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Abstract
One of the greatest challenges facing our society
is the discovery of new innovative crystal mate-
rials with specific properties. Recently, the prob-
lem of generating crystal materials has received in-
creasing attention, however, it remains unclear to
what extent, or in what way, we can develop gen-
erative models that consider both the periodicity
and equivalence geometric of crystal structures. To
alleviate this issue, we propose two unified mod-
els that act at the same time on crystal lattice and
atomic positions using periodic equivariant archi-
tectures. Our models are capable to learn any arbi-
trary crystal lattice deformation by lowering the to-
tal energy to reach thermodynamic stability. Code
and data are available at https://github.com/aklipf/
GemsNet.

1 Introduction
One of the fundamental challenges of materials science is to
obtain new thermodynamically stable materials that satisfy
certain desirable properties. Recently, considerable attention
has been devoted to the generation of crystalline (crystal) ma-
terials due to their wide range of usage in our modern society,
e.g. metal alloys or semiconductors. As an example of appli-
cation, we are interested in generating new crystal materials
for developing new solar panels with a band gap enabling hy-
drolyse allowing hydrogen production from H2O. Another
application consists in discovering metal hydride for hydro-
gen storage applications which helps solve problems related
to clean energy production and storage, which is one of the
major challenges facing our society.

To discover new materials with desirable properties, high-
throughput screening based on Machine Learning (ML) mod-
els is the most widely employed technique. Despite several
success stories, in particular, for organic molecule genera-
tions, more progress is required for crystal generation. Crys-
tals are three-dimensional periodic structures composed of a
wide variety of chemical bonds and atoms which are often
represented as a parallelepiped tiling, a.k.a crystal lattice or
unit cell. The periodic structure of crystals makes it difficult
to process when training generative models. Recently, graph-
based representation models based on geometrically equiv-

ariant ML techniques have led to substantial performance
increases across a wide range of supervised tasks such as
property predictions and classification [Schütt et al., 2017;
Jørgensen et al., 2018; Gasteiger et al., 2020b; Gasteiger et
al., 2020a; Chen et al., 2019; Choudhary and DeCost, 2021;
Klicpera et al., 2021] and material generation [Satorras et al.,
2021; Xie et al., 2022; Long et al., 2021; Ekström Kelvinius
et al., 2022; Gibson et al., 2022] for crystals. In [Klipfel
et al., 2023], a general framework that formulates an Equiv-
ariant Message Passing Neural Network (EMPNN) on pe-
riodic structures acting on crystal lattice without any label
from the interaction forces and stress tensors has been pro-
posed. This model enforces a structuring bias for crystals
using group actions with respect to the Euclidean Euc(3)
and SL3(Z) groups by means of an equivariance property of
Message Passing Neural Network (MPNN) layers. Results
on the denoising tasks show the capability of the EMPNN
model to perform arbitrary crystal lattice deformation by im-
proving the total energy of the structure (lowering the total
energy of a structure leads to obtaining thermodynamic sta-
bility). In a similar vein, [Xie et al., 2022] proposed a model
adapted from GemNet [Klicpera et al., 2021], which is an
equivariant GNN model to rotation and translation groups for
organic chemistry, to periodic structures. Contrarily to the
model from [Klipfel et al., 2023], the model from [Xie et al.,
2022] is capable to act on the atomic positions, but not capa-
ble of modifying the geometry (the shape of crystal lattice).

In this paper, we propose and analyse two unified models
that process both the geometry and atomic positions of crystal
materials at the same time. This is important for generation
since the model will be able to modify the whole geometry
during the inference and hence reach an optimum one. We
first propose an Equivariant Graph Neural Network (EGNN)
model as an extension of the EMPNN model that adds action
on the atomic positions in addition to the shape of the lattice.
While outperforming the EMPNN model, the architecture of
EGNN remains suboptimal as it does not allow dealing with
chemical structures. Namely, EGNN relies on a very basic
embedding to represent angles whereas the message-passing
schema only relies on the edges, but not the whole geometric
information of the triplets. To this end, we propose Gem-
sNet, a geometry architecture inspired by GemNet [Klicpera
et al., 2021] that is capable to modify both atomic positions
and lattice geometry at the same time within the same Equiv-
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ariant GNN by exploiting all the geometric information of the
triplets. To the best of our knowledge, GemsNet and EGNN
are the first unified models that act simultaneously on crystal
lattice geometry and properties. The quantitative and qualita-
tive analyses of our models show the effectiveness of such a
unified approach.

