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Abstract. Inconsistency in formal ontologies is usually addressed by
computing repairs for the dataset. There are several strategies for se-
lecting the repairs used to evaluate queries, with various levels of cau-
tiousness and classes of computational complexity. This paper deals with
inconsistent partially ordered lightweight ontologies. It introduces a new
method that goes beyond the cautious strategies and that is tractable
in the possibilistic setting, where uncertainty concerns only the data
pieces. The proposed method, called Cπ-repair, proceeds as follows. It
first interprets the partially ordered dataset as a family of totally or-
dered datasets. Then, it computes a single data repair for every totally
ordered possibilistic ontology induced from the partially ordered possi-
bilistic ontology. Next, it deductively closes each of these repairs in order
to increase their productivity, without introducing conflicts or arbitrary
data pieces. Finally, it intersects the closed repairs to obtain a single
data repair for the initial ontology. The main contribution of this paper
is an equivalent characterization that does not enumerate all the total
orders, but also does not suffer from the additional computational cost
naturally incurred by the deductive closure. We establish the tractabil-
ity of our method by reformulating the problem using the notions of
dominance and support. Intuitively, the valid conclusions are supported
against conflicts by consistent inclusion-minimal subsets of the dataset
that dominate all the conflicts. We also study the rationality properties of
our method in terms of unconditional and conditional query-answering.

1 Introduction

The Ontology-Based Data Access (OBDA) paradigm relies on an ontology to
provide a unified conceptual representation of some domain of interest, in order
to improve access to data [27]. Lightweight fragments of description logics such
as the DL-Lite family [15,1] are commonly used to encode ontologies, since they
allow for efficient query-answering. The conceptual knowledge of an ontology
(i.e., the TBox) is usually assumed to be consistent. However, the dataset (i.e.,
the ABox) may potentially be inconsistent with respect to the TBox. In this case,
reasoning with an inconsistent ontology amounts to evaluating queries over one
or several of its data repairs (i.e., inclusion-maximal subsets of the ABox that
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are consistent with respect to the TBox). A variety of inconsistency-tolerant
semantics have been proposed, with different levels of cautiousness and classes
of computational complexity. These strategies select one or several repairs of an
ABox in order to evaluate queries, with tractability achieved mostly for DL-Lite
ontologies (see [3,10] for a survey).

For instance, the well-known Intersection of ABox Repair (IAR) seman-
tics [25] is a cautious strategy. Indeed, it avoids a random selection of the repairs
since it evaluates queries over the intersection of all the repairs. It discards all the
elements of the ABox that are involved in conflicts (i.e., inclusion-minimal sub-
sets of the ABox that are inconsistent with respect to the TBox). Most notably,
it is tractable in DL-Lite.

The Intersection of Closed ABox Repair (ICAR) semantics [25] applies the
IAR semantics to the deductive closure of the ABox. This allows to derive more
facts from the ABox, so ICAR is more productive 3 than IAR, while it is like-
wise tractable in DL-Lite. However, ICAR may return undesirable conclusions.
Consider a TBox with the concept inclusion axiom Whale ⊑ Mammal, and the
concept disjointness axiom Whale ⊑ ¬ Shark. Say the ABox contains two facts
Whale(Humphrey) and Shark(Humphrey), which are in conflict according to the dis-
jointness axiom. ICAR returns Mammal(Humphrey) as a valid conclusion, although
it follows from Whale(Humphrey), which is involved in a conflict.

For prioritized (or totally ordered) ontologies, computing repairs for the ABox
is a challenging task. For instance, the Preferred Repair semantics [12] (based on
the notion of preferred subtheories [13]) is coNP-complete in data complexity.
The grounded repair [11] obtained from a Dung-style argumentation framework
is tractable. However, the order relation only applies to the conflicts, so the
ABox is assumed to be locally stratified (a similar order defined in propositional
logic can be found in [8]). In contrast, three main tractable methods have been
identified in [7] for totally ordered ABoxes. The non-defeated repair iteratively
applies the IAR semantics to a cumulative sequence of strata of the ABox. The
linear-based repair iteratively accumulates a sequence of strata of the ABox, by
discarding any stratum that is inconsistent with respect to the TBox or that
contradicts the preceding sequence of strata. The possibilistic repair leverages
possibility theory, which supports inconsistent reasoning with incomplete, un-
certain, qualitative and prioritized information [20,23]. It infers all the facts that
are strictly more certain than some inconsistency degree of the ABox, computed
from the uncertainty degrees assigned to the elements of the ABox.

A few tractable methods have also been proposed for partially ordered ontolo-
gies. There is the Elect method [6] which generalizes both the IAR semantics
and the non-defeated repair. There is also the possibilistic repair method de-
fined for partially ordered ontologies [5]. Both Elect and the possibilistic repair
method extend the partial order over the ABox into a family of total orders.
This yields as many totally ordered ABoxes, for which repairs can be computed
then intersected to obtain a single repair for the initial ABox. Such methods

3 Given two inconsistency-tolerant semantics s1 and s2. Then s1 is more productive
than s2 if any conclusion derived with s2 can also be derived with s1.
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are interesting since they derive the conclusions that follow from all the totally
ordered repairs. However, their productivity is hampered by their cautiousness.

