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Introduction

The Ontology-Based Data Access (OBDA) paradigm relies on an ontology to provide a unified conceptual representation of some domain of interest, in order to improve access to data [START_REF] Poggi | Linking data to ontologies[END_REF]. Lightweight fragments of description logics such as the DL-Lite family [START_REF] Calvanese | Tractable reasoning and efficient query answering in description logics: The DL-Lite family[END_REF][START_REF] Artale | The DL-Lite family and relations[END_REF] are commonly used to encode ontologies, since they allow for efficient query-answering. The conceptual knowledge of an ontology (i.e., the TBox) is usually assumed to be consistent. However, the dataset (i.e., the ABox) may potentially be inconsistent with respect to the TBox. In this case, reasoning with an inconsistent ontology amounts to evaluating queries over one or several of its data repairs (i.e., inclusion-maximal subsets of the ABox that are consistent with respect to the TBox). A variety of inconsistency-tolerant semantics have been proposed, with different levels of cautiousness and classes of computational complexity. These strategies select one or several repairs of an ABox in order to evaluate queries, with tractability achieved mostly for DL-Lite ontologies (see [START_REF] Baget | Inconsistency-tolerant query answering: Rationality properties and computational complexity analysis[END_REF][START_REF] Bienvenu | Inconsistency-tolerant querying of description logic knowledge bases[END_REF] for a survey).

For instance, the well-known Intersection of ABox Repair (IAR) semantics [START_REF] Lembo | Inconsistency-tolerant semantics for description logics[END_REF] is a cautious strategy. Indeed, it avoids a random selection of the repairs since it evaluates queries over the intersection of all the repairs. It discards all the elements of the ABox that are involved in conflicts (i.e., inclusion-minimal subsets of the ABox that are inconsistent with respect to the TBox). Most notably, it is tractable in DL-Lite.

The Intersection of Closed ABox Repair (ICAR) semantics [START_REF] Lembo | Inconsistency-tolerant semantics for description logics[END_REF] applies the IAR semantics to the deductive closure of the ABox. This allows to derive more facts from the ABox, so ICAR is more productive 3 than IAR, while it is likewise tractable in DL-Lite. However, ICAR may return undesirable conclusions. Consider a TBox with the concept inclusion axiom Whale ⊑ Mammal, and the concept disjointness axiom Whale ⊑ ¬ Shark. Say the ABox contains two facts Whale(Humphrey) and Shark(Humphrey), which are in conflict according to the disjointness axiom. ICAR returns Mammal(Humphrey) as a valid conclusion, although it follows from Whale(Humphrey), which is involved in a conflict.

For prioritized (or totally ordered) ontologies, computing repairs for the ABox is a challenging task. For instance, the Preferred Repair semantics [START_REF] Bienvenu | Querying inconsistent description logic knowledge bases under preferred repair semantics[END_REF] (based on the notion of preferred subtheories [START_REF] Brewka | Preferred subtheories: An extended logical framework for default reasoning[END_REF]) is coNP-complete in data complexity. The grounded repair [START_REF] Bienvenu | Querying and repairing inconsistent prioritized knowledge bases: Complexity analysis and links with abstract argumentation[END_REF] obtained from a Dung-style argumentation framework is tractable. However, the order relation only applies to the conflicts, so the ABox is assumed to be locally stratified (a similar order defined in propositional logic can be found in [START_REF] Benferhat | Handling locally stratified inconsistent knowledge bases[END_REF]). In contrast, three main tractable methods have been identified in [START_REF] Benferhat | How to select one preferred assertional-based repair from inconsistent and prioritized DL-Lite knowledge bases?[END_REF] for totally ordered ABoxes. The non-defeated repair iteratively applies the IAR semantics to a cumulative sequence of strata of the ABox. The linear-based repair iteratively accumulates a sequence of strata of the ABox, by discarding any stratum that is inconsistent with respect to the TBox or that contradicts the preceding sequence of strata. The possibilistic repair leverages possibility theory, which supports inconsistent reasoning with incomplete, uncertain, qualitative and prioritized information [START_REF] Dubois | Generalized possibilistic logic: Foundations and applications to qualitative reasoning about uncertainty[END_REF][START_REF] Finger | Advances in weighted logics for artificial intelligence[END_REF]. It infers all the facts that are strictly more certain than some inconsistency degree of the ABox, computed from the uncertainty degrees assigned to the elements of the ABox.

A few tractable methods have also been proposed for partially ordered ontologies. There is the Elect method [START_REF] Belabbes | Handling inconsistency in partially preordered ontologies: the Elect method[END_REF] which generalizes both the IAR semantics and the non-defeated repair. There is also the possibilistic repair method defined for partially ordered ontologies [START_REF] Belabbes | Computing a possibility theory repair for partially preordered inconsistent ontologies[END_REF]. Both Elect and the possibilistic repair method extend the partial order over the ABox into a family of total orders. This yields as many totally ordered ABoxes, for which repairs can be computed then intersected to obtain a single repair for the initial ABox. Such methods are interesting since they derive the conclusions that follow from all the totally ordered repairs. However, their productivity is hampered by their cautiousness.