2 Related Works
Within the area of discovering new organic or crystal materi-
als, we can distinguish different classes of related works ac-
cording to representing technique used to encode molecules,
e.g. Fingerprint representation [Kim et al., 2020b; Nouira
et al., 2018] or voxel representation [Court et al., 2020;
Kim et al., 2020a; Noh et al., 2019; Long et al., 2021].
From organic chemistry to material science, models based
on graph representation are by far the most used in a va-
riety of tasks such as classification [Schütt et al., 2017;
Jørgensen et al., 2018; Gasteiger et al., 2020b; Gasteiger et
al., 2020a; Chen et al., 2019; Choudhary and DeCost, 2021;
Klicpera et al., 2021] and generation [Satorras et al., 2021;
Xie et al., 2022; Long et al., 2021; Ekström Kelvinius et al.,
2022; Gibson et al., 2022].

The graph-based representation of materials has the advan-
tage of representing the periodicity of structures as well as
the local environment of each atom. The graph-based rep-
resentation allows using Graphical Neural Networks (GNN)
architectures to manipulate materials. GNNs are capable to
process sparse data and take into account invariance or equiv-
ariance to many action groups that act on molecules to deform
them. Existing works (e.g. [Klicpera et al., 2021]) are equiv-
ariant to SO(3) due to a spherical basis which allows predict-
ing lattice properties and performing simulations. However,
this is not enough to deform crystal lattices when the shape
of the lattice is unknown in advance. In [Klipfel et al., 2023],
group actions with respect to the Euclidean group Euc(3)
and SL3(Z) group are incorporated by the equivariance prop-
erty of MPNN layers to act on crystal lattices. This has the
advantage of modifying the material regardless of its repre-
sentation, i.e. the modification applied by the MPNN layer
is independent of the orientation or the way the material is
paved. Inspired by GemNet [Klicpera et al., 2021] an equiv-
ariant GNN model to rotation SO(3) and translation groups
for organic chemistry, [Xie et al., 2022] proposed a model
for periodic structures that contrarily to [Klipfel et al., 2023]
allows to act on atomic positions, but not capable of modify-
ing the shape of crystal lattice. While existing models have
shown interesting results on denoising tasks, i.e. performing
arbitrary crystal lattice deformation by improving the total
energy of the structure, acting only on atomic positions or the
crystal geometry is not enough to perform generation tasks.
Our models perform simultaneously on both atomic positions
and the crystal geometry within the same equivariant archi-
tecture.

Recently, several molecular dynamics models for genera-
tions have been proposed by approximating DFT simulation
with GNN [Pickard and Needs, 2011; Ekström Kelvinius et
al., 2022; Gibson et al., 2022; Cheon et al., 2020]. These
methods mainly learn interaction forces and stress tensors

to lower the total energy of a structure with methods ana-
logue to DFT calculation. While relying on self-simulations
to gather data is interesting, it only concerns a small set of
specific structures. To discover new materials, however, a lot
of additional information about interaction forces is required,
which is not always available. In addition, we cannot rely on
randomly generated structures, as they lead in general to un-
stable structures. Our models do not require any additional
labels.

3 Background
A crystalline (crystal) structure can be defined as a cloud of
atoms and a repetition pattern. The repeated pattern repre-
sents periodicity and is often described as a parallelepiped
called a cell. The repetition of the cell is called a lattice.
The periodic structure is obtained with the tiling of the space
by the crystal cell. In particular, a given atom inside of the
cell is repeated in multiple positions because of the tiling in
space. As a consequence, the local environment of an atom
can overlap with adjacent repetitions. We follow [Klipfel et
al., 2023] to represent a crystal material as a graph. It is
an oriented graph where each edge is represented by triplets
containing the index of the source node, the index of the
destination node and the relative cell coordinate of the des-
tination node. Notice that the definition of the graph pro-
vided in [Klipfel et al., 2023] generalizes most of the existing
graph definitions [Jørgensen et al., 2018; Chen et al., 2019;
Satorras et al., 2021].
Definition 1. The representation space of featured materials
MF is the disjoint union

∐
n∈N MF

n where:

MF
n =

{
(ρ, x, z) | ρ ∈ GLd(R), x ∈ [0, 1[n×d, z ∈ Fn

}
.