A natural way for increasing productivity is to compute the deductive closure
of the totally ordered repairs before intersecting them, in the spirit of the Inter-
section of Closed Repairs (ICR) semantics [9]. 4 However, it is well-known that
closing the repairs increases time complexity. For instance, for flat ontologies,
inference with the IAR semantics and the ICAR semantics is tractable, but it is
coNP-complete with the ICR semantics in data complexity [9,3].

In this work, we undertake the difficult task of proposing a more productive,
yet efficient method, in the case of partially ordered ontologies. We call the
new method Cπ-repair and establish its tractability in the DL-LiteR fragment,
using an interpretation of possibility theory as a strategy for computing the
repair. We characterize Cπ-repair equivalently based on the notions of dominance
and support. Intuitively, the valid conclusions are supported against conflicts by
consistent inclusion-minimal subsets of the ABox that dominate all the conflicts.

We also study the rationality properties of Cπ-repair in terms of uncondi-
tional and conditional query-answering mechanisms. In particular, we show that
the deductive closure preserves the satisfied properties of possibilistic query-
answering from the intersection of the (unclosed) possibilistic repairs.

This paper is organised as follows. Section 2 recalls the basics of DL-LiteR
and the possibilistic repair method. Section 3 defines the closure-based repair
method Cπ-repair. Section 4 gives its tractable characterization. Section 5 studies
its rationality properties, before concluding.

2 Preliminaries

We recall the underpinnings of the possibilistic repair for partially preordered
ontologies [5] that are specified in the DL-LiteR fragment [15].

Flat (or non-prioritized) ontology: A DL-LiteR ontology is a knowledge base
(KB) K = ⟨T ,A⟩, where T is a TBox composed of axioms encoding domain
knowledge, and A is an ABox composed of assertions (i.e., ground facts or data
pieces). The axioms may be positive inclusions of concepts (e.g. B1⊑B2) or of
roles (e.g. R1⊑R2), and they allow to derive new assertions from the ABox. The
axioms may also be negative inclusions of concepts (e.g. B1 ⊑¬B2) or of roles
(e.g. R1⊑¬R2), and they serve to exhibit the conflicts in the ABox.

Definition 1. (Conflict) Let K = ⟨T ,A⟩ be a KB. A conflict is a subset C ⊆ A
such that ⟨T , C⟩ is inconsistent, and for all φ ∈ C, ⟨T , C \ {φ}⟩ is consistent. We
denote by Cf(A) the set of all the conflicts of A, a.k.a. the conflict set.

Here, inconsistency means the absence of a model for the KB (we omit the se-
mantics for space reasons). The conflict set Cf(A) can be computed in polynomial
time in the size of the ABox in DL-LiteR ontologies [15].

4 Note the difference between the ICR semantics which deductively closes the repairs
of an ABox, and the ICAR semantics which computes the repairs for a closed ABox.



4 A. Laouar et al.

Totally preordered possibilistic ontology: Possibilistic logic and possibility the-
ory [18,19,4] are long-standing approaches for reasoning with uncertain informa-
tion, and are closely related to ordinal conditional functions [29] and consonant
belief functions [22,17,28]. Uncertainty can be represented either in extension
using possibility distributions, or in a compact way using weighted logics or
graphical models. Here, we opt for a qualitative representation of the preference
relation induced over the ABox, where only the plausibility ordering between
the assertions matters (see [5] for details and an overview of possibility theory).

Let K = ⟨T ,A⟩ be a KB, where the axioms in T are fully certain and free
of conflicts, while the elements of A may be uncertain and conflicting w.r.t. the
axioms of T . Consider a total preorder ≥ over A 5, and let > be the associated
strict order, and let ≡ denote the associated equivalence relation. We denote
the resulting ABox by A≥, and it can be represented as a well-ordered partition
(S1, . . . ,Sn) such that:

• S1 ∪ . . . ∪ Sn = A.
• S1 = {φj ∈ A : for all φk ∈ A, φj ≥ φk}.
• Si = {φj ∈ A\(S1 ∪ · · · ∪ Si−1) : for all φk ∈ A\(S1 ∪ · · · ∪ Si−1), φj ≥ φk},

for i = 2, . . . , n.

The assertions in S1 (resp. Sn) are the most (resp. least) certain. Those in any Si

(i = 1, . . . , n) are equally certain.
The totally preordered possibilistic repair [7], denoted R(A≥), can be com-

puted tractably like so:

• If K is consistent, then R(A≥) = A.
• Otherwise, if ⟨T ,S1⟩ is inconsistent, then R(A≥) = ∅.
• Otherwise, if for some i, 1 ≤ i < n, ⟨T ,S1 ∪ . . . ∪ Si⟩ is consistent, and
⟨T ,S1 ∪ . . . ∪ Si+1⟩ is inconsistent, then R(A≥) = S1 ∪ . . . ∪ Si.

Partially preordered possibilistic ontology: Consider a partial preorder ⊵ over A 6.
Let ▷ be the associated strict order, and let ▷◁ 7 denote incomparability. We de-
note the resulting ABox by A⊵.