A natural way for increasing productivity is to compute the deductive closure of the totally ordered repairs before intersecting them, in the spirit of the Intersection of Closed Repairs (ICR) semantics [START_REF] Bienvenu | On the complexity of consistent query answering in the presence of simple ontologies[END_REF]. 4 However, it is well-known that closing the repairs increases time complexity. For instance, for flat ontologies, inference with the IAR semantics and the ICAR semantics is tractable, but it is coNP-complete with the ICR semantics in data complexity [START_REF] Bienvenu | On the complexity of consistent query answering in the presence of simple ontologies[END_REF][START_REF] Baget | Inconsistency-tolerant query answering: Rationality properties and computational complexity analysis[END_REF].

In this work, we undertake the difficult task of proposing a more productive, yet efficient method, in the case of partially ordered ontologies. We call the new method Cπ-repair and establish its tractability in the DL-Lite R fragment, using an interpretation of possibility theory as a strategy for computing the repair. We characterize Cπ-repair equivalently based on the notions of dominance and support. Intuitively, the valid conclusions are supported against conflicts by consistent inclusion-minimal subsets of the ABox that dominate all the conflicts.

We also study the rationality properties of Cπ-repair in terms of unconditional and conditional query-answering mechanisms. In particular, we show that the deductive closure preserves the satisfied properties of possibilistic queryanswering from the intersection of the (unclosed) possibilistic repairs.

This paper is organised as follows. Section 2 recalls the basics of DL-Lite R and the possibilistic repair method. Section 3 defines the closure-based repair method Cπ-repair. Section 4 gives its tractable characterization. Section 5 studies its rationality properties, before concluding.

Preliminaries

We recall the underpinnings of the possibilistic repair for partially preordered ontologies [START_REF] Belabbes | Computing a possibility theory repair for partially preordered inconsistent ontologies[END_REF] that are specified in the DL-Lite R fragment [START_REF] Calvanese | Tractable reasoning and efficient query answering in description logics: The DL-Lite family[END_REF].

Flat (or non-prioritized) ontology: A DL-Lite R ontology is a knowledge base (KB) K = ⟨T, A⟩, where T is a TBox composed of axioms encoding domain knowledge, and A is an ABox composed of assertions (i.e., ground facts or data pieces). The axioms may be positive inclusions of concepts (e.g. B 1 ⊑ B 2 ) or of roles (e.g. R 1 ⊑ R 2 ), and they allow to derive new assertions from the ABox. The axioms may also be negative inclusions of concepts (e.g. B 1 ⊑ ¬ B 2 ) or of roles (e.g. R 1 ⊑ ¬ R 2 ), and they serve to exhibit the conflicts in the ABox. Definition 1. (Conflict) Let K = ⟨T, A⟩ be a KB. A conflict is a subset C ⊆ A such that ⟨T, C⟩ is inconsistent, and for all φ ∈ C, ⟨T, C \ {φ}⟩ is consistent. We denote by Cf(A) the set of all the conflicts of A, a.k.a. the conflict set.

Here, inconsistency means the absence of a model for the KB (we omit the semantics for space reasons). The conflict set Cf(A) can be computed in polynomial time in the size of the ABox in DL-Lite R ontologies [START_REF] Calvanese | Tractable reasoning and efficient query answering in description logics: The DL-Lite family[END_REF].

Totally preordered possibilistic ontology: Possibilistic logic and possibility theory [START_REF] Dubois | Possibilistic logic -an overview[END_REF][START_REF] Dubois | A crash course on generalized possibilistic logic[END_REF][START_REF] Banerjee | On the relation between possibilistic logic and modal logics of belief and knowledge[END_REF] are long-standing approaches for reasoning with uncertain information, and are closely related to ordinal conditional functions [START_REF] Spohn | The Laws of Belief -Ranking Theory and Its Philosophical Applications[END_REF] and consonant belief functions [START_REF] Fagin | Reasoning About Knowledge[END_REF][START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]. Uncertainty can be represented either in extension using possibility distributions, or in a compact way using weighted logics or graphical models. Here, we opt for a qualitative representation of the preference relation induced over the ABox, where only the plausibility ordering between the assertions matters (see [START_REF] Belabbes | Computing a possibility theory repair for partially preordered inconsistent ontologies[END_REF] for details and an overview of possibility theory).

Let K = ⟨T, A⟩ be a KB, where the axioms in T are fully certain and free of conflicts, while the elements of A may be uncertain and conflicting w.r.t. the axioms of T. Consider a total preorder ≥ over A5 , and let > be the associated strict order, and let ≡ denote the associated equivalence relation. We denote the resulting ABox by A ≥ , and it can be represented as a well-ordered partition (S 1 , . . . , S n ) such that:

• S 1 ∪ . . . ∪ S n = A. • S 1 = {φ j ∈ A : for all φ k ∈ A, φ j ≥ φ k }. • S i = {φ j ∈ A\(S 1 ∪ • • • ∪ S i-1 ) : for all φ k ∈ A\(S 1 ∪ • • • ∪ S i-1 ), φ j ≥ φ k }, for i = 2, . . . , n.
The assertions in S 1 (resp. S n ) are the most (resp. least) certain. Those in any S i (i = 1, . . . , n) are equally certain. The totally preordered possibilistic repair [START_REF] Benferhat | How to select one preferred assertional-based repair from inconsistent and prioritized DL-Lite knowledge bases?[END_REF], denoted R(A ≥ ), can be computed tractably like so:

• If K is consistent, then R(A ≥ ) = A. • Otherwise, if ⟨T, S 1 ⟩ is inconsistent, then R(A ≥ ) = ∅. • Otherwise, if for some i, 1 ≤ i < n, ⟨T, S 1 ∪ . . . ∪ S i ⟩ is consistent, and ⟨T, S 1 ∪ . . . ∪ S i+1 ⟩ is inconsistent, then R(A ≥ ) = S 1 ∪ . . . ∪ S i .
Partially preordered possibilistic ontology: Consider a partial preorder ⊵ over A6 .