Chemical materials are represented in M = MN, with
atomic numbers as feature sequence z.

GLd(R) defines the shape of the lattice, i.e. the periodic-
ity, where d stands for the dimension of the material. F is
the feature space that encodes chemical information such as
atomic number or charge. Our aim is to consider networks
capable of deforming the geometry of a structure in order to
minimize the total energy and hence obtain a stable structure.
To deform the geometry of a structure, we consider a neu-
ral network that predicts a collection {y, y1, · · · , yn}, where
y ∈ GL3(R) acts on the material lattice ρ resulting in the up-
dated lattice ρ′ where yi ∈ R3 acts on the atomic positions as
follows:

f : MF
n → MF

n

(ρ, x, z) 7→ (ρ′, x′, z)

with {
ρ′ = yρ

x′
i = [xi + yi].

(1)

The atomic positions are brought back into the crystal lat-
tice by truncation. The equivariance property ensures that
the actions performed on a given material are independent of
any choice of representation. Namely, a given material has
multiple equivalent associated representations, each of which
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depends on the ordering of the atoms, the orientation of the
crystal and the tailing of the space. Our goal is then to process
materials independently from their representations. To this
end, we use group actions to determine the relationship be-
tween different representations. Group actions are the math-
ematical tools that enable one to pass from one choice of rep-
resentation to another. The group Euc(3) of translations and
rotations keeps track of the orientation and the position, while
SL3(Z) keeps track of the choice of a cell. This last group
is needed because crystals are infinite collections of atoms
while computers are only capable to fit a finite description. A
natural approach to obtain such a finite description is to only
work with a finite piece of a given crystal that is big enough
to contain all the information of the structure. However, we
need to ensure that the obtained results are independent of the
choice of the piece of material we are working with. Since
one can go from a description based on one choice of a piece
of crystal to another using the SL3(Z) action, results pro-
duced by models equivariant to this action will not depend
on a particular choice of a representative piece of material.
More formally, equivariance is defined as follows:

g · f(M) = f(g ·M), g ∈ Euc(3)× SLd(Z).

For more details about how an element g of the group acts on
the structure M , we refer to Proposition 1 and 2 in [Klipfel et
al., 2023].

We now recall the EMPNN model proposed in [Klipfel et
al., 2023] which performs arbitrary deformation by acting on
relative atomic distances and angles. In this model, the spatial
equivariance is enforced by an MPNN layer. Intuitively the
EMPNN model takes advantage of the local invariance (input
quantities are themselves invariant: distance, angle, etc.) and
equivariance of the graph-based representation of materials to
define equivariant actions on crystal lattices.

Definition 2. Let M = (ρ, x, z) in MF
n be a material and

ci > 0 for 1 ≤ i ≤ n denotes cutoff distances. We define a
directed 2-graph Γ = ΓM,c by the graded components:

• Γ0 = {1, . . . , n}

• Γ1 =
{
(i, j, τ) ∈ Γ0×Γ0×Zd

∣∣ ||ρ(xj−xi+τ)|| < ci
}

• Γ2 =
{
(γ, γ′) ∈ Γ1 × Γ1

∣∣ src(γ) = src(γ′)
}

The following definition introduces the notations needed
for our models.

Definition 3. Let consider M = (ρ, x, z) ∈ MF and Γ =
ΓM,c, we introduce the following notations:

• eijτ = (xj − xi + τ) for edge vector in lattice coordi-
nates,

• vijτ = ρeijτ for the edge vector in physical space,

• rijτ = ||vijτ || for the physical edge length,

• θijτkτ ′ as the unoriented angle between vijτ and vikτ ′

Let us also write eγ , vγ , rγ , θγγ′ for the same quantities when
we do not need to make vertices explicit. Note that rγ and
θγγ′ are natural Euclid invariants.

4 Unified Models for Crystal Material
In this section, we propose two unified models that are capa-
ble to act on both atomic positions and crystal lattice. The first
model called EGNN, which starts from the EMPNN model
proposed in [Klipfel et al., 2023] which already acts on crys-
tal lattices. The improvement consists in carefully adding a
new component that modifies atomic positions without los-
ing the equivariance property. The other way around, we in-
troduce a second model called GemsNet which is based on
GemNet [Klicpera et al., 2021; Xie et al., 2022] which acts
on atomic positions. In GemsNet, we add components allow-
ing to deform the crystal lattices within the same equivariant
GNN architecture. In the following, we describe these two
models.

