By [19, Section 3], there exists a field F of characteristic 2, an indecomposable F -
algebra D of degree 8 and exponent 2. Moreover, by [19, Theorem 2] we have M2(D) '
⊗4
i=1[ai, bi) with ai, bi ∈ F ∗ such that D is split by the triquadratic separable extension

M := F (℘−1(a1), ℘
−1(a2), ℘

−1(a3)). Then, we have the following example showing the
nonexcellence of biquadratic separable extensions:

Example 6.1. Let K = F (℘−1(a1), ℘
−1(a2)) and consider the F -quadratic form ϕ =

b4[1, a4] ⊥ [1, a3 + a4]. Then, we have:
(1) ϕ is anisotropic over F .
(2) ϕK is isotropic.
(3) (ϕK)an is not defined over F .

In particular, K/F is not (2, 0)-excellent.

Proof. Let D,M be as mentioned above.
(1) Suppose that ϕ is isotropic over F . Then, there exist x ∈ F ∗ such that b4[1, a4] ' x[1, a4]

and [1, a3 + a4] ' x[1, a3 + a4]. Hence, [a4, b4) ' [a4, x) and [a3 + a4, x) ∼ 0, that is,
[a3, x) ' [a4, x). Thus,

M2(D) ' [a1, b1)⊗ [a2, b2)⊗ [a3, b3)⊗ [a4, b4)

' [a1, b1)⊗ [a2, b2)⊗ [a3, b3)⊗ [a4, x)

' [a1, b1)⊗ [a2, b2)⊗ [a3, b3)⊗ [a3, x)

' [a1, b1)⊗ [a2, b2)⊗M2([a3, b3x))

'M2([a1, b1)⊗ [a2, b2)⊗ [a3, b3x)).

This implies that D ' [a1, b1)⊗ [a2, b2)⊗ [a3, b3x), a contradiction to the hypothesis that D is
indecomposable. Thus, ϕ is anisotropic over F .

(2) Recall that D is split by M , that is, DM ∼ 0. Thus [a4, b4)M = 0, consequently ϕM ∼
([1, a4] ⊥ b4[1, a4])M ∼ 0. It follows from Lemma 3.1 that ϕK is isotropic. Since4(ϕK) 6= 0,
we get dim(ϕK)an = 2.

(3) Suppose that (ϕK)an is defined over F . Then, there exist α ∈ F ∗ such that (ϕK)an '
(α[1, a3])K . Hence, (ϕ ⊥ α[1, a3])K ∼ 0. It follows from a result of Baeza [7, Corollary 4.16]
that

(6.1) ϕ ⊥ α[1, a3] ∼ ρ1 ⊗ [1, a1] ⊥ ρ2 ⊗ [1, a2],

for suitable bilinear forms ρ1 and ρ2. Taking the Clifford algebra in equation (6.1), we get

[a4, b4) ∼ [a3, α)⊗ [a1, r)⊗ [a2, s),

where r, s ∈ F ∗ satisfy det ρ1 = rF ∗2 and det ρ2 = sF ∗2. Substituting [a4, b4) in M2(D)
yields:

D ' [a1, rb1)⊗ [a2, sb2)⊗ [a3, αb3),

and thus D is decomposable, a contradiction. �

7. EXTENDING NONEXCELLENCE RESULTS TO HIGHER DIMENSIONAL FORMS

The nonexcellence results that we established for quartic extensions concern quadratic forms
of type (2, 0) or (2, 1). Based on a generic argument, we have that these extensions are also not
(r, s)-excellent for larger r and s. In particular, Combining [18, Lemmas 4.5, 4.6], we have the
following result:

Lemma 7.1. Let L/F be a field extension which is not (r, s)-excellent. Let x1, . . . , x2m+n

be variables over L, and let M (resp. N ) be the field of iterated Laurent series
F ((x1)) · · · ((x2m+n)) (resp. L((x1)) · · · ((x2m+n))). Then, the extension N/M is not (r +
m, s+ n)-excellent.
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We summarize below what we know now for quartic extensions:

Corollary 7.2. (1) Quartic extensions of type 1 are generally not (r, s)-excellent when r ≥ 2
and s ≥ 0.
(2) Quartic extensions of type 2 are generally not (r, s)-excellent when r ≥ 2 and s ≥ 1.
(3) Quartic extensions of type 3 are (r, s)-excellent for any r, s ≥ 0.
(4) Biquadratic separable extensions are generally not (r, s)-excellent when r ≥ 2 and s ≥ 0.

Proof. Statement (3) is given in [10]. For statements (1), (2) and (4) we combine Lemma 7.1
with Examples 4.1, 5.7 and 6.1, respectively. �

Now, we are left to address the excellence for type 4 extensions and the following question
to completely classify inseparable quartic extensions:

Question 7.3. Is it true that any quartic extension of type 2 is (2, 0)-excellent?

In contrast of what we did for quartic inseparable extensions of type 1, and in order to answer
this question, it seems natural to study the isotropy in dimension 4 over quartic inseparable
extensions of type 2.

The generic argument proposed above extends nonexcellence for same type of field exten-
sions to higher dimensional quadratic forms. Naturally, one can pose the question if such an
extension is also possible for higher degree field extensions. To be precise, we ask the following:

Question 7.4. Given a tower of fields F ⊆ L ⊆ K and a nonexcellent field extension L/F . Is
it true in general that K/F is also not excellent?

While the answer is trivially positive when K/L is purely transcendental or odd-degree alge-
braic extension, it is not apparent for non-trivial cases. In fact, we have the following example
that gives a negative answer to the question posed above:

Example 7.5. Let t1, t2, t3, t4 be independent variables over F2 (the finite field with two ele-
ments). Let γ = [t1, t2] ⊥ [t3, t4] ⊥ [1, t1t2 + t3t4] be an Albert quadratic form over the rational
function field F := F2(t1, t2, t3, t4). Let Q be the totally singular quadratic form 〈1, t1, t3〉.
Then, F (Q)/F is not (3, 0)-excellent but F (Q)(

√
t1)/F is excellent.

Proof. Consider the tower of field extensions F ⊆ F (Q) ⊆ F (Q)(
√
t1). The fact that the

extension F (Q)/F is not (3, 0)-excellent was proved in [18, Proposition 4.3]. Since QF (
√
t1) '

〈0, 1, t3〉, we get the following equalities:

F (Q)(
√
t1) = F (

√
t1)(Q) = F (

√
t1)(〈0, 1, t3〉) = F (x, y)(

〈√
t1,
√
t3
〉
),

for some variables x, y over F . By the result of Hoffmann [10], we get F (x, y)(
〈√

t1,
√
t3
〉
)/F

is excellent. Hence, F (Q)(
√
t1)/F is excellent. �

The above example shows that it is possible to have an excellent field extension even if
it contains a subextension that is not excellent. This example reiterates why the question of
excellence is obstinate to study in general.
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