The partially preordered possibilistic repair [5], denoted π(A⊵), relies on the
notion of compatible bases. These are all the totally preordered ABoxes induced
from A⊵ that preserve the ordering between its assertions. A totally preordered
ABox A≥ is compatible with A⊵ means that for all φj ∈ A⊵, for all φk ∈ A⊵,
if φj ⊵ φk, then φj ≥ φk. This entails that φj ▷◁ φk extends to three distinct
cases: (i) φj > φk, (ii) φk > φj or (iii) φj ≡ φk. Thus, π(A⊵) is obtained like so:

1. First, extend the partial preorder ⊵ into a family of total preorders, each of
which is denoted by ≥i, with 1 ≤ i ≤ m and m is the number of extensions
of ⊵. Each extension ≥i defines an ABox A≥i

that is compatible with A⊵.

5 A binary relation ≥ over A is a total preorder if it is reflexive and transitive, and
for all φj ∈ A, for all φk ∈ A, either φj ≥ φk or φk ≥ φj .

6 A binary relation ⊵ over A is a partial preorder if it is reflexive and transitive. Thus
somes elements of A may be incomparable according to ⊵.

7 Consider φj and φk in A. φj ▷◁ φk means that neither φj ⊵ φk nor φk ⊵ φj holds.
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2. Then for each compatible base A≥i
, compute its totally preordered possi-

bilistic repair R(A≥i
) as defined above.

3. Finally, intersect all the repairs R(A≥i
) to obtain π(A⊵) =

⋂m
i=1 R(A≥i

).

The repair π(A⊵) has been characterized tractably [5], without exhibiting all
the extensions ≥i of ⊵, using the notion of π-accepted assertions.

Definition 2. (π-accepted assertion) Let K⊵ = ⟨T ,A⊵⟩ be a partially preordered
KB, and Cf(A⊵) its conflict set. An assertion φj ∈ A⊵ is π-accepted if for all
C ∈ Cf(A⊵), there is φk ∈ C, φj ̸= φk, s.t. φj ▷ φk.

The repair π(A⊵) is the set of all the π-accepted assertions, and it can be com-
puted in polynomial time in the size of A⊵ in DL-LiteR ontologies [5].

We introduce a toy example of a sales company’s information security policy.

Example 1. We build a KB from the following mutually disjoint sets NC, NR

and NI, containing respectively concept names, role names and individuals:

• NC = {Reports, HRfiles, Manager, Sales, Staff, HR}, where Reports, HRfiles are
file categories and Manager, Sales, Staff and HR are employee positions.

• NR = {Edit, Sign, Read}, represent the privileges of an employee on a file.
• NI = {Bob, Alice, F17, F78}, where Bob, Alice are employees and F17, F78

represent shared files.

Consider a partially preodered KB K⊵ =⟨T ,A⊵⟩ depicted in Figure 1.

T =


Manager⊑Staff

Sales⊑Staff

Manager⊑¬∃Edit
Sales⊑¬∃Sign

 A⊵ =


Manager(Bob),
Sales(Bob),
Reports(F78),
Edit(Bob,F78),
Sign(Bob,F78)


Reports(F78)

Manager(Bob)

Sign(Bob,F78)

Sales(Bob)

Edit(Bob,F78)

Fig. 1: Left: The TBox T (∃ indicates the existential restriction on roles). Middle:
The ABox A⊵. Right: The conflicts of A⊵ (dashed lines) and the relation ⊵ (solid
arrows represent the strict preference ▷, the other elements are incomparable).

According to T , a manager and a sales person are staff members. A manager
(resp. a sales person) does not have editing (resp. signing) rights on files.
Applying Definition 2 to Figure 1 (right), since Reports(F78) is strictly preferred
to at least one member of each conflict, we get π(A⊵) = {Reports(F78)}.

⊓⊔

3 The Cπ-repair Method

In the literature, the notion of positive deductive closure is a natural way for
obtaining more productive repairs. The idea is to apply the positive inclusion
axioms of the TBox to the ABox in order to derive new assertions. However,
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this typically increases the computational cost. In this section, we propose a
new method, called Cπ-repair, which produces a larger partially preordered pos-
sibilistic repair, while maintaining tractability in DL-LiteR and the satisfiability
of the rationality properties. Moreover, the tractability of the proposed method
is also applicable in fragments that are more expressive than DL-LiteR.

Let us first recall the definition of the closure operator in the case of a flat
KB [15,7], which can be applied in the partially preordered case (we assume that
the individuals included in the closure are limited to those present in the ABox):

Definition 3. (Closed ABox) Let K = ⟨T ,A⟩ be a DL-LiteR KB. Let Tp denote
the set of all the positive inclusion axioms of T. The deductive closure of A
w.r.t. T is defined as:
cl(A) = {B(a)|⟨Tp,A⟩ ⊨ B(a) s.t. B is a concept name in T, a is an individual
in A}

⋃
{R(a, b)|⟨Tp,A⟩ ⊨ R(a, b) s.t. R is a role name in T, a and b are

individuals in A}, where ⊨ is the standard DL-LiteR inference relation.