4.1 Equivariant Graph Neural Network
The GNN model uses a message-passing schema with the for-
mation of messages from the chemical and geometric infor-
mation of the edges (Equation 2) and updates the chemical
features of the nodes with a GRU (Equation 3). To generate a
deformation of a crystal lattice, we first predict the weighting
of the vector fields generated from the edges and the triplets
(Equation 4). Then, we aggregate the weighting of all the vec-
tor fields to deform the lattice (Equation 5). Figure 1 provides
an overview of our EGNN model.

ml+1
γ = φm

θ (hl
src(γ), h

l
tgt(γ), r

l
γ) (2)

hl+1
i = GRU(hl

i,
∑

γ∈Γ(i)

ml+1
γ ) (3)

wl+1
γ =φρ(1)

θ (hl+1
src(γ), h

l+1
tgt(γ), r

l
γ) (4a)

wl+1
γγ′ =φρ(2)

θ (hl+1
src(γ), h

l+1
tgt(γ), h

l+1
tgt(γ′), r

l
γ , r

l
γ′ , θlγγ′) (4b)

ρl+1 =

I3 + k(
∑
γ∈Γ1

wl+1
γ λγ +

∑
(γ,γ′)∈Γ2

wl+1
γγ′ λγγ′)

 · ρl

(5)
The EGNN model modifies atomic positions by updating

them according to the following equations:

x′
i = [xi +

1

|N (i)|

L∑
l=1

∑
j∈N (i)

wl
ijτeijτ ] (6)

xl+1
i =

[
xl
i +

1

|N (i)|
∑

j∈N (i)

wl
ijτeijτ

]
(7)

wl
ijτ = W ′lsilu(W l[hl

i||hl
j ||emb(rijτ )])) (8)

With wl
ijτ are the weights at the layer l for the set of edges

N (i) connected to the atom i and eijτ is the vector corre-
sponding to the edge (i, j, τ). Intuitively, the GNN archi-
tecture predicts the atom displacement along the edges. We
compute an average of these predictions. The atoms displace-
ment is computed as the sum of the displacement predicted
by all the layers of the network. We then obtain the weight-
ings wl

ijτ from a prediction on the chemical embedding of
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Figure 1: Our EGNN has a classic node-to-node message passing
schema through the edges of the graph Γ1 with the update of the
chemical embedding by a GRU. In green colour, we have the up-
date of atomic positions according to the chemical embedding of the
atoms and the geometric information of the edges of the graph Γ1. In
blue colour, the generation of actions needed to be applied to the lat-
tice from the information of the triplets and the edges is performed.

the atoms and the embedding of the interatomic distances ac-
cording to the setup given in [Schütt et al., 2017], which is
expressed by Equation 9.

emb(rijτ )k = exp(−c||rijτ − µk||2) (9)

We use c = 10Å and µk = k0.1Å with 0 ≤ µk < c.
Notice that the size of the hidden layer (from Equation 8) is
256.

4.2 GemsNet
For GemsNet model, we start from the work of [Klicpera et
al., 2021] on organic chemistry and its adaptation to crystal
materials proposed by [Xie et al., 2022]. The overview of
our proposed architecture is shown in Figure 2. More pre-
cisely, we add a module to predict the actions on the lattice
at the same time with atomic positions based only on triplets
from Γ2. To perform crystal lattice deformation, we simply
add components to the ”output block” of GemNet to be able
to predict deformations from the triplets based on the chem-
ical embeddings. Recall that the ”output block” is responsi-
ble for making predictions about the structures. Namely, it
predicts the energy (when it is needed) and the interaction
forces, which are used to generate a trajectory and to up-
date the atomic positions). We add a feed-forward network
to weight vector fields with wl

γγ′ ∈ RNfields and obtain actions
on the lattice.

wl
γγ′ = φρ

θ(m
l
γ ||ml

γ′ ||embγγ′)

= W”lsilu
(
W ′lsilu(W l[ml

γ ||ml
γ′ ||embγγ′ ])

) (10)

with φρ
θ is an MLP and || is concatenation. θγγ′ is the

concatenation of geometric features of GemNet triplet, so one

RBF per edge and one CBF per angle such that: embγγ′ =
eRBF(rγ)||eRBF(rγ′)||eCBF(rγ , rγγ′).