Let ▷ be the associated strict order, and let ▷◁7 denote incomparability. We denote the resulting ABox by A ⊵ . The partially preordered possibilistic repair [START_REF] Belabbes | Computing a possibility theory repair for partially preordered inconsistent ontologies[END_REF], denoted π(A ⊵ ), relies on the notion of compatible bases. These are all the totally preordered ABoxes induced from A ⊵ that preserve the ordering between its assertions. A totally preordered ABox A ≥ is compatible with A ⊵ means that for all φ j ∈ A ⊵ , for all

φ k ∈ A ⊵ , if φ j ⊵ φ k , then φ j ≥ φ k . This entails that φ j ▷◁ φ k extends to three distinct cases: (i) φ j > φ k , (ii) φ k > φ j or (iii) φ j ≡ φ k . Thus, π(A ⊵ ) is obtained like so:
1. First, extend the partial preorder ⊵ into a family of total preorders, each of which is denoted by ≥ i , with 1 ≤ i ≤ m and m is the number of extensions of ⊵. Each extension ≥ i defines an ABox A ≥i that is compatible with A ⊵ .

2. Then for each compatible base A ≥i , compute its totally preordered possibilistic repair R(A ≥i ) as defined above.

Finally, intersect all the repairs

R(A ≥i ) to obtain π(A ⊵ ) = m i=1 R(A ≥i ).
The repair π(A ⊵ ) has been characterized tractably [START_REF] Belabbes | Computing a possibility theory repair for partially preordered inconsistent ontologies[END_REF], without exhibiting all the extensions ≥ i of ⊵, using the notion of π-accepted assertions.

Definition 2. (π-accepted assertion) Let K ⊵ = ⟨T, A ⊵ ⟩ be a partially preordered KB, and Cf(A ⊵ ) its conflict set. An assertion

φ j ∈ A ⊵ is π-accepted if for all C ∈ Cf(A ⊵ ), there is φ k ∈ C, φ j ̸ = φ k , s.t. φ j ▷ φ k .
The repair π(A ⊵ ) is the set of all the π-accepted assertions, and it can be computed in polynomial time in the size of A ⊵ in DL-Lite R ontologies [START_REF] Belabbes | Computing a possibility theory repair for partially preordered inconsistent ontologies[END_REF]. We introduce a toy example of a sales company's information security policy.

Example 1. We build a KB from the following mutually disjoint sets N C , N R and N I , containing respectively concept names, role names and individuals:

• N C = {Reports, HRfiles, Manager, Sales, Staff, HR}, where Reports, HRfiles are file categories and Manager, Sales, Staff and HR are employee positions.

• N R = {Edit, Sign, Read}, represent the privileges of an employee on a file.

• N I = {Bob, Alice, F17, F78}, where Bob, Alice are employees and F17, F78 represent shared files.

Consider a partially preodered KB K ⊵ = ⟨T, A ⊵ ⟩ depicted in Figure 1. 

T =          Manager ⊑ Staff Sales ⊑ Staff Manager ⊑ ¬ ∃Edit Sales ⊑ ¬ ∃Sign          A⊵ =            Manager(Bob), Sales(Bob), Reports(F78), Edit(Bob, F78), Sign(Bob, F78)            Reports ( 

The Cπ-repair Method

In the literature, the notion of positive deductive closure is a natural way for obtaining more productive repairs. The idea is to apply the positive inclusion axioms of the TBox to the ABox in order to derive new assertions. However, this typically increases the computational cost. In this section, we propose a new method, called Cπ-repair, which produces a larger partially preordered possibilistic repair, while maintaining tractability in DL-Lite R and the satisfiability of the rationality properties. Moreover, the tractability of the proposed method is also applicable in fragments that are more expressive than DL-Lite R .

Let us first recall the definition of the closure operator in the case of a flat KB [START_REF] Calvanese | Tractable reasoning and efficient query answering in description logics: The DL-Lite family[END_REF][START_REF] Benferhat | How to select one preferred assertional-based repair from inconsistent and prioritized DL-Lite knowledge bases?[END_REF], which can be applied in the partially preordered case (we assume that the individuals included in the closure are limited to those present in the ABox): Definition 3. (Closed ABox) Let K = ⟨T, A⟩ be a DL-Lite R KB. Let T p denote the set of all the positive inclusion axioms of T. The deductive closure of A w.r.t. T is defined as:

cl(A) = {B(a)|⟨T p , A⟩ ⊨ B(a) s.t. B is a concept name in T, a is an individual in A} {R(a, b)|⟨T p , A⟩ ⊨ R(a, b) s.t.
R is a role name in T, a and b are individuals in A}, where ⊨ is the standard DL-Lite R inference relation.

For partially preordered ABoxes, the deductive closure can be applied at two different levels to obtain a larger repair. The first option closes the initial ABox A ⊵ (in the spirit of the ICAR semantics for flat ABoxes [START_REF] Lembo | Inconsistency-tolerant semantics for description logics[END_REF]). The second option closes each one of the possibilistic repairs R(A ≥i ) associated with the compatible ABoxes A ≥i (in the spirit of the ICR semantics for flat ABoxes [START_REF] Bienvenu | On the complexity of consistent query answering in the presence of simple ontologies[END_REF]).

