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Abstract— This paper proposes a model-based decision 
taking solution for electrical machines winding insulation 
robustness study. The solution is based on the Belief Function 
(BF) theory. It is processed in two main steps: a first one aims to 
learn Weibull model parameters from some labeled aging 
Partial Discharge Inception Voltage (PDIV) data. Then a second 
classification step separates some unlabeled PDIV data 
according to the learnt Weibull models. The classification 
results can give information on the robustness and the reliability 
of the Electrical Insulation System (EIS) under a thermal 
constraint. 

Keywords—belief function, stator insulation, Weibull 
parameters, partial discharges, electrical machines, aging. 

I. INTRODUCTION 

The aging of electrical machine is characterized by 
physical and chemical modifications, which reduce its 
lifetime, and therefore, its ability to operate without risk of 
failure [1].  The IEC 60505 standard describes the different 
types of EIS aging the basis for estimating it [2]. 

The evolution towards a more electric aircraft leads to 
increase the electric power transported by the onboard 
network. Therefore, the voltage is elevated, from 115V AC 
to 540V DC. Consequently, static converters cause more 
drastic electrical constraints on all the Electrical Insulation 
Systems (EIS) and induce the appearance of Partial 
Discharges (PD) and premature aging of the EIS and 
electrical machine damage [1, 2]. 

In addition to the electrical constraint, the thermal 
constraint is also inherent to electrical machines empowering. 
Under this constraint, the physical and chemical 
characteristics of the EIS can be modified and may lead to a 
premature appearance of PD and machine damage [1]. 
Multiple studies on the thermal constraint effect on the EIS 
are achieved and propose empirical models [l - 5]. They are 
generally based on Arrhenius empirical law which assumes 
that the activation energy, in chemical EIS reactions, is a 
proper constant of the material and does not depend on the 
temperature [6]. However, different aging phenomena occur 
at the high temperatures. They are characterized by different 
activation energies than during normal use [7]. 

Beside the empirical models, this paper proposes a 
statistics based modeling, using the Weibull rule and a 
decision taking solution based on Belief Function (BF) 
theory. The BF theory is known to be more general than 

probability theory. It is already used for electrical machines 
diagnosis purpose where sensors measurements are fused in 
BF framework in order to detect short-cuts in machines 
stators [8].  

In the proposed paper, the BF theory is used to study the 
robustness of stators winding insulation against thermal 
constraint. Firstly, BF theory is defined and a classification 
method is proposed. The classifier uses PDIV data obtained 
from a standard thermal accelerated aging process of two 
different enameled wire insulations. The results give some 
motivation of new applications of the proposed solution.  

II. BASICS ON BELIEF FUNCTION THEORY 

Belief function theory is also referred to as Dempster-
Shafer theory on behalf of Arthur Dempster and Gleen Shafer 
who introduced the theory [9, 10]. In 90’s the theory is 
studied and formulated as a Transferable Belief Model 
(TBM) by Philippe Smets [11]. In this section, we describe 
some basic functions of the TBM. 

A. Belief representation 

Knowledge on a random variable X taking values in a 
finite set Ω = {ω1, ω2, …}, is represented by a mass function 
defied by: m: 2Ω→[0,1] verifying: 
 

� m
A∈Ω

�A�=1                                     (1) 

Sets A⊆Ω  with m�A�>0  are called focal elements. 
If m�∅�>0, the mass function is not normalized, it can be 
normalized as follows:  

m* �A�=
m(A)

1-m�∅� ,      ∀A⊆ Ω, A≠∅,           (2)   

With m* �∅�=0. Belief function �	
 and plausibility function 
pl are two alternative representations of belief functions: 

bel�A�= ∑ mB∈A, B≠∅ �B�,  ∀A⊆ Ω             (3) 
 

pl�A�= � m
B⋂A≠∅

�B�,  ∀A⊆ Ω             (4) 

Where bel�A�  represents the amount of knowledge which 
completely agree with A and pl�A� represents the amount of 
knowledge which does not contradict A. 
 