ẽRBF,n(rγ) =

√
2

cemb

sin( nπ
cemb

rγ)

rγ
(11)

ẽCBF,ln(rγ , θγγ′) =

√
2

c3intj
2
l+1

jl(
zln
cint

rγ)Yl0(θγγ′) (12)

With the final representations of RBF and CBF are given
as follows:

eRBF(rγ) =u(rγ)ẽRBF(rγ) (13)
eCBF(rγ , θγγ′) =u(rγ)ẽCBF(rγ , θγγ′) (14)

Where u(r) is used to remove the interactions having dis-
tances greater than the cutoff distance. Following the rec-
ommendation given by [Gasteiger et al., 2020a], we chose
p = 6.

u(r) = 1− (p+ 1)(p+ 2)

2
rp+p(p+1)rp+1− p(p+ 1)

2
rp+2

(15)
The hidden layers (Equation 10) are of size 64. Notice that

mγγ′ is invariant. As such, we can express ρ′ as follows:

ρ′ = (I3 +
1

|Γ2|

L∑
l=1

∑
(γ,γ′)∈Γ2

wl⊺
γγ′λγγ′)ρ (16)

with λγγ′ ∈ RNfields×3×3 are the vector fields that define
how the GNN acts on the crystal lattice. We use gradients of
the geometric invariant such as:

λγγ′(M) =
∂rγ
∂ρ

⊕ ∂rγ′

∂ρ
⊕ ∂θγγ′

∂ρ
(17)

5 Experiments
In this section, we experimentally compare the two proposed
models with a number of baseline methods with respect to
reconstruction and denoising tasks1. The denoising task (or
geometry optimization task) aims to evaluate the capability
of our model to perform arbitrary crystal lattice deformation
by improving the total energy of the structure. To perform
denoising, we apply a small random deformation to a stable
structure leading to a less stable one with a high energy level
(as energy increases in all directions locally). We can there-
fore generate pairs of stable and less stable structures that can
be used to teach our models how to deform the less stable
structure to reach stability. Making a structure more stable
comes down to lowering the energy level (thermodynamic
stability). The reconstruction task (or lattice reconstruction
task) aims to restore a given crystal lattice from a non-noisy
atomic coordinate following the same settings reported in
[Klipfel et al., 2023]. More specifically, the reconstruction
aims to build a crystal lattice from scratch. We start from

1Code and data are available at https://github.com/aklipf/
GemsNet
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Figure 2: Overview of our GemsNet model. On the left, we have the whole network with the interaction layers stack that takes the geometric
information as input. In orange colour, we can see the details about an interaction layer. We modify the last layer to predict atom displacements
and lattice deformation. In yellow and grey, we have the diagram of message-passing between edges through triplets where the quadruplets
have been removed from GemNet. On the right, we have the layers that update the chemical embedding of atoms. To update the atomic
positions and the shape of the lattice, we aggregate the predictions of all the interaction layers.

Mp-20 Carbon-24 Perov-5
lengths angles pos lengths angles pos lengths angles pos

EGNN 0.345 4.394 0.039 0.631 9.546 0.068 0.348 4.450 0.028
GemsNet 0.206 3.966 0.034 0.451 6.857 0.054 0.279 1.725 0.057

Table 1: We can see the reconstruction errors according to the model and the database. The angle and distance metrics are defined using
Equations 24 and 23. They correspond to an average absolute error between the original and reconstructed mesh parameters in Angstrom for
the distances and degrees for the angles. The atomic position metrics is an average distance between the original position and the reconstructed
position as defined in Equation 25

the point cloud as if it was in a cubic lattice of one angstrom
on a side. The main working hypothesis is that there is a
single stable lattice which corresponds to the starting atomic
positions. Notice that it is impossible to perform such a task
with chemical simulation techniques such as DFT. Interest-
ingly enough, with reconstruction capabilities, a model can
be easily integrated into VAE or GANs architectures to per-
form generation.

Datasets. We considered datasets of stable crystals where
each structure is in local minima of formation energy. First,
we use Perov-5 [Castelli et al., 2012a; Castelli et al., 2012b]
which contains perovskite (cubic) structures with highly uni-
form shapes, but different chemical compositions between
structures. Second, we consider Carbon-24 [Pickard, 2020]
which is composed of carbon atoms having a large variety of
shapes. Finally, we conduct experiments on Mp-20 [Jain et
al., 2013] which is a subset of the materials project proposed
in [Xie et al., 2022] that has a large sample of shapes and

chemical compositions. It is the most representative of or-
dinary structures. We used the same training, validation and
test splits as reported in [Xie et al., 2022].