In the first option, closing the ABox A ⊵ before computing the repair may lead to undesirable conclusions. In the second option, closing the possibilistic repairs R(A ≥i ) of the compatible ABoxes A ≥i is more appropriate, such that a more productive repair for A ⊵ can be computed from the intersection of cl(R(A ≥i )). Definition 4. (Cπ-repair) Let A ⊵ be a partially preordered ABox. Let A ≥i , with 1 ≤ i ≤ m, denote all its compatible bases and let R(A ≥i ) be the associated possibilistic repair. The closure-based partially preordered possibilistic repair of A ⊵ , denoted cπ(A ⊵ ), is obtained as follows:

cπ(A ⊵ ) = m i=1 {cl(R(A ≥i )) | A ≥i is compatible with A ⊵ }.
The closure-based repair cπ(A ⊵ ) computed with this method is more productive than both the repair π(A ⊵ ) and its closure cl(π(A ⊵ )). Namely:

π(A ⊵ ) ⊆ cl(π(A ⊵ )) ⊆ cπ(A ⊵ ).
Figure 2 shows the Cπ-repair process of Definition 4.

-First, extend the partially preordered ABox A⊵ into a family of totally preordered ABoxes, denoted A ≥ 1 , . . . , A ≥m ("Extend" arc). -Then, compute the repair R(A ≥ i ) of each compatible base ("Repair" arc), and its deductive closure ("Close" arc). -Finally, intersect all the closed repairs cl(R(A ≥ i )) ("Intersect" arc) to obtain a single closure-based repair for the initial ABox cπ(A⊵).

Obviously, this method is naive and computationally expensive since enumerating all the compatible ABoxes may be exponential in the worst case.

A⊵ A≥ i A≥ 1 A≥ m E x t e n d Extend E x t e n d R(A≥ 1 ) R(A≥ i ) R(A≥ m ) Repair Repair Repair cl(R(A≥ 1 )) cl(R(A≥ i )) cl(R(A≥ m )) Close Close Close cπ(A⊵) = m i=1 cl(R(A ≥ i ))
I n t e r s e c t Intersect I n t e r s e c t Where ⊨ is the standard DL-Lite R inference relation.

Example 3. We continue Example 1. We have {Manager(Bob)} supports Staff(Bob) since ⟨T, {Manager(Bob)}⟩ ⊨ Staff(Bob), and it is minimal and consistent.

⊓ ⊔

The dominance relation is a way for extending the partial preorder defined over an ABox into a partial preorder defined over the subsets of the ABox. Such extension allows to compare supports and conflicts. Intuitively, the dominance of a partially preordered subset over another requires that each element of the former be strictly more certain than at least one element of the latter. Formally: 

Definition 6. (Dominance) Let K ⊵ = ⟨T, A ⊵ ⟩

⊓ ⊔

Before characterizing Cπ-repair in general, we first discuss the special case where the ABox is consistent w.r.t. the TBox, i.e., the conflict set is empty. Hence, Cπ-repair simply amounts to applying standard DL-Lite R inference. Formally: Lemma 1. Let K ⊵ = ⟨T, A ⊵ ⟩ be a consistent, partially preordered KB, i.e., Cf(A ⊵ ) = ∅. Consider cl(•) given by Definition 3. Let φ be an assertion. Then:

cπ(A ⊵ ) = cl(A ⊵ ). Equivalently: φ ∈ cπ(A ⊵ ) iff there is B ⊆ A ⊵ s.t. ⟨T, B⟩ ⊨ φ.
In the rest of this paper, we focus on the case where the ABox is inconsistent w.r.t. the TBox. Our goal is to use the notions of dominance and support (see Definitions 5 and 6) to characterize equivalently the assertions in the Cπ-repair. This allows to avoid enumerating all the totally preordered extensions of A ⊵ . The idea is that an assertion φ belongs to Cπ-repair if and only if for every conflict C in the ABox, there is a support B of φ that dominates C. We provide two propositions to confirm this intuitive characterization. Proposition 1. Let K ⊵ = ⟨T, A ⊵ ⟩ be an inconsistent, partially preordered KB. Let Cf(A ⊵ ) be its conflict set and let φ be an assertion. If for all C ∈ Cf(A ⊵ ), there is B ⊆ A ⊵ s.t.:

1. B supports φ (as per Definition 5), and 2. B ▷ dom C (as per Definition 6), then φ ∈ cπ(A ⊵ ).

We illustrate this result with our running example. 

⊓ ⊔

The other direction of Proposition 1, given in Proposition 2, is also true. In particular, if the characterization "for every conflict C in Cf(A ⊵ ), there is a support B of φ in A ⊵ that dominates C" is not true, then φ cannot belong to Cπ-repair. The proposition also covers the particular case of an assertion without a support, which cannot belong to Cπ-repair.

Proposition 2. Let K ⊵ = ⟨T, A ⊵ ⟩ be an inconsistent, partially preordered KB. Let Cf(A ⊵ ) be its conflict set and φ be an assertion.

If φ ∈ cπ(A ⊵ ), then for all C ∈ Cf(A ⊵ ), there is B ⊆ A ⊵ s.t.:
1. B supports φ (as per Definition 5), and 2. B ▷ dom C (as per Definition 6).

We illustrate this result with our running example.