For partially preordered ABoxes, the deductive closure can be applied at two dif-
ferent levels to obtain a larger repair. The first option closes the initial ABox A⊵

(in the spirit of the ICAR semantics for flat ABoxes [25]). The second option
closes each one of the possibilistic repairs R(A≥i

) associated with the compatible
ABoxes A≥i

(in the spirit of the ICR semantics for flat ABoxes [9]).
In the first option, closing the ABox A⊵ before computing the repair may

lead to undesirable conclusions. For instance, assume a DL-LiteR KB where T =
{B ⊑E,A⊑¬B} and A⊵ = {A(a), B(a)}. Then cl(A⊵) = {A(a), B(a), E(a)}
and Cf(cl(A⊵)) = {{A(a), B(a)}}. Assume that E(a)▷A(a)▷B(a). Using Defi-
nition 2, both E(a) and A(a) are π-accepted in cl(A⊵). However, including E(a)
in the repair is questionable, since it is supported by B(a) which conflicts with
the π-accepted assertion A(a). Another issue with this approach concerns the
reliability of the assertions that are inferred from incomparable elements. For
instance, assume a DL-LiteR KB where T = {A⊑E,B⊑E} and A⊵ = {A(b),
B(b)}, where A(b) ▷◁ B(b). Then cl(A⊵) = {A(b), B(b), E(b)} and all the asser-
tions are π-accepted (since the KB is consistent). The question is which certainty
level should be assigned to E(b). The intuition is to consider E(b) to be at least
as certain as A(b) and B(b), but this cannot be easily defined in a general way.

In the second option, closing the possibilistic repairs R(A≥i
) of the compati-

ble ABoxes A≥i
is more appropriate, such that a more productive repair for A⊵

can be computed from the intersection of cl(R(A≥i
)).

Definition 4. (Cπ-repair) Let A⊵ be a partially preordered ABox. Let A≥i
, with

1 ≤ i ≤ m, denote all its compatible bases and let R(A≥i
) be the associated pos-

sibilistic repair. The closure-based partially preordered possibilistic repair of A⊵,
denoted cπ(A⊵), is obtained as follows:

cπ(A⊵) =
⋂m

i=1{cl(R(A≥i
)) | A≥i

is compatible with A⊵}.

The closure-based repair cπ(A⊵) computed with this method is more productive
than both the repair π(A⊵) and its closure cl(π(A⊵)). Namely:

π(A⊵) ⊆ cl(π(A⊵)) ⊆ cπ(A⊵).
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Figure 2 shows the Cπ-repair process of Defini-
tion 4.
– First, extend the partially preordered ABoxA⊵

into a family of totally preordered ABoxes, de-
noted A≥1 , . . . , A≥m (“Extend” arc).

– Then, compute the repair R(A≥i) of each com-
patible base (“Repair” arc), and its deductive
closure (“Close” arc).

– Finally, intersect all the closed repairs
cl(R(A≥i)) (“Intersect” arc) to obtain a
single closure-based repair for the initial ABox
cπ(A⊵).

Obviously, this method is naive and computation-
ally expensive since enumerating all the compati-
ble ABoxes may be exponential in the worst case.

A⊵

A≥iA≥1 A≥m

Ex
ten

d

E
x
ten

d

Extend

R(A≥1) R(A≥i) R(A≥m)

R
ep

a
ir

R
ep

a
ir

R
ep

a
ir

cl(R(A≥1)) cl(R(A≥i)) cl(R(A≥m))
C
lo
se

C
lo
se

C
lo
se

cπ(A⊵) =
⋂m

i=1 cl(R(A≥i
))

Intersect

In
tersect

In
ter

se
ct

Fig. 2: The Cπ-repair process

Example 2. From Example 1, we have: π(A⊵) = cl(π(A⊵)) = {Reports(F78)}.
Figure 1 illustrates A⊵, its two conflicts and the relation ⊵. Recall that any
compatible base A≥i

preserves the ordering between the assertions of A⊵. Since
Reports(F78) is the most certain assertion in A⊵, it belongs to every R(A≥i

).
Moreover, it is easy to check that each R(A≥i

) contains either Manager(Bob)
or Sales(Bob). Using the axioms Manager ⊑ Staff and Sales ⊑ Staff of T , one
can infer Staff(Bob) from each closed repair cl(R(A≥i

)). Therefore, cπ(A⊵) =
{Reports(F78), Staff(Bob)}. So, cπ(A⊵) is larger than both π(A⊵) and cl(π(A⊵)).

⊓⊔

4 Characterization of Cπ-repair

In this section, we propose an equivalent characterization of the closure-based
repair introduced in Definition 4 without enumerating all the compatible bases.
We first introduce two notions called support and dominance. The support (or
an argument) of an assertion is an inclusion-minimal consistent subset of the
ABox that allows to derive it. Formally:

Definition 5. (Support) Let K = ⟨T ,A⟩ be a DL-LiteR KB. Let B be a concept
name and R be a role name in T. Let a and b be individuals in A. The subset B ⊆
A is a support for B(a) (resp. R(a, b)) in A if:

• ⟨T ,B⟩ is consistent, and
• ⟨T ,B⟩ ⊨ B(a), (resp. ⟨T ,B⟩ ⊨ R(a, b)), and
• for all B′ ⊊ B, ⟨T ,B′⟩ ⊭ B(a), (resp. ⟨T ,B′⟩ ⊭ R(a, b)).

Where ⊨ is the standard DL-LiteR inference relation.

Example 3. We continue Example 1. We have {Manager(Bob)} supports Staff(Bob)
since ⟨T , {Manager(Bob)}⟩ ⊨ Staff(Bob), and it is minimal and consistent.