Random deformation. As mentioned above, the random
deformation aims to introduce noisy structures needed to as-
sess the capability of our models to reach stability. To this
end, we sample noises and add them to the atomic positions.
The lattice parameters are removed and replaced by a cubic
lattice of dimension 1. The following equation gives preci-
sion about how to generate the noise.{

x̃i = [xi + ϵ]
ρ̃ = I3

, ϵ ∼ N (0, 0.05). (18)

Loss function. As loss function, we aim to determine the
optimal trajectory to denoise a structure. Indeed, as the crys-
tals are periodic, several trajectories are possible to obtain the
same result. The optimal trajectory is then defined as the tra-
jectory that minimizes the distance we are moving through.
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Carbon-24 Mp-20
lengths angles lengths angles

Baseline 0.469 13.693 0.534 6.324
EMPNN 0.200 3.199 0.174 1.965
GemsNet 0.176 3.109 0.130 3.082

Table 2: MAE between lattice parameters of the original cell and
the reconstructed cell as defined in Equations 24 and 23(in angstrom
and in degree).

More formally, we have:

y∗i = xi − x̃i + argmin
τ∈Z3

||ρ(xi − x̃i + τ)|| (19)

We denote by p : GL3(R) → R6 an application that as-
sociates the lattice parameters (a, b, c, α, β, γ) to the lattice
ρ. We recall that yi is defined in 1. We can then define a
reconstruction loss with L1 norm as follows:

Lρ =
1

6

6∑
j=1

|p(ρ′)− p(ρ)|j (20)

Lx =
1

3n

n∑
i=1

3∑
j=1

|yi − y∗i |j (21)

L = Lρ + Lx (22)

Evaluation metrics. As evaluation metrics, we rely on an-
gle and length metrics which are respectively Mean Absolute
Error (MAE) metrics on the lattice parameters (α, β, γ) and
(a, b, c). The positioning metric is the distance between the
optimal position and the actual position. We take into account
the periodicity of the material for the atomic positions. If the
atom is close to an edge and the optimal position is close to
the opposite edge, then the distance to be covered is shorter
than the distance that crosses the entire lattice. The distance
metric is therefore the shortest distance between the position
of an atom and one of its possible optimal positions. N is the
number of structures and M the number of atoms.

lengths =
1

3N

N∑
i=1

3∑
j=1

|p(ρ′i)− p(ρi)|j (23)

angles =
1

3N

N∑
i=1

6∑
j=4

|p(ρ′i)− p(ρi)|j (24)

pos =
1

M

M∑
i=1

||yi − y∗i || (25)

Training. We train our two neural network models for 128
epochs. We use hard training from 45 min for the smallest
dataset such as Perov-5 to 5 hours for the biggest datasets
such as Mp-20. Our models are trained on an NVIDIA RTX
A6000 GPU. The different hyperparameters are given in Ta-
ble 3.

Parameters GemsNet EGNN

epoch 128 128
batch size 256 128
knn 32 16
lr 0.001 0.0003
layers 3 6
features 256 128

Table 3: Hyperparameters for GemsNet and EGNN models.

Lattice reconstruction task. Following the same setting
proposed in [Klipfel et al., 2023], we use Equation 18 with-
out applying noise to xi, i.e. ϵ := 0. We only use the loss
term on the Equation 20 of lattice parameters. Table 2 re-
ports the obtained results. We can see that GemsNet has
better performances than existing models on Carbon-24 and
Mp-20 datasets. In particular, there is an improvement in the
length parameters. However, we obtain identical or slightly
worse results for the angular parameters. The results are
more variable on Mp-20 than on Carbon-24. This is expected
since Carbon-24 is a database composed only of pure carbon
structures under pressure, while Mp-20 contains many differ-
ent chemical species and forms. It is therefore possible that
the training is less stable on Mp-20 because there is more
variability from one structure to another. Overall, GemsNet
achieves good performance. This is interesting because Gem-
sNet has more than 2 times fewer parameters and it is much
faster in terms of inference compared to existing models.