Example 6. Let K ′ ⊵ = ⟨T ′ , A ⊵ ⟩, where the TBox T ′ is:

T ′ = {Manager ⊑ ¬ ∃Edit, Sales ⊑ ¬ ∃Sign, Sales ⊑ Staff, ∃Edit ⊑ Staff}.
Thus, a manager (resp. a sales person) does not have editing (resp. signing) rights, and a sales person and a person with editing rights are staff members. The ABox A ⊵ is the one of Example 1. Consider A ≥1 and A ≥2 two ABoxes compatible with A ⊵ , and their well-ordered partitions, A ≥1 = (S 1 ∪ S 2 ∪ S 3 ∪ S 4 ) and A ≥2 = (S 1 ∪ S 2 ∪ S ′ 3 ∪ S ′ 4 ) such that: S 1 = {Reports(F78)}, S 2 = {Manager(Bob)}, S 3 = {Sales(Bob)}, S ′ 3 = {Sales(Bob), Sign(Bob, F78)}, S 4 = {Sign(Bob, F78), Edit(Bob, F78)}, and S ′ 4 = {Edit(Bob, F78)}. Figure 4 illustrates A ⊵ , A ≥1 and A ≥2 (recall that ≡ denotes equal certainty). It is easy to check that A ≥1 and A ≥2 are compatible with A ⊵ . Their associated repairs are: R(A ≥1 ) = {Reports(F78), Manager(Bob), Sales(Bob)} and R(A ≥2 ) = {Reports(F78), Manager(Bob)}. Consider the assertion Staff(Bob) and its two supports, B 1 = {Sales(Bob)} and

B 2 = {Edit(Bob, F78)}. Notice that R(A ≥1 ) ⊨ Staff(Bob) but R(A ≥2 ) ̸ ⊨ Staff(Bob). Hence, Staff(Bob) / ∈ cπ(A ⊵ )
. Proposition 2 confirms this result, since neither B 1 nor B 2 dominates the conflict {Sales(Bob), Sign(Bob, F78)}.

⊓ ⊔ Propositions 1 and 2 provide a full characterization for membership in cπ(A ⊵ ) based on the notions of support and dominance. The next proposition states (as expected) that cπ(A ⊵ ) is consistent and more productive than π(A ⊵ ). Formally: 

⟨T, cπ(A

⊵ )⟩ is consistent. 2. π(A ⊵ ) ⊆ cπ(A ⊵ ). The converse is false (i.e., cπ(A ⊵ ) ̸ ⊂ π(A ⊵ )). Example 2 confirms that cπ(A ⊵ ) ̸ ⊂ π(A ⊵ ).
The next proposition establishes the tractability of cπ(A ⊵ ). This follows from the characterization given in Propositions 1 and 2, i.e., using the notions of dominance and support. Indeed, computing the conflicts and the supports can be achieved in polynomial time [START_REF] Bienvenu | Inconsistency-tolerant querying of description logic knowledge bases[END_REF]. Besides, it can be shown that the number of conflicts and supports is bounded by |cln(T)| * |A ⊵ | (where cln(T) denotes the negative closure of the TBox T, i.e., all the negative axioms that can be inferred from it). Moreover, in the context of OBDA, the size of the TBox is often considered negligible compared to the size of the ABox, thus the main focus is on data complexity. Lastly, it is important to note that retrieving all the conflicts beforehand is not required. Instead, checking whether an assertion is in Cπ-repair can be performed by progressively examining the conflicts (an implementation is available at https://github.com/ahmedlaouar/py reasoner). This incremental feature is particularly beneficial for evolving ABoxes. Proposition 4. Let K ⊵ = ⟨T, A ⊵ ⟩ be a partially preordered KB and φ be an assertion. Checking if φ ∈ cπ(A ⊵ ) is done in polynomial time in DL-Lite R .

Rationality properties of π-acceptance and Cπ-repair

In this section, we study the rationality properties of query-answering using the possibilistic repair method and its closure-based version.

Let K ⊵ = ⟨T, A ⊵ ⟩ be a partially preordered KB which may be inconsistent and let q be a query. Consider the KB's possibilistic repairs π(A ⊵ ) (Definition 2) and cπ(A ⊵ ) (Definition 4).

Let us start with unconditional query-answering, which amounts to checking whether the query q follows from the repair π(A ⊵ ) (resp. cπ(A ⊵ )), denoted with the symbol ⊨ π (resp. ⊨ cπ ), and ⊨ denotes standard DL-Lite R inference. Formally:

K ⊵ ⊨ π q (resp. K ⊵ ⊨ cπ q) iff ⟨T, π(A ⊵ )⟩ ⊨ q (resp. ⟨T, cπ(A ⊵ )⟩ ⊨ q) (1) 
The following result states that the unconditional inferences ⊨ π and ⊨ cπ meet the rationality properties of unconditional inconsistency-tolerant semantics defined in [START_REF] Baget | A general modifier-based framework for inconsistencytolerant query answering[END_REF]. Namely: Proposition 5. The unconditional possibilistic inference relation ⊨ s (with s ∈ {π, cπ}) satisfies the following properties:

-QCE (Query Conjunction Elimination) If K ⊵ ⊨ s q 1 ∧ q 2 then K ⊵ ⊨ s q 1 and K ⊵ ⊨ s q 2 . -QCI (Query Conjunction Introduction) If K ⊵ ⊨ s q 1 and K ⊵ ⊨ s q 2 then K ⊵ ⊨ s q 1 ∧q 2 . -Cons (Consistency) For any set of assertions B, if K ⊵ ⊨ s B then ⟨T, B⟩ is consistent. -ConsC (Consistency of Conjunction) For any set of assertions B, if for all φ ∈ B, K ⊵ ⊨ s φ, then ⟨T, B⟩ is consistent. -ConsS (Consistency of Support) For any set of assertions B, if K ⊵ ⊨ s B then there is a maximally consistent subset A ′ of A ⊵ s.t. ⟨T, A ′ ⟩ ⊨ B.
The proof of Proposition 5 is immediate since it is based on a direct application of standard DL-Lite entailment to the repairs π(A ⊵ ) (resp. cπ(A ⊵ )).