⊓⊔
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The dominance relation is a way for extending the partial preorder defined over
an ABox into a partial preorder defined over the subsets of the ABox. Such
extension allows to compare supports and conflicts. Intuitively, the dominance
of a partially preordered subset over another requires that each element of the
former be strictly more certain than at least one element of the latter. Formally:

Definition 6. (Dominance) Let K⊵ = ⟨T ,A⊵⟩ be a partially preordered KB
equipped with ⊵. Let B1 ⊆ A⊵ and B2 ⊆ A⊵. We say that B1 dominates B2,
denoted B1 ▷

dom B2, if: for all φj ∈ B1, there is φk ∈ B2 s.t. φj ▷ φk.

Example 4. Let B1, B2 and B3 be three subsets of A⊵ of Example 1, as il-
lustrated by Figure 3. B1 ▷

dom B2 holds because Reports(F78) ▷ Sales(Bob) and
Manager(Bob)▷Sign(Bob, F78). B1 ▷

dom B3 does not hold because Manager(Bob) ⋫
Sales(Bob) and Manager(Bob) ⋫ Edit(Bob, F78).

Reports(F78) Manager(Bob)

Sales(Bob) Sign(Bob,F78)

B1

B2

(a) B1 ▷
dom B2 holds.

Reports(F78) Manager(Bob)

Sales(Bob) Edit(Bob,F78)

B1

B3

(b) B1 ▷
dom B3 does not hold.

Fig. 3: Solid arrows represent the strict preference.

⊓⊔

Before characterizing Cπ-repair in general, we first discuss the special case where
the ABox is consistent w.r.t. the TBox, i.e., the conflict set is empty. Hence,
Cπ-repair simply amounts to applying standard DL-LiteR inference. Formally:

Lemma 1. Let K⊵ = ⟨T ,A⊵⟩ be a consistent, partially preordered KB, i.e.,
Cf(A⊵) = ∅. Consider cl(·) given by Definition 3. Let φ be an assertion. Then:
cπ(A⊵) = cl(A⊵). Equivalently: φ ∈ cπ(A⊵) iff there is B ⊆ A⊵ s.t. ⟨T ,B⟩ ⊨ φ.

In the rest of this paper, we focus on the case where the ABox is inconsistent
w.r.t. the TBox. Our goal is to use the notions of dominance and support (see
Definitions 5 and 6) to characterize equivalently the assertions in the Cπ-repair.
This allows to avoid enumerating all the totally preordered extensions of A⊵.
The idea is that an assertion φ belongs to Cπ-repair if and only if for every
conflict C in the ABox, there is a support B of φ that dominates C. We provide
two propositions to confirm this intuitive characterization.

Proposition 1. Let K⊵ = ⟨T ,A⊵⟩ be an inconsistent, partially preordered KB.
Let Cf(A⊵) be its conflict set and let φ be an assertion. If for all C ∈ Cf(A⊵),
there is B ⊆ A⊵ s.t.:

1. B supports φ (as per Definition 5), and
2. B ▷dom C (as per Definition 6),

then φ ∈ cπ(A⊵).
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We illustrate this result with our running example.

Example 5. Consider again Example 2. Let us use Proposition 1 to check that
the assertion Staff(Bob) is indeed in cπ(A⊵). For each conflict in Cf(A⊵) =
{{Manager(Bob), Edit(Bob, F78)}, {Sales(Bob), Sign(Bob, F78)}}, it suffices to ex-
hibit a dominating support for Staff(Bob), like so:
– For the conflict C1 = {Manager(Bob),Edit(Bob, F78)}, B1 = {Sales(Bob)} sup-

ports Staff(Bob) and B1 ▷
dom C1 (since Sales(Bob) ▷ Edit(Bob, F78)).

– For the conflict C2 = {Sales(Bob), Sign(Bob, F78)}, B2 = {Manager(Bob)} sup-
ports Staff(Bob) and B2 ▷

dom C2 (since Manager(Bob) ▷ Sign(Bob, F78)).
⊓⊔

The other direction of Proposition 1, given in Proposition 2, is also true. In
particular, if the characterization “for every conflict C in Cf(A⊵), there is a
support B of φ in A⊵ that dominates C” is not true, then φ cannot belong to
Cπ-repair. The proposition also covers the particular case of an assertion without
a support, which cannot belong to Cπ-repair.

Proposition 2. Let K⊵ = ⟨T ,A⊵⟩ be an inconsistent, partially preordered KB.
Let Cf(A⊵) be its conflict set and φ be an assertion.
If φ ∈ cπ(A⊵), then for all C ∈ Cf(A⊵), there is B ⊆ A⊵ s.t.:

1. B supports φ (as per Definition 5), and
2. B ▷dom C (as per Definition 6).

We illustrate this result with our running example.

Example 6. Let K′
⊵ = ⟨T ′,A⊵⟩, where the TBox T ′ is:

T ′ = {Manager⊑¬∃Edit, Sales⊑¬∃Sign, Sales⊑Staff, ∃Edit⊑Staff}.
Thus, a manager (resp. a sales person) does not have editing (resp. signing)
rights, and a sales person and a person with editing rights are staff members.
The ABox A⊵ is the one of Example 1.
Consider A≥1 and A≥2 two ABoxes compatible with A⊵, and their well-ordered
partitions, A≥1

= (S1 ∪ S2 ∪ S3 ∪ S4) and A≥2
= (S1 ∪ S2 ∪ S ′

3 ∪ S ′
4) such that:

S1 = {Reports(F78)}, S2 = {Manager(Bob)}, S3 = {Sales(Bob)}, S ′
3 = {Sales(Bob),

Sign(Bob, F78)}, S4 = {Sign(Bob, F78), Edit(Bob, F78)}, and S ′
4 = {Edit(Bob, F78)}.