Geometry Optimization Task
In this experiment, we use our EGNN as a baseline since to
the best of our knowledge, there is no equivariant GNN that is
capable of acting on both atomic positions and lattice shape at
the same time. EGNN can be seen as a hybridisation between
a model which only allows acting on the geometry (lattice
shape) in an equivariant way (e.g. [Klipfel et al., 2023]) and a
model which only allows acting on the atomic positions (e.g.
[Satorras et al., 2021]). As can be seen in Table 1, our two
models achieve good performances and are able to find the
original geometry of the structures in the database. Notice
that GemsNet outperforms EGNN for both atomic positions
and lattice parameters.

For GemsNet, the reconstruction error on the Perov-5
database is 61% lower for angles and 20% lower for the
lengths of the sides of the lattice. The positioning error is
greater for the atomic positions, but the positioning metrics
remain low in both cases. Recall that Perov-5 is a perovskite
base where structures have very similar geometry. As such, it
is the least difficult and least interesting dataset. For Carbon-
24 the structures are all in pure carbon, but there is more va-
riety in the geometry. GemsNet allows a reconstruction error
reduction of 28% for the lattice parameters and a 20% reduc-
tion in the reconstruction error of the atomic positions. Fi-
nally, Mp-20 is the most representative and varied database.
On this database, GemsNet allows an average reduction of
10% of the error of reconstruction of the angular parameters
of the lattice; a reduction of the error of almost 40% of the pa-
rameters of lengths and a reduction of 13% of atomic position
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Figure 3: Action of GemsNet on 6 structures from the Materials Project. The left column is the noisy structure given as input to GemsNet.
The central column is the structures updated by GemsNet. The right column represents the stable structures of the database before adding
noise.

error. Finally, we can see that the accuracy of the reconstruc-
tion is still very good, especially for the databases which are
the most natural, namely with Mp-20 which is a subset of
Materials Project.

Qualitative Analysis
Figure 3 depicts some examples of structures from Materials
Project Mp-20 that have been denoised by GemsNet. We can
see that the initial structures are too noisy and it is not always
easy to reach the stability. One can notice that the majority
of the structures are very well reconstructed by GemsNet. In-
deed, one can sometimes notice minimal differences in the
alignments of the atoms. We can also notice that the shape
of the lattices is very close. It is important to note that even
crystal structures which are composed of 4 elements are gen-
erally well reconstructed whereas many generative models in
the literature are limited to 2 or 3 different elements.

However, there are some structures which are visibly
poorly reconstructed as we can see in the top right corner
of Figure 3. Several elements are remarkable in these struc-
tures. The atomic positions look realistic compared to the
stable structures, but it is the lattice that makes the shape
of the crystals different. Moreover, the reconstruction error
is generally big. Errors produced by GemsNet are therefore
rare but they are much more important when they occur. The
reconstruction error could therefore come in large part from
crystals which are outliers. Indeed, if we take a closer look at
the badly reconstructed structure at the top right of Figure 3,
we can notice that this structure is composed of 4 elements.
It is therefore a difficult structure to study. Generative models
generally struggle to deal with ternary structures (composed

of 3 elements) even when they contain a light element such
as oxygen. Our structure contains 4 metals including a heavy
atom of potentially radioactive uranium, which is uncommon
compared to the other elements in the Mp-20 dataset. We
can see that GemsNet manages to solve the denoising task
when there is uranium in some cases. Moreover, GemsNet
handles structures with a few different chemical species, e.g.
the binary structure at the bottom left of Figure 3. In gen-
eral, crystals with heavy atoms are notoriously more difficult
to process but GemsNet manages to process some of them.
Overall, GemsNet handles a large part of the dataset struc-
tures very well but fails on some outliers. These failures can
be nuanced because some structures are really more difficult
to analyse, even with ab-initio simulation.

6 Conclusion

We have proposed two unified equivariant models which act
simultaneously on the lattice of a crystal and atomic posi-
tions. This is essential for generating new crystal materials
since our models are capable to modify the whole geome-
try during inference and reach the optimum state. While our
models provide good performances, GemsNet allows a high
level of accuracy for the predicted lattice parameters and for
the generated atomic positions. In addition, GemsNet is faster
in inference time and contains more than 2 times fewer pa-
rameters than existing models. This equivariant architecture
opens the way for other applications such as the generation of
stable crystalline structures which is a challenging problem.
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