We now focus on conditional query-answering, which amounts to querying a partially preordered KB under a given set of assertions considered fully reliable and consistent with respect to the TBox, called an observation or a fully observable set and denoted by O. We write O |∼ s K⊵ q to indicate that q follows from the KB K ⊵ , under the observation O, using the inconsistency-tolerant semantics s (here s = π for the possibilistic repair and s = cπ for its closure-based version). A standard way to proceed is to first add O to the ABox with the highest priority, then apply the possibilistic repair method (and its closure-based version) using Equation 1to unconditionally answer queries from the augmented KB.

Let us denote by 

K O = ⟨T, A ⊵ O ⟩
(iii) For all φ 1 ∈ A ⊵ \ O, for all φ 2 ∈ A ⊵ \ O: φ 1 ⊵ O φ 2 iff φ 1 ⊵ φ 2 (i.e., the
relative ordering between the elements of A ⊵ that are not in O is preserved).

Next, we define the partially preordered conditional query-answering relation.

Definition 7. (Conditional inference) Let K ⊵ = ⟨T, A ⊵ ⟩ be a partially preordered KB, O an observation and q a query. Then q follows from K ⊵ and O, denoted O |∼ s K⊵ q, if K O ⊨ s q (with s ∈ {π, cπ}), where K O = ⟨T, A ⊵ O ⟩ is the augmented KB and ⊵ O its associated partial preorder (described in (i), (ii), (iii)), and ⊨ s is the unconditional query-answering relation given by Equation 1.

One can check that O |∼ s K⊵ q is non-monotonic for both semantics (the possibilistic repair and its closure-based version). The well-known System P [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF], originally defined in the context of propositional logic, has been adapted to DL-Lite R in [START_REF] Baget | Inconsistency-tolerant query answering: Rationality properties and computational complexity analysis[END_REF] (see also [START_REF] Britz | Principles of klm-style defeasible description logics[END_REF][START_REF] Everett | Explanation for klm-style defeasible reasoning[END_REF] for an adaptation to richer description logics).

The adaptation of System P's rules is given below, where

K ⊵ = ⟨T, A ⊵ ⟩ is a KB, O 1 , O 2 , O 3 are
observations, s is an inconsistency-tolerant semantics with s ∈ {π, cπ}, ⊨ and ≡ denote standard DL-Lite R inference and equivalence:

-

R (Reflexivity) O 1 |∼ s K⊵ O 1 . -LLE (Left Logical Equivalence) If ⟨T, O 1 ⟩ ≡ ⟨T, O 2 ⟩ and O 1 |∼ s K⊵ O 3 then O 2 |∼ s K⊵ O 3 . -RW (Right Weakening) If ⟨T, O 1 ⟩ ⊨ ⟨T, O 2 ⟩ and O 3 |∼ s K⊵ O 1 , then O 3 |∼ s K⊵ O 2 . -Cut If O 1 |∼ s K⊵ O 2 and O 1 ∪ O 2 |∼ s K⊵ O 3 , then O 1 |∼ s K⊵ O 3 . -CM (Cautious Monotony) If O 1 |∼ s K⊵ O 2 and O 1 |∼ s K⊵ O 3 , then O 1 ∪ O 2 |∼ s K⊵ O 3 . -And If O 1 |∼ s K⊵ O 2 and O 1 |∼ s K⊵ O 3 , then O 1 |∼ s K⊵ O 2 ∪ O 3 .
In this paper, we propose to also consider two additional properties, originally defined in propositional logic, and which go beyond cautious monotony:

-RM (Rational Monotony) If O 1 |∼ s K⊵ O 3 , then O 1 ∪ O 2 |∼ s K⊵ O 3 or ⟨T, (O 1 ∪ O 2 ∪ A ⊵ )⟩ is inconsistent. -Comp (Completeness) If O 1 |∼ s K⊵ O 3 , then either O 1 ∪ O 2 |∼ s K⊵ O 3 or ⟨T, (O 1 ∪ O 2 ∪ O 3 ∪ A ⊵ )⟩ is inconsistent.
Note that the adaptation of the last two properties that we propose uses the notion of inconsistency instead of negation in the original definition of rational monotony, and uses a disjunctive interpretation of RM8 . Here, RM states that given a new observation, we can continue to believe in the previous plausible consequences of the KB, or the new observation conflicts with the KB. The Comp rule9 is stronger than RM, and states that given a new observation O 2 , then either O 3 continues to be derived from both O 1 and O 2 , or O 2 contradicts the whole KB (plus itself). Intuitively, this means that either we continue to believe in O 3 , or we should believe in its negation (there is no room for ignoring O 3 ).

The next proposition summarizes the results of the conditional properties: Proposition 6. Let K ⊵ = ⟨T, A ⊵ ⟩ be a partially preordered KB, O be an observation and q be a query. 

