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Abstract— This paper proposes a model-based decision probability theory. It is already used for eleciticnachines
taking solution for electrical machines winding insilation diagnosis purpose where sensors measurementssac ifu

(BF) theory. It is processed in two main steps: drkt one aims to stators [8]

learn Weibull model parameters from some labeled agg

Partial Discharge Inception Voltage (PDIV) data. The a second In the proposed paper, the BF theory is used aydiue

classification step separates some unlabeled PDIVath  robustness of stators winding insulation againgrrttal

according to the leamt Weibull models. The classifation  constraint. Firstly, BF theory is defined and asslfication

results can give |nformat|9n on the robustness anithe reliability method is proposed. The classifier uses PDIV dhtaied

22 ntst(:aiﬁfctncal Insulation System (EIS) under a themal from a standard thermal accelerated aging process of two
different enameled wire insulations. The resultgeegiome

Keywords—belief function, stator insulation, Weibull Motivation of new applications of the proposed 8otu

parameters, partial discharges, electrical machinaging.
Il. BASICS ON BELIEF FUNCTION THEORY

. INTRODUCTION Belief function theory is also referred to as Detaps
The aging of electrical machine is characterized byShafer theory on behalf of Arthur Dempster and G®kafer
physical and chemical modifications, which redud¢s i who introduced the theory [9, 10]. In 90's the theds
lifetime, and therefore, its ability to operate hatit risk of  studied and formulated as a Transferable Belief &fod
failure [1]. The IEC 60505 standard describesdifferent  (TBM) by Philippe Smets [11]. In this section, wesdribe
types of EIS aging the basis for estimating it [2]. some basic functions of the TBM.

The evolution towards a more electric aircraft ka0 A. Belief representation
increase the electric power transported by the ambo  Knowledge on a random variable X taking values in a
network. Therefore, the voltage is elevated, fratBML AC  finjte setQ = {w,, oy, ...}, is represented by a mass function
to 540V DC. Consequently, static converters causeem qfied by: m: £—[0,1] verifying:
drastic electrical constraints on all the Electricesulation

Systems (EIS) and induce the appearance of Partial
Discharges (PD) and premature aging of the EIS and Zm(A):l (1)
electrical machine damage [1, 2]. A€Q

Sets AQ with m(A)>0 are called focal elements.
In addition to the electrical constraint, the thatm If m(@)>0, the mass function is not normalized, it can be
constraint is also inherent to electrical machempowering. normalized as follows:
Under this constraint, the physical and chemical ©ony_ M(A)
characteristics of the EIS can be Pnoydified and feag to a . m (A)_l-m(®)’ VAS Q, AZO, 2)
premature appearance of PD and machine damage [:M_/ith m (@)=0. Belief functionbel and plausibility function
Multiple studies on the thermal constraint effesttbe EIS  pl are two alternative representations of beligictions:

are achieved and propose empirical models [| TBgy are bel(A)=Ygea 520 M(B), VAS Q (3)
generally based on Arrhenius empirical law whichuases

that the activation energy, in chemical EIS reargjois a _ z

proper constant of the material and does not depentthe PItA)= m(B), VAC Q (4)

BNA#D
Where belA) represents the amount of knowledge which

completely agree with A and(@) represents the amount of
knowledge which does not contradict A.
Beside the empirical models, this paper proposes a
statistics based modeling, using the Weibull rutel a
decision taking solution based on Belief Functi®dF)
theory. The BF theory is known to be more genenaht

temperature [6]. However, different aging phenomeczur
at the high temperatures. They are characterizetiffeyent
activation energies than during normal use [7].



B. Belief contsruction using the GBT

(unlabeled) observations contained in the

The Generalized Bayes Theorem (GBT) proposed b§etX={x1,x,,....x,}. Itis processed in three main steps:

Smets in [12] allows one to construct a belief fiorc from
likelihood functions. Given some observations Zge th
likelihood functionL(Z|w;) is seen as a plausibility function
pllo;]1(Z) in belief function theory [5]. Knowing the
observationsZ, a mass function ofi can be constructed
using:

mz)W-[ [ ellel@)a-] Japel@) ©

®;EA ;€A

With ACQ.