B. Belief contsruction using the GBT 

The Generalized Bayes Theorem (GBT) proposed by 
Smets in [12] allows one to construct a belief function from 
likelihood functions. Given some observations Z, the 
likelihood function L(Z|ω) is seen as a plausibility function 
pl�ωi��Z� in belief function theory [5]. Knowing the 
observations � , a mass function on Ω  can be constructed 
using:  

m�Z��A�= � (pl�ωi��Z�)

ωi∈A

(1- � (1-pl�ωi��Z�))    (6)

ωi∈A�
 

With A⊆Ω. 
 

C. Belief combination and decision taking 

Dempster’s rule of combination in (7) is commonly used 
to fuse mass functions from multiples sources. Mass 
functions m1 andm2 from two different sources are combined 
as follows: 
 

m1⊕m2�A�= 
∑ m1A1⋂A2=A �A1�m2�A2�

1- ∑ m1A1⋂A2=∅ �A1�m2�A2�        (7)  

 
With ∀A1,A2⊆ Ω. Other combination rules can also be used 
[11 - 13]. For decision purpose, a mass function can be 
transformed into pignistic probabilities as follows:  
 

Betp�ω�= ∑ m(A)

|A|(1-m�∅�)ω⊆A,  A⊆Ω ,               (8) 

 
Other decision taking strategies can also be considered [11]. 
In the proposed solution, pignistic probabilities are used. 

III.  PROPOSED SOLUTION 

The proposed solution aims to extract knowledge, 
regarding the stator insulation characteristics, from some 
PDIV data. Firstly, some supervised (labelled) data are used 
to learn classes Weibull models using the Maximum 
likelihood Estimation (MLE). Secondly, according to the 
learnt models, we classify some unsupervised (unlabeled) 
data which are obtained in different physical thermal 
conditions. These two main steps and an illustrative example 
are given in this section. 

A. Learning Step 

This step aims to estimate the parameters β,η of Weibull 
model, using the MLE algorithm. Given a set 
Z����,��,…,���  of observations, the MLE algorithm 
estimates the parameters β,η which maximizes the following 
likelihood function:  
 

L�β,η|Z�= � β

η

n

i=1

�zi

η
!

β-1

e
"zi

η
#β

                   (9) 

One can learn as many models as many known classes, for n 

classes, $ models have to be learnt: cj= %β
j
,η

j
& , j=1,…n. 

In our case, the classification can be done regarding the wire 
diameter, the insulation material, etc. 

B. Classification step 

The classification step is performed in the belief function 
framework. It aims to determine the class of some unknown 

(unlabeled) observations contained in the 
set X��'�,'�,…,'��. It is processed in three main steps: 

1. Given the learnt models and the unknown data X, 
calculate the likelihood functions using (9). 

2.  Given the likelihood functions, a masse function is 
calculated using the GBT in (6) and normalized 
using (2). 

3. When a decision needs to be taken, the mass 
function is transformed into pignistic probabilities 
using (8). 

The proposed solution is summarized in the following 
flowchart. 
 

Fig.1 Flowchart of the proposed classification method.  

IV.  EXPERIMENTAL PART AND RESULTS 

This section firstly describes the experimental part from 
[14, 15] and how PDIV data are obtained, then a numerical 
application example of the proposed solution is given. At last, 
some classification results are discussed. 

A. Experimental part 

 
In this section we consider the experiment performed in 

[14, 15] where an accelerated thermal aging process is 
performed on a large number of twisted pairs of enameled 
wires. Two kind of wires are considered and are represented 
in Fig.2: a classical wire composed of copper, with polyester-
imide and polyamide-imide layers, and a so-called thermos-
adhesive wire having a polyamide aromatic layer in addition 
to the classical composition. 
 

Fig.2 Representation of the studied Classical and Thermo-adhesive wires 

from [14]. 
 