Figure 4 illustrates A⊵, A≥1
and A≥2

(recall that ≡ denotes equal certainty).
It is easy to check that A≥1 and A≥2 are compatible with A⊵. Their associated
repairs are: R(A≥1) = {Reports(F78), Manager(Bob), Sales(Bob)} and R(A≥2) =
{Reports(F78), Manager(Bob)}.
Consider the assertion Staff(Bob) and its two supports, B1 = {Sales(Bob)} and
B2 = {Edit(Bob, F78)}. Notice that R(A≥1

) ⊨ Staff(Bob) but R(A≥2
) ̸⊨ Staff(Bob).

Hence, Staff(Bob) /∈ cπ(A⊵). Proposition 2 confirms this result, since neither B1

nor B2 dominates the conflict {Sales(Bob), Sign(Bob, F78)}.
⊓⊔

Propositions 1 and 2 provide a full characterization for membership in cπ(A⊵)
based on the notions of support and dominance. The next proposition states (as
expected) that cπ(A⊵) is consistent and more productive than π(A⊵). Formally:
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Reports(F78)

Manager(Bob)

Sign(Bob,F78)

Sales(Bob)

Edit(Bob,F78)

(a) A⊵

Reports(F78)

Manager(Bob)

Sales(Bob)

Sign(Bob,F78) ≡ Edit(Bob,F78)

(b) A≥1

Reports(F78)

Manager(Bob)

Sales(Bob) ≡ Sign(Bob,F78)

Edit(Bob,F78)

(c) A≥2

Fig. 4: Solid arrows depict strict preference. Dashed lines show the conflicts.

Proposition 3.

1. ⟨T , cπ(A⊵)⟩ is consistent.
2. π(A⊵) ⊆ cπ(A⊵). The converse is false (i.e., cπ(A⊵) ̸⊂ π(A⊵)).

Example 2 confirms that cπ(A⊵) ̸⊂ π(A⊵).

The next proposition establishes the tractability of cπ(A⊵). This follows from
the characterization given in Propositions 1 and 2, i.e., using the notions of
dominance and support. Indeed, computing the conflicts and the supports can
be achieved in polynomial time [10]. Besides, it can be shown that the number
of conflicts and supports is bounded by |cln(T)| ∗ |A⊵| (where cln(T) denotes
the negative closure of the TBox T , i.e., all the negative axioms that can be
inferred from it). Moreover, in the context of OBDA, the size of the TBox is
often considered negligible compared to the size of the ABox, thus the main
focus is on data complexity. Lastly, it is important to note that retrieving all
the conflicts beforehand is not required. Instead, checking whether an assertion
is in Cπ-repair can be performed by progressively examining the conflicts (an
implementation is available at https://github.com/ahmedlaouar/py reasoner).
This incremental feature is particularly beneficial for evolving ABoxes.

Proposition 4. Let K⊵ = ⟨T ,A⊵⟩ be a partially preordered KB and φ be an
assertion. Checking if φ ∈ cπ(A⊵) is done in polynomial time in DL-LiteR.

5 Rationality properties of π-acceptance and Cπ-repair

In this section, we study the rationality properties of query-answering using the
possibilistic repair method and its closure-based version.

Let K⊵ = ⟨T ,A⊵⟩ be a partially preordered KB which may be inconsistent
and let q be a query. Consider the KB’s possibilistic repairs π(A⊵) (Definition 2)
and cπ(A⊵) (Definition 4).

Let us start with unconditional query-answering, which amounts to checking
whether the query q follows from the repair π(A⊵) (resp. cπ(A⊵)), denoted with
the symbol ⊨π (resp. ⊨cπ), and ⊨ denotes standard DL-LiteR inference. Formally:

K⊵ ⊨π q (resp. K⊵ ⊨cπ q) iff ⟨T , π(A⊵)⟩ ⊨ q (resp. ⟨T , cπ(A⊵)⟩ ⊨ q) (1)

https://github.com/ahmedlaouar/py_reasoner
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The following result states that the unconditional inferences ⊨π and ⊨cπ

meet the rationality properties of unconditional inconsistency-tolerant semantics
defined in [2]. Namely:

Proposition 5. The unconditional possibilistic inference relation ⊨s (with s ∈
{π, cπ}) satisfies the following properties:

– QCE (Query Conjunction Elimination) If K⊵ ⊨s q1∧ q2 then K⊵ ⊨s q1 and
K⊵⊨s q2.

– QCI (Query Conjunction Introduction) If K⊵ ⊨s q1 and K⊵ ⊨s q2 then K⊵ ⊨s

q1∧q2.
– Cons (Consistency) For any set of assertions B, if K⊵ ⊨s B then ⟨T ,B⟩ is

consistent.
– ConsC (Consistency of Conjunction) For any set of assertions B, if for all

φ ∈ B, K⊵ ⊨s φ, then ⟨T ,B⟩ is consistent.
– ConsS (Consistency of Support) For any set of assertions B, if K⊵ ⊨s B then

there is a maximally consistent subset A′ of A⊵ s.t. ⟨T ,A′⟩ ⊨ B.