C. Belief combination and decision taking
Dempster’s rule of combination in (7) is commonged

to fuse mass functions from multiples sources. Masg

functionsm, andn, from two different sources are combined
as follows:

2a,na=a My (ADm; (A)
1- YA na=o My (Am,(A)

m; Pm, (A)= (7

With VA,,A,C Q. Other combination rules can also be used

[11 - 13]. For decision purpose, a mass function ba
transformed into pignistic probabilities as follaws

m(A)

|A|(1-m(8))’

Betp(m)=Yca, Aca (8

Other decision taking strategies can also be censit[11].
In the proposed solution, pignistic probabilities ased.

I1l. PROPOSED SOLUTION

Given the learnt models and the unknown dgta
calculate the likelihood functions using (9).

Given the likelihood functions, a masse functisn i
calculated using the GBT in (6) and normalized
using (2).

N

When a decision needs to be taken, the mass

function is transformed into pignistic probabilgtie
using (8).

The proposed solution is summarized in the follawin
flowchart.

Fig.1 Flowchart of the proposed classification roeth

N
MODELS LEARNING STEP Labeled (known) Data:

* Data from class ¢,
L- Data from class ¢,
.

For each class c;, learn Weibull parameters
{Bi,m;} using MLE algorithm
NS |

>

=~

1
/ Given the unlabeled data, calculate a
laklihood for each known class using (9)

|

Given the classes likelihoods, calculate a
mass function using (6) and (2)

(Unlabeled nkewnioa)

Transform the mass function into pignistic

probabilities using (8)

f Classification results
interpretation

CLASSIFICATION STEP

IV. EXPERIMENTAL PART AND RESULTS

This section firstly describes the experimental fram
[14, 15] and how PDIV data are obtained, then aerical
application example of the proposed solution i®giVAt last,
some classification results are discussed.

The proposed solution aims to extract knowledge,

regarding the stator insulation characteristiceymfrsome
PDIV data. Firstly, some supervised (labelled) dataused

to learn classes Weibull models using the Maximum

likelihood Estimation (MLE). Secondly, according tbe
learnt models, we classify some unsupervised (ahdab
data which are obtained in different physical tharm
conditions. These two main steps and an illusteatixample
are given in this section.

A. Learning Step

This step aims to estimate the paramedtarof Weibull
model, wusing the MLE algorithm. Given a set
7={z,,2,,...,z,} Of observations, the MLE algorithm
estimates the parametdyg which maximizes the following
likelihood function:

meurfj

®
=1

One can learn as many models as many known cldeses,
classesp models have to be learmrf:= {Bj,nj},jzl,...n.

In our case, the classification can be done reggritie wire
diameter, the insulation material, etc.

B

z\B1 (%)
n<ﬁ> =

B. Classification step

The classification step is performed in the bdiisfction
framework. It aims to determine the class of somenown

A. Experimental part

In this section we consider the experiment perfakime
[14, 15] where an accelerated thermal aging prodégss
performed on a large number of twisted pairs ofnezlad
wires. Two kind of wires are considered and areasgnted
in Fig.2: a classical wire composed of copper, pitlyester-
imide and polyamide-imide layers, and a so-calleimos-
adhesive wire having a polyamide aromatic layeaddition
to the classical composition.

Fig.2 Representation of the studied Classical dretfo-adhesive wires

Polyamide aromatique
(thermo-adhesive layer)

Polyamide-imide

Polysmide-imide
Polyester-imide

Polyester-imide

Copper

from [14].