The thermal aging process is performed on 300 samples: 150 
for the classical wire with three different diameters (0.8mm, 

 

 



0.95mm and 1.25mm) and 150 for the thermos-adhesive wire 
with three different diameters (0.8mm, 0.95mm and 
1.25mm). The aging process is represented in Fig.3, it is 
realized according to IEC 60172 and IEC 60270 standards 
[16, 17]. The process outputs Partial Discharge Inception 

Voltages (PDIV) where the average values are given in Table 
I and Table II. 

 
Fig.3 Description of the thermal aging process. 

 
The average values of the PDIV measures are given in Table 
I for the Classical Wire (CW) and in Table II for the Thermo-
adhesive Wire (TW). 

TABLE I.  THE AVERAGE PDIV FOR THE CLASSICAL WIRE (CW).  

 

 

 

 

 

TABLE II.  THE AVERAGE PDIV FOR THE THERMO-ADHESIVE WIRE 

(TW). 

 

 

 

 

 

 

 

 

 

 

 

B. Application example of the proposed solution 

Let us consider two different classes corresponding to two 
different insulation materials. 

 
C={Classical wire (CW),  Thermo-adhesive Wire (TW)�.  

Let us take as learning data rows 2 from Table I and Table 
II, respectively for the classes CW and TW. The whole 
solution is processed as follows: 

• Weibull models learning using (9): for the 
class CW={β1,η1}, the estimated shape parameter 
is  β1=  5.6942, with lower and upper bounds 
estimation [3.4521, 9.3926], and the estimated scale 
parameter is  η1=512.1009, with lower and upper 
bounds estimation  [449.9045,582.8955� . For the 
class TW={β2,η2}, the estimated shape parameter 
is  β2=5.7252  , with lower and upper bounds 
estimation [3.4343,9.5444], and the estimated scale 
parameter is η2=565.8906 , with lower and upper 
bounds estimation [497.6129,643.5368].  

• Calculate a mass function m�X�: 2C
→[0,1]  using 

the GBT (6) and normalize using (2). If we take for 
example as unknown (test data) the last row in Table 
II, we obtain the following mass function: 
 

 
The obtained mass function gives an idea on the 
uncertainty and the imprecision (joint effects) 
concerning the tested data. 

• In order to take a decision, we calculate the pignistic 
probabilities using (8), which gives: 

 Cycles of 1 day under T=280°C 

Days: 0 1 2 3 4 5 6 7 

CW 
Ф 0.85 

mm 

720 
 

623 
 

578 
 

565 
 

529 498 469 450 

CW 
Ф 0.95 

mm 

651 545 490 475 453 414 400 380 

CW 
Ф 1.25 

mm 

694 614 560 546 495 459 416  

 Cycles of 4 days under T=260°C 

Days: 0 4 8 12 16 20 24  

CW 
Ф 0.85 

mm 

644  578 571 549 526 493 491  

CW 
Ф 0.95 

mm 

568  499 477 440 432    

CW 
Ф 1.25 

mm 

628  568 545 534 508 489 482  

 Cycles of 14 days under T=240°C 

 0 14 28 42 56 70   

CW 
Ф 0.85 

mm 

740  672 648 615 598 565   

CW 
Ф 0.95 

mm 

635  583 543 516 518 498   

CW 
Ф 1.25 

mm 

670  625 600 567 574 537   

 Cycles of 1 day under T=280°C 
Days: 0 1 2 3 4 5 6 7 

TW 
Ф 0.85 

mm 

740  
 

592 547 544 513 490 457 443 

TW 
Ф 0.95 

mm 

712  613 547 531 501 463 436 400 

TW 
Ф 1.25 

mm 

722  608 563 552 505 460 408  

 Cycles of 4 days under T=260°C 

Days: 0 4 8 12 16 20 24  

TW 
Ф 0.85 

mm 

645  545 544 542 494 478 438  

TW 
Ф 0.95 

mm 

652  561 554 531 521 493 475  

TW 
Ф 1.25 

mm 

674  555 538 523 503 434   

 Cycles of 14 days under T=240°C 

 0 14 28 42 56 70   

TW 
Ф 0.85 

mm 

734  632 610 591 571 550   

TW 
Ф 0.95 

mm 

715  596 567 547 567    

TW 
Ф 1.25 

mm 

711  614 567 556 530    

m�X��A� {∅} CW TW {CW, TW} 

Value: 0 0.0016 0.958 0.396 

 



 
Weibull plots of the models learnt in this example are given 
in Fig.4. 