The proof of Proposition 5 is immediate since it is based on a direct application
of standard DL-Lite entailment to the repairs π(A⊵) (resp. cπ(A⊵)).

We now focus on conditional query-answering, which amounts to querying a
partially preordered KB under a given set of assertions considered fully reliable
and consistent with respect to the TBox, called an observation or a fully observ-
able set and denoted by O. We write O |∼s

K⊵
q to indicate that q follows from the

KB K⊵, under the observation O, using the inconsistency-tolerant semantics s
(here s = π for the possibilistic repair and s = cπ for its closure-based version).
A standard way to proceed is to first add O to the ABox with the highest pri-
ority, then apply the possibilistic repair method (and its closure-based version)
using Equation 1 to unconditionally answer queries from the augmented KB.

Let us denote by KO = ⟨T ,A⊵O ⟩ the augmented KB where A⊵O = (A⊵ ∪O)
results from adding O to A⊵ with the highest priority. Moreover, the partial
preorder ⊵O over (A⊵ ∪ O) is obtained from ⊵ as follows:

(i) For all φ1 ∈ O, for all φ2 ∈ O: φ1 ⊵O φ2 and φ2 ⊵O φ1 (i.e., φ1 and φ2 are
equally reliable).

(ii) For all φ1 ∈ O, for all φ2 ∈ A⊵ \ O: φ1 ▷O φ2 (i.e., every φ1 ∈ O is strictly
more preferred than any φ2 ∈ A⊵ \ O. This serves to give priority to O).

(iii) For all φ1 ∈ A⊵ \ O, for all φ2 ∈ A⊵ \ O: φ1 ⊵O φ2 iff φ1 ⊵ φ2 (i.e., the
relative ordering between the elements of A⊵ that are not in O is preserved).

Next, we define the partially preordered conditional query-answering relation.

Definition 7. (Conditional inference) Let K⊵ = ⟨T ,A⊵⟩ be a partially pre-
ordered KB, O an observation and q a query. Then q follows from K⊵ and O,
denoted O |∼s

K⊵
q, if KO ⊨s q (with s ∈ {π, cπ}), where KO = ⟨T ,A⊵O ⟩ is the

augmented KB and ⊵O its associated partial preorder (described in (i), (ii),
(iii)), and ⊨s is the unconditional query-answering relation given by Equation 1.
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One can check that O |∼s
K⊵

q is non-monotonic for both semantics (the possibilis-

tic repair and its closure-based version). The well-known System P [24], originally
defined in the context of propositional logic, has been adapted to DL-LiteR in [3]
(see also [14,21] for an adaptation to richer description logics).

The adaptation of System P’s rules is given below, where K⊵ = ⟨T ,A⊵⟩ is a
KB, O1, O2, O3 are observations, s is an inconsistency-tolerant semantics with
s ∈ {π, cπ}, ⊨ and ≡ denote standard DL-LiteR inference and equivalence:

– R (Reflexivity) O1 |∼s
K⊵

O1.

– LLE (Left Logical Equivalence) If ⟨T ,O1⟩ ≡ ⟨T ,O2⟩ and O1|∼s
K⊵

O3 then

O2|∼s
K⊵

O3.

– RW (Right Weakening) If ⟨T ,O1⟩ ⊨ ⟨T ,O2⟩ and O3 |∼s
K⊵

O1, then O3 |∼s
K⊵

O2.

– Cut If O1 |∼s
K⊵

O2 and O1 ∪ O2 |∼s
K⊵

O3, then O1 |∼s
K⊵

O3.

– CM (Cautious Monotony) If O1|∼s
K⊵

O2 and O1|∼s
K⊵

O3, then O1∪O2|∼s
K⊵

O3.

– And If O1 |∼s
K⊵

O2 and O1 |∼s
K⊵

O3, then O1 |∼s
K⊵

O2 ∪ O3.

In this paper, we propose to also consider two additional properties, originally
defined in propositional logic, and which go beyond cautious monotony:

– RM (Rational Monotony) If O1 |∼s
K⊵

O3, then O1 ∪ O2 |∼s
K⊵

O3 or ⟨T , (O1 ∪
O2 ∪ A⊵)⟩ is inconsistent.

– Comp (Completeness) If O1 |∼s
K⊵

O3, then either O1∪O2 |∼s
K⊵

O3 or ⟨T , (O1∪
O2 ∪ O3 ∪ A⊵)⟩ is inconsistent.

Note that the adaptation of the last two properties that we propose uses the
notion of inconsistency instead of negation in the original definition of rational
monotony, and uses a disjunctive interpretation of RM 8. Here, RM states that
given a new observation, we can continue to believe in the previous plausible con-
sequences of the KB, or the new observation conflicts with the KB. The Comp
rule 9 is stronger than RM, and states that given a new observation O2, then
either O3 continues to be derived from both O1 and O2, or O2 contradicts the
whole KB (plus itself). Intuitively, this means that either we continue to believe
in O3, or we should believe in its negation (there is no room for ignoring O3).

The next proposition summarizes the results of the conditional properties:

Proposition 6. Let K⊵ = ⟨T ,A⊵⟩ be a partially preordered KB, O be an obser-
vation and q be a query. The query-answering relations |∼π

K⊵
and |∼cπ

K⊵
satisfy

the properties R, LLE, RW, Cut, CM and And. However, they fail to satisfy
RM and Comp.