The thermal aging process is performed on 300 ssnhb0
for the classical wire with three different dianret€0.8mm,



0.95mm and 1.25mm) and 150 for the thermos-adheginee

TABLE I1.

with three different diameters (0.8mm, 0.95mm and

1.25mm). The aging process is represented in Fig.i3,
realized according to IEC 60172 and IEC 60270 stedsl
[16, 17]. The process outputs Partial Dischargesption

Tests conditions:
1. 24h under 280°C

2. 4x24h under 260°C R
3. 14x26h under 240°C

300 test samples: * PDIV measure ‘
1. Classical Wire (CW) samples —_—

50 classical wire samples (& 0,85 mm) @r
* 50 classical wire samples (@ 0,95 mim)
* 50 classical wire samples (® 1, 25 mm)
2. Thermo-adhesive Wire (TW) samples
* 50 thermo-adhesive wire samples

| PDIV measure ‘
(0,85 mm)
* 50 thermo-adhesive wire samples ﬂ/

Th i I
| kit ‘ ‘ 10 cycles ‘

(@ 0,95 mm)
*+ 50 thermo-adhesive wire samples
(¢ 1,25 mm)

Results: PDIV data given in table 1and table 2 ‘

THE AVERAGE PDIV FOR THETHERMO-ADHESIVE WIRE
(TW).

nder T=280°C

1

Cycles of 1 day u
2 3

4

5

6

740

592

547

544

513

490

457

44

712

613

547

531

501

463

436

400

722

608

563

5562

505 460

40

4 da

s under T=260°C

4

Cycles of
8

12

16

20

24

645

545

544

542

294 47§

43

652

561

554

531

521 493

47

674

555

538

523

503] 434

Voltages (PDIV) where the average values are givarable

| and Table II.

The average values of the PDIV measures are givéalle
| for the Classical Wire (CW) and in Table Il féwet Thermo-

Fig.3 Description of the thermal aging process.

adhesive Wire (TW).

TABLE 1.

THE AVERAGE PDIV FOR THECLASSICAL WIRE (CW).

f 1 day under T=280°C

Days:

Cycles o
2

3

4

5

6

Cw
® 0.85
mm

720

623

578

565

529

498

469

450

Cw
@ 0.95
mm

651

545

490

475

453

414

400

380

694

614

560

546

495

459

416

Cycle

s of 4 days under T=260°C

8

12

16

20

24

644

578

571

549

526

493

491

568

499

477

440

432

628

568

545

534

508

489

482

Cycles of 14

days und

er T=240°C

14

28

a2

56

70

740

672

648

615

598

564

635

583

543

516

518

494

670

625

600

567

574

537

Cycles of 14 days under T=240°C
0 14 28 42 56 70
TW 734 | 632 | 610| 591 571 550
@ 0.85
mm
TW 715 [ 596 | 567 547 567
@ 0.95
mm
TW 711 | 614 | 567 | 556 | 530
@ 1.25
mm

B. Application example of the proposed solution

Let us consider two different classes correspontitigyo
different insulation materials.

C={Classical wire (CW), Thermo-adhesive Wire (T\WV)

Let us take as learning data rows 2 from Tablall Bable
Il, respectively for the classes CW and TW. The lho
solution is processed as follows:

 Weibull models learning using (9): for the
class CW=8,n,}, the estimated shape parameter
is B,= 5.6942, with lower and upper bounds
estimation [3.4521, 9.3926], and the estimatedescal
parameter i9),=512.1009, with lower and upper
bounds estimation [449.9045,582.8p55-or the
class TW=§,mn,}, the estimated shape parameter
is B,=5.7252 , with lower and upper bounds
estimation [3.4343,9.5444], and the estimated scale
parameter i3),=565.8906 , with lower and upper
bounds estimation [497.6129,643.5368].

e Calculate a mass function[K: ZC—>[0,1] using
the GBT (6) and normalize using (2). If we take for
example as unknown (test data) the last row ind abl
11, we obtain the following mass function:

mIX](A) [ {8} | CW | TW | {CW, TW}

Value: 0 | 0.001 0.958 0.396

The obtained mass function gives an idea on the
uncertainty and the imprecision (joint effects)
concerning the tested data.