Fig.4 Weibull plot: symbols “o” correspond to TW data and symbols “+” 
correspond to CW data. 

 
Fig.4 gives a first information where the TW seems to be 
more robust than CW: under T=280°C, the Classical Wire has 
50% risk to have Partial Discharges (PD) at around 470V 
where the Thermo-adhesive Wire has the same risk at 520V. 
This result gives us a first information about CW and TW 
robustness. 

C. Simulation Results 

This section provides two main simulations where the first 
one aims to classify the data, in Table I and Table II, 
according to their insulation materials and the second one 
classifies the data, of each table separately, according to the 
wire diameter.  

C.1 Classification according to the insulation materials 

Using the two learnt CW and TW models in Section IV.B, 
the classification algorithm is applied to the data in Table I 
and Table II. Correct classification rates over 100 Monte-
Carlo simulations, where the training data is picked 
randomly, are given in Fig.5. 

 
Fig.5 Correct classification rates over 100 Monte-Carlo simulations for CW 

and TW data 

In about 80% of the simulations, the correct classification rate 
is higher than 50% as shown in Fig.5. The average correct 
decision is about 62%. This means that the data are broadly 
separated into two classes (CW and TW). This result means 
that behavior of the Classical Wire and the Thermo-adhesive 
Wire under the thermal constraint is different. Combined to 
the result of Fig.4, it can be said that the Thermo-adhesive 
Wire is more robust than the Classical Wire. Moreover, the 
classification rates give an idea on the robustness proportions. 

C.2 Classification according to the wire diameter 

The proposed solution in this section is used to separate the 
data of the Table I and the Table II according to the wire 
diameter. We consider then a set of three classes ) �
�0.85--, 0.95--, 1.25--� . For Classical Wire data in 
Table I, three different diameters data sets are randomly 
picked for the learning step, then the classification step is 
processed over 100 Monte Carlo simulation. The same 
operations are applied to the Thermo-adhesive data in Table 
II. The classification results are given in Fig.6 for the CW 
data and in Fig.7 for the TW data. 

 
Fig.6 Correct classification rates over 100 Monte-Carlo simulations CW 

diameter data. 
 

The average correct classification is about 35% in this 
simulation, as it can be seen in Fig.6. In about 21 simulations 
over 100, the correct classification rate is higher than 50%. 
This is a low recognition rate which may mean that the 
Classical Wire diameter does not have a significant impact on 
the EIS robustness under the thermal constraint. 
 
The same conclusion can be made regarding the results of 
Fig.7 where we obtain an average of 32% of correct decisions 
and in about 1 simulation over 100, the correction decision 
rate is higher than 50%. This means that impact of the 
diameter on EIS robustness for the Thermos-adhesive Wire is 
even more insignificant.  
 
 
 
 
 
 

Betp[X](c) CW TW 
Value: 0.0214 0.9786 

 



 
Fig.7 Correct classification rates over 100 Monte-Carlo simulations TW 

diameter data. 

V. CONCLUSION 

This paper provides a model based approach to 
study the stators EIS robustness under thermal constraint. The 
proposed solution is tested on two EIS data sets and show 
some interest in robustness study and quantification. This is 
a generic approach which can be applied to study other effects 
under electrical constraint, mechanical constraint, chemical 
constraint, etc. 

The proposed solution may also be applied to study 
the joint effects on the EIS since it uses Belief Function 
theory. In fact, as illustrated in III.C, BF theory can quantify 
the joint effects on the EIS by giving weights to subsets or 
sets of hypotheses, for example the set {CW, TW} in III.C. 
In this case, the weight on {CW, TW} represents the degree 
of ignorance. In other examples, it can represent the joint 
effects or the correlation degree of multiple effects. This is an 
advantage which is not handled in probability theory where 
weights are given to singletons only. 
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