8 In propositional logic (PL), RM is defined as: if α |∼K γ and α |̸∼K ¬β, then α ∧
β |∼K γ, where α, β and γ are PL formulas. Our adaptation consists first in rewriting
RM equivalently in a disjunctive way: if α |∼K γ, then α∧β |∼K γ or α |∼K ¬β. Lastly,
we replace α |∼K ¬β with α ∧ β is inconsistent with the KB.

9 In PL, Comp is defined as: if α |∼K γ, then either α∧ β |∼K γ or α∧ β |∼K ¬γ. Here,
we simply replace α ∧ β |∼K ¬γ with α ∧ β ∧ γ is inconsistent with the KB.
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6 Concluding discussions

Developing tractable and safe methods for inconsistency management is a chal-
lenge and is crucial for dealing with inconsistent large-scale knowledge bases.
This paper follows this research line where we tackled the issue of computing a
productive repair for possibilistic partially preordered ontologies. We defined the
Cπ-repair method which interprets a partial preorder into a family of compatible
ABoxes, computes their possibilistic repairs, closes those repairs and intersects
them to yield a more productive repair.

An important result of this paper is that we characterized this method equiv-
alently using the notions of dominance and support, which ensures the tractable
calculation of the repair. This characterization can be generalized easily to more
expressive description languages (it suffices to replace the DL-LiteR inference re-
lation in the support definition by that of a more expressive language). However,
tractability is guaranteed only if the computation of the conflicts and supports is
performed in polynomial time and their size remains polynomial in the ABoxe’s
size (a detailed discussion is given below). A future work is to characterize the
linear repair [26] and the Elect [6] methods to partially preordered ABoxes.

We conclude this paper with a few discussion points on the rational properties
as well as on the possibility of generalizing our method to richer languages or
other inconsistency-tolerant semantics.

On the rational properties: The two possibilistic semantics studied in
this paper satisfy the unconditional properties (Proposition 5) and the rules of
System P (Proposition 6). If these propositions seem natural, even minimal, they
are not always satisfied by some inconsistency-tolerant semantics. For example,
the so-called majority semantics (a query is valid if it is obtained from the
majority of the repairs of an inconsistent ABox) does not satisfy these minimal
properties. More precisely, in [3] it has been shown that majority-based inference
does not satisfy Cut, Cautious Monotony, and And properties, even in DL-LiteR.
Another example where System P is not satisfied is existential inference, where
a query is valid if it follows from one repair.
On the non-satisfaction of the rational monotony (RM) property, the result is
expected if we draw a parallel with standard possibilistic propositional logic
(LP) and with the properties of non-monotonic relations. Indeed, there is a
representation theorem (KLM [24]) which shows that any non-monotonic relation
which satisfies System P and RM is necessarily representable by a total order
on the set of interpretations of propositional logic.

On the extension to richer languages: From a semantic point of view,
the definitions of Cπ-repair given in Section 3, that have been established within
the framework of DL-LiteR, remain valid for richer languages (provided that
the notion of deductive closure of an ABox with respect to a TBox can be
defined). Indeed, the general process given in Figure 2 is not proper to DL-LiteR
and easily applies to richer languages (e.g. Existential Rules). The challenge
here is at the computational level, since we need first to find an equivalent
characterization (like we did in this paper using support/dominance) and then
show that it is tractable. For instance, in many description logics where conflicts
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may be composed of any number of assertions (unlike DL-Lite where conflicts
consist of at most two assertions [16]), the extension of the support/dominance
characterization is possible. However, even if the conflict set is computed in
polynomial time, the size of this set itself can be exponential w.r.t. the size of
the ABox. In this case, tractability cannot be preserved.

Furthermore, the main idea behind query-answering from inconsistent par-
tially ordered knowledge bases is to extend the partial order into the set of its
compatible total orders, then to apply a repair semantics to each one of them.
The strategy we used in our approach (based on the possibilistic version of DL-
LiteR) yields a single repair for each total order. However, in the general case,
using a different strategy, each total order may return multiple repairs. Hence,
a query needs to follow from all the repairs for all the compatible total orders.

On the extension to non-repair based semantics: We end this paper
with a brief discussion on the applicability of inconsistency-tolerant semantics
that are not directly based on repairs, such as paraconsistent multi-valued de-
scription logics, on partially ordered ABoxes. Let us first specify that an ad-
vantage of our approach is that once the possibilistic repair Cπ-repair is calcu-
lated, query-answering is done in a standard way. Within multi-valued semantics,
the ABox remains unchanged, but the query-answering mechanisms need to be
adapted and this can potentially generate an additional computational cost. Be-
sides, from a semantic point of view, it is possible to redefine this work with
multi-valued semantics. This can be done by first selecting a multi-valued se-
mantics of DL-LiteR (for example the 4-valued semantics given in [30]). The
next step consists in extending it to the possibilistic framework with a totally
ordered ABox. This requires an adaptation of the existing work (for flat ABox)
to define preferred 4-valued canonical models. The last step consists in taking all
the extensions of the total orders and defining the 4-valued canonical models of
the partial ABox as the union of the preferred 4-valued canonical model of each
total ABox extension. However, having an equivalent characterization (without
generating all the extensions of the partial order) to the one given in this paper
(Propositions 1 and 2), is not obvious to achieve.
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