< Inorder to take a decision, we calculate the gigmi
probabilities using (8), which gives:



CW
0.0214

W
0.9786

Betp[X](c)
Value:

Weibull plots of the models learnt in this exampte given
in Fig.4.

Weibull Probability Plot
0.96 //‘ "4,' 5
0.90 - "/ e
A s
0.75 - ~
+ o

0.50
>
£
8 + )
E 0.25
o gt ’/"D

0.10 -

+ [e]
0.05 -
400 450 500 550 600 650 700
Data

Fig.4 Weibull plot: symbols “0” correspond to TWtdand symbols “+”
correspond to CW data.

Fig.4 gives a first information where the TW seetmse
more robust than CW: under T=280°C, the Classida¢\Was
50% risk to have Partial Discharges (PD) at arodndV
where the Thermo-adhesive Wire has the same riSRGY.
This result gives us a first information about Cwdarw
robustness.

C. Smulation Results

This section provides two main simulations where finst

one aims to classify the data, in Table | and Tdlble
according to their insulation materials and theosecone
classifies the data, of each table separately,rdeapto the
wire diameter.

C.1 Classification according to the insulation materials

Using the two learnt CW and TW models in SectionBlV
the classification algorithm is applied to the ditd able |
and Table Il. Correct classification rates over M0nte-

In about 80% of the simulations, the correct clasgion rate
is higher than 50% as shown in Fig.5. The averageect
decision is about 62%. This means that the datdmaadly
separated into two classes (CW and TW). This resahlins
that behavior of the Classical Wire and the Theadbesive
Wire under the thermal constraint is different. Gamed to
the result of Fig.4, it can be said that the Theadbesive
Wire is more robust than the Classical Wire. Moexp¥he
classification rates give an idea on the robustpessortions.

C.2 Classification according to the wire diameter

The proposed solution in this section is used paste the
data of the Table | and the Table Il accordinghe wire
diameter. We consider then a set of three clagses
{0.85mm, 0.95mm, 1.25mm}. For Classical Wire data in
Table I, three different diameters data sets anslamly
picked for the learning step, then the classifaatstep is

processed over 100 Monte Carlo simulation. The same

operations are applied to the Thermo-adhesiveidatable
Il. The classification results are given in Figd the CW
data and in Fig.7 for the TW data.

30

Number of simulations

0 10 20 30 40 50 60 70 80
Correct decisions rate (%)

Fig.6 Correct classification rates over 100 Monte-Caitoulations CW
diameter data.

Carlo simulations, where the training data is pitke The average correct classification is about 35%this

randomly, are given in Fig.5.

30

25

20

15

10

Number of simulations

30 40 50 60 70 80
Correct decisions rate (%)

Fig.5 Correct classification rates over 100 Montget€ simulations for CW
and TW data

simulation, as it can be seen in Fig.6. In abousigiulations
over 100, the correct classification rate is higtien 50%.
This is a low recognition rate which may mean tta
Classical Wire diameter does not have a signifioapact on
the EIS robustness under the thermal constraint.

The same conclusion can be made regarding thetsesiul
Fig.7 where we obtain an average of 32% of codectisions
and in about 1 simulation over 100, the correctiecision

rate is higher than 50%. This means that impacthef
diameter on EIS robustness for the Thermos-adh&gikeis

even more insignificant.



50

N w B
(=] o o

Number of simulations

-
o

10 20 30 40 50 60
Correct decisions rate (%)

Fig.7 Correct classification rates over 100 Mon&@ simulations TW
diameter data.

V. CONCLUSION

(2]
(3]
(4]

(5]

(6]

(7]

(8]

Bl

This paper provides a model based approach to

study the stators EIS robustness under thermatreamis The
proposed solution is tested on two EIS data sedssaow
some interest in robustness study and quantificafibis is
a generic approach which can be applied to stuwsr@&ffects
under electrical constraint, mechanical constrathemical
constraint, etc.