Concluding discussions

Developing tractable and safe methods for inconsistency management is a challenge and is crucial for dealing with inconsistent large-scale knowledge bases. This paper follows this research line where we tackled the issue of computing a productive repair for possibilistic partially preordered ontologies. We defined the Cπ-repair method which interprets a partial preorder into a family of compatible ABoxes, computes their possibilistic repairs, closes those repairs and intersects them to yield a more productive repair.

An important result of this paper is that we characterized this method equivalently using the notions of dominance and support, which ensures the tractable calculation of the repair. This characterization can be generalized easily to more expressive description languages (it suffices to replace the DL-Lite R inference relation in the support definition by that of a more expressive language). However, tractability is guaranteed only if the computation of the conflicts and supports is performed in polynomial time and their size remains polynomial in the ABoxe's size (a detailed discussion is given below). A future work is to characterize the linear repair [START_REF] Nebel | Base revision operations and schemes: Semantics, representation and complexity[END_REF] and the Elect [START_REF] Belabbes | Handling inconsistency in partially preordered ontologies: the Elect method[END_REF] methods to partially preordered ABoxes.

We conclude this paper with a few discussion points on the rational properties as well as on the possibility of generalizing our method to richer languages or other inconsistency-tolerant semantics.

On the rational properties: The two possibilistic semantics studied in this paper satisfy the unconditional properties (Proposition 5) and the rules of System P (Proposition 6). If these propositions seem natural, even minimal, they are not always satisfied by some inconsistency-tolerant semantics. For example, the so-called majority semantics (a query is valid if it is obtained from the majority of the repairs of an inconsistent ABox) does not satisfy these minimal properties. More precisely, in [START_REF] Baget | Inconsistency-tolerant query answering: Rationality properties and computational complexity analysis[END_REF] it has been shown that majority-based inference does not satisfy Cut, Cautious Monotony, and And properties, even in DL-Lite R . Another example where System P is not satisfied is existential inference, where a query is valid if it follows from one repair. On the non-satisfaction of the rational monotony (RM) property, the result is expected if we draw a parallel with standard possibilistic propositional logic (LP) and with the properties of non-monotonic relations. Indeed, there is a representation theorem (KLM [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF]) which shows that any non-monotonic relation which satisfies System P and RM is necessarily representable by a total order on the set of interpretations of propositional logic.

On the extension to richer languages: From a semantic point of view, the definitions of Cπ-repair given in Section 3, that have been established within the framework of DL-Lite R , remain valid for richer languages (provided that the notion of deductive closure of an ABox with respect to a TBox can be defined). Indeed, the general process given in Figure 2 is not proper to DL-Lite R and easily applies to richer languages (e.g. Existential Rules). The challenge here is at the computational level, since we need first to find an equivalent characterization (like we did in this paper using support/dominance) and then show that it is tractable. For instance, in many description logics where conflicts may be composed of any number of assertions (unlike DL-Lite where conflicts consist of at most two assertions [START_REF] Calvanese | Evolution of DL-Lite knowledge bases[END_REF]), the extension of the support/dominance characterization is possible. However, even if the conflict set is computed in polynomial time, the size of this set itself can be exponential w.r.t. the size of the ABox. In this case, tractability cannot be preserved.

Furthermore, the main idea behind query-answering from inconsistent partially ordered knowledge bases is to extend the partial order into the set of its compatible total orders, then to apply a repair semantics to each one of them. The strategy we used in our approach (based on the possibilistic version of DL-Lite R ) yields a single repair for each total order. However, in the general case, using a different strategy, each total order may return multiple repairs. Hence, a query needs to follow from all the repairs for all the compatible total orders.

On the extension to non-repair based semantics: We end this paper with a brief discussion on the applicability of inconsistency-tolerant semantics that are not directly based on repairs, such as paraconsistent multi-valued description logics, on partially ordered ABoxes. Let us first specify that an advantage of our approach is that once the possibilistic repair Cπ-repair is calculated, query-answering is done in a standard way. Within multi-valued semantics, the ABox remains unchanged, but the query-answering mechanisms need to be adapted and this can potentially generate an additional computational cost. Besides, from a semantic point of view, it is possible to redefine this work with multi-valued semantics. This can be done by first selecting a multi-valued semantics of DL-Lite R (for example the 4-valued semantics given in [START_REF] Zhou | Paraconsistent query answering over dl-lite ontologies[END_REF]). The next step consists in extending it to the possibilistic framework with a totally ordered ABox. This requires an adaptation of the existing work (for flat ABox) to define preferred 4-valued canonical models. The last step consists in taking all the extensions of the total orders and defining the 4-valued canonical models of the partial ABox as the union of the preferred 4-valued canonical model of each total ABox extension. However, having an equivalent characterization (without generating all the extensions of the partial order) to the one given in this paper (Propositions 1 and 2), is not obvious to achieve.
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 1 Fig. 1: Left: The TBox T (∃ indicates the existential restriction on roles). Middle: The ABox A ⊵ . Right: The conflicts of A ⊵ (dashed lines) and the relation ⊵ (solid arrows represent the strict preference ▷, the other elements are incomparable).According to T, a manager and a sales person are staff members. A manager (resp. a sales person) does not have editing (resp. signing) rights on files. Applying Definition 2 to Figure1(right), since Reports(F78) is strictly preferred to at least one member of each conflict, we get π(A ⊵ ) = {Reports(F78)}. ⊓ ⊔