(10]
(11]

(12]

The proposed solution may also be applied to study_B]

the joint effects on the EIS since it uses Beliehétion
theory. In fact, as illustrated in III.C, BF theazgn quantify
the joint effects on the EIS by giving weights tdosets or
sets of hypotheses, for example the set {CW, TWJirC.
In this case, the weight on {CW, TW} represents degree
of ignorance. In other examples, it can represkeatjoint
effects or the correlation degree of multiple etffed his is an
advantage which is not handled in probability tlyeahere
weights are given to singletons only.

ACKNOWLEDGMENT
Authors are grateful to the University of Artoisattiunded
this work under a BQR project.

REFERENCES

[1] G.C. Stone, I. Culbert, E. A. Boulter, H. DhirahElectrical insulation
for rotating machines-design, evaluation, agingtittg, and repair",
Wiley-IEEE Press, 2014.

(14]

(18]

(16]

(17]

IEC60505- Evaluation and qualification of electticmsulation
systems, 2011.

L. A. Dissado, J. C. FothergiElectrical degradation and breakdown
in polymers, IET Material and Device Series 9, 2008.

P. Maussion and A. Picot and M. Chabert and D. Mdlgfespan and
aging modeling methods for insulation systems éeteical machines:
A survey,” IEEE Workshop on Electrical Machines @es Control

and Diagnosis, pp. 279-288, 2015.

N. Lahoud and J. Faucher and D. Malec and P. Mawus¥lectrical
Aging of the Insulation of Low-Voltage Machines: Wkl Definition
and Test With the Design of Experiments,” IEEE Baations on
Industrial Electronics, 60(9): 4147-4155, 2013.

M. Celina, K. T. Gillen, R. A. Assink, "Acceleratedjing and lifetime
prediction: Review of non-Arrhenius behaviour dagwo competing
processes'Polym. Degr. and Stab.,90: 395-4042005.

L. Tshiloz, A.C. Smith, P.M. Tuohy, T. FeehallynVestigation of
Wire Insulation for High Temperature Motor Windirfigdn The
Journal of Engineering, 2019(17) : 4442-4445,2019.

M. Irhoumah, R. Pusca, E. Lefevre, D. Mercier, Ronfary, C.
Demian, "Information fusion with belief functionsrf detection of
inter-turn short circuit faults in electrical maobks using external flux
sensors", |IEEE Transaction on Industrial Electronié5(3): 2642-
2652, mars 2018.

A. P. Dempster. “Upper and lower probabilities iodd by a
multivalued mapping”. The Annals of Mathematicaht8itics, 38(2):
325-339, April 1967.

G. Shafer. “A mathematical theory of evidence”nBeton university
press, 1976.

P. Smets and R. Kennes. “The transferable beliefatioArtificial
intelligence, 66(2):191-234, 1994.

P. Smets. “Belief functions: the disjunctive rufeombination and the
generalized bayesian theorem”. International Jdwh&Approximate
Reasoning, 9(1): 1-35, 1993.

T. Denceux. “Conjunctive and disjunctive combinatioh belief
functions induced by nondistinct bodies of evidéncartificial
Intelligence, 172(2): 234-264, 2008.

S. Savin. “New indicator of aging of inter-turn utation of electrical
machines used in aeronautics”. PhD thesis, 2013.

S. Savin, S. Ait-Amar and D. Roger, "Turn-to-turapacitance
variations correlated to PDIV for AC motors monitay," in |[EEE

Transactions on Dielectrics and Electrical Insulation, 20(1): 34-41,
February 2013.

IEC 60172, “Test procedure for the determinationhef temperature
index of enamelled and tape wrapped winding wired;,2015.

IEC 60270 - High-voltage test techniques. Partiascliarge
measurements, 2001.