  For instance, assume a DL-Lite R KB where T = {B ⊑ E, A ⊑ ¬ B} and A ⊵ = {A(a), B(a)}. Then cl(A ⊵ ) = {A(a), B(a), E(a)} and Cf(cl(A ⊵ )) = {{A(a), B(a)}}. Assume that E(a) ▷ A(a) ▷ B(a). Using Definition 2, both E(a) and A(a) are π-accepted in cl(A ⊵ ). However, including E(a) in the repair is questionable, since it is supported by B(a) which conflicts with the π-accepted assertion A(a). Another issue with this approach concerns the reliability of the assertions that are inferred from incomparable elements. For instance, assume a DL-Lite R KB where T = {A ⊑ E, B ⊑ E} and A ⊵ = {A(b), B(b)}, where A(b) ▷◁ B(b). Then cl(A ⊵ ) = {A(b), B(b), E(b)} and all the assertions are π-accepted (since the KB is consistent). The question is which certainty level should be assigned to E(b). The intuition is to consider E(b) to be at least as certain as A(b) and B(b), but this cannot be easily defined in a general way.
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 2 Fig. 2: The Cπ-repair process
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 3 Fig. 3: Solid arrows represent the strict preference.

Example 5 .

 5 Consider again Example 2. Let us use Proposition 1 to check that the assertion Staff(Bob) is indeed in cπ(A ⊵ ). For each conflict in Cf(A ⊵ ) = {{Manager(Bob), Edit(Bob, F78)}, {Sales(Bob), Sign(Bob, F78)}}, it suffices to exhibit a dominating support for Staff(Bob), like so: -For the conflict C 1 = {Manager(Bob), Edit(Bob, F78)}, B 1 = {Sales(Bob)} supports Staff(Bob) and B 1 ▷ dom C 1 (since Sales(Bob) ▷ Edit(Bob, F78)). -For the conflict C 2 = {Sales(Bob), Sign(Bob, F78)}, B 2 = {Manager(Bob)} supports Staff(Bob) and B 2 ▷ dom C 2 (since Manager(Bob) ▷ Sign(Bob, F78)).

2 Fig. 4 :

 24 Fig. 4: Solid arrows depict strict preference. Dashed lines show the conflicts.

  be a partially preordered KB equipped with ⊵.Let B 1 ⊆ A ⊵ and B 2 ⊆ A ⊵ . We say that B 1 dominates B 2 , denoted B 1 ▷ dom B 2 , if: for all φ j ∈ B 1 , there is φ k ∈ B 2 s.t. φ j ▷ φ k .Example 4. Let B 1 , B 2 and B 3 be three subsets of A ⊵ of Example 1, as illustrated by Figure 3. B 1 ▷ dom B 2 holds because Reports(F78) ▷ Sales(Bob) and Manager(Bob) ▷ Sign(Bob, F78). B 1 ▷ dom B 3 does not hold because Manager(Bob) ⋫ Sales(Bob) and Manager(Bob) ⋫ Edit(Bob, F78).

	B1	Reports(F78)	Manager(Bob)	Reports(F78)	Manager(Bob)	B1
	B2	Sales(Bob)	Sign(Bob, F78)	Sales(Bob)	Edit(Bob, F78)	B3
		(a) B1 ▷ dom B2 holds.	(b) B1 ▷		

dom B3 does not hold.

  the augmented KB where A ⊵ O = (A ⊵ ∪ O) results from adding O to A ⊵ with the highest priority. Moreover, the partial preorder ⊵ O over (A ⊵ ∪ O) is obtained from ⊵ as follows:(i) For all φ 1 ∈ O, for all φ 2 ∈ O: φ 1 ⊵ O φ 2 and φ 2 ⊵ O φ 1 (i.e., φ 1 and φ 2 are equally reliable). (ii) For all φ 1 ∈ O, for all φ 2 ∈ A ⊵ \ O: φ 1 ▷ O φ 2 (i.e., every φ 1 ∈ O is strictly more preferred than any φ 2 ∈ A ⊵ \ O.This serves to give priority to O).

  The query-answering relations |∼ LLE, RW, Cut, CM and And. However, they fail to satisfy RM and Comp.

	π K⊵ and |∼	cπ K⊵ satisfy
	the properties R,	

Given two inconsistency-tolerant semantics s1 and s2. Then s1 is more productive than s2 if any conclusion derived with s2 can also be derived with s1.

Note the difference between the ICR semantics which deductively closes the repairs of an ABox, and the ICAR semantics which computes the repairs for a closed ABox.

A binary relation ≥ over A is a total preorder if it is reflexive and transitive, and for all φj ∈ A, for all φ k ∈ A, either φj ≥ φ k or φ k ≥ φj.

A binary relation ⊵ over A is a partial preorder if it is reflexive and transitive. Thus somes elements of A may be incomparable according to ⊵.

Consider φj and φ k in A. φj ▷◁ φ k means that neither φj ⊵ φ k nor φ k ⊵ φj holds.

In propositional logic (PL), RM is defined as: if α |∼ K γ and α |̸ ∼ K ¬β, then α ∧ β |∼ K γ, where α, β and γ are PL formulas. Our adaptation consists first in rewriting RM equivalently in a disjunctive way: if α |∼ K γ, then α∧β |∼ K γ or α |∼ K ¬β. Lastly, we replace α |∼ K ¬β with α ∧ β is inconsistent with the KB.

In PL, Comp is defined as: if α |∼ K γ, then either α ∧ β |∼ K γ or α ∧ β |∼ K ¬γ. Here, we simply replace α ∧ β |∼ K ¬γ with α ∧ β ∧ γ is inconsistent with the KB.
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