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Abstract. We present a novel semantics for the language of multi-agent
only believing exploiting belief bases, and show how to use it for auto-
matically checking formulas of this language and of its dynamic extension
with private belief expansion operators. We provide a PSPACE algorithm
for model checking relying on a reduction to QBF and alternative dedi-
cated algorithm relying on the exploration of the state space. We present
an implementation of the QBF-based algorithm and some experimental
results on computation time in a concrete example.

1 Introduction

The idea of using belief bases for building a semantics for epistemic logic was
initially proposed by Lorini [17, 19]. In [18] it was shown that such a semantics
allows to represent the concept of universal epistemic model which is tightly con-
nected with the concept of universal type space studied by game theorists [20].
A qualitative version of the universal type space with no probabilities involved is
defined by Fagin et al. [6] (see also [7]). Broadly speaking, a universal epistemic
model for a given situation is the most general model which is compatible with
that situation. It is the model which only contains information about the situa-
tion and makes no further assumption. From an epistemic point view, it can be
seen as the model with maximal ignorance with respect to the description of the
situation at stake.

Such a universal epistemic model has been shown to be crucial for defining a
proper semantics for the concept of multi-agent only knowing (or believing) [14,
12], as a generalization of the concept of single-agent only knowing (or believing)
[15].4 However, the construction of this semantics is far from being straightfor-
ward. Halpern & Lakemeyer [13] use the proof-theoretic notion of canonical
model for defining it. The limitation of the canonical model is its being infi-
nite thereby not being exploitable in practice. In a more recent work, Belle &
Lakemeyer [2] provided an inductive proof-independent definition of the seman-
tics for multi-agent only knowing which departs from the standard semantics of
multi-agent epistemic logic based on multi-relational Kripke structures. Finally,
4 As usual, the difference between knowledge and belief lies in the fact that the former

is always correct while the latter can be incorrect.
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Aucher & Belle [1] have shown how to interpret the language of multi-agent only
knowing on standard Kripke structures. Although being independent from the
proof theory, these last two accounts are fairly non-standard or quite involved.
They rely either on an inductive definition (Belle & Lakemeyer) or on a com-
plex syntactic representation up to certain modal depth (Aucher & Belle) of
the multi-agent epistemic structure used for interpreting the multi-agent only
knowing language.

In this paper, we concentrate on the logic of multi-agent only believing based
on the logic K for beliefs. We show how to use the belief base semantics and
its construction of the universal model to automatically check formulas of the
corresponding language. The novel contribution of the paper is twofold.

– Although the idea of using belief bases as a semantics for epistemic logic has
been proposed in previous work, this is the first attempt to use them in the
context of the logic of multi-agent only believing and of its extension with
private belief expansion operators.

– Moreover, we are the first to provide a model checking algorithm for the logic
of multi-agent only believing, to implement it and to test it experimentally
on a concrete example. The belief base semantics helped us to accomplish
this task given its compactness and manageability.

The paper is organized as follows. In Section 2, we first recall the belief base
semantics introduced in our previous work [17, 19]. We show how to interpret the
language of multi-agent only believing and how to define the universal model in
it. In Section 3, we introduce an example to illustrate the framework. In Section 4,
we move to model checking formulated in the belief base semantics. We provide
a PSPACE algorithm for model checking relying on a reduction to QBF and
an alternative dedicated algorithm relying on the exploration of the state space.
In Section 5, we present an implementation of the QBF-based algorithm and
some experimental results on computation time in the example. In Section 6 we
propose an extension of the setting with private belief expansion operators, and
demonstrate that the model checking problem remains in PSPACE. Section 7
concludes the paper.

2 Language and semantics

The multi-agent epistemic language introduced in [19] has two basic epistemic
modalities: one for explicit belief, and another one for implicit belief. An agent’s
explicit belief corresponds to a piece of information in the agent’s belief base.
An agent’s implicit belief corresponds to a piece of information that is derivable
from the agent’s explicit beliefs. In other words, if an agent can derive φ from
its explicit beliefs, it implicitly believes at least that φ is true. We consider the
extension of this epistemic language by complementary modalities for implicitly
believing at most. The at least and at most modalities can be combined to
represent the concept of only believing.
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The semantics over which the language is interpreted exploits belief bases.
Unlike the standard multi-relational Kripke semantics for epistemic logic in
which the agents’ epistemic accessibility relations over possible worlds are given
as primitive, in this semantics they are computed from the agents’ belief bases.
Specifically, in this semantics it is assumed that at state S an agent considers a
state S′ possible (or state S′ is epistemically accessible to the agent at state S)
if and only if S′ satisfies all formulas that are included in the agent’s belief base
at S. This idea of computing the agents’ accessibility relations from the state
description is shared with the semantics of epistemic logic based on interpreted
systems [8, 16]. However, there is an important difference. While the interpreted
system semantics relies on the abstract notion of an agent’s local state, in the
belief base semantics an agent’s local state is identified with its concrete belief
base.

2.1 Semantics

Assume a countably infinite set of atomic propositions Atm = {p, q, . . .} and a
finite set of agents Agt = {1, . . . , n}. We define the language L0 for explicit belief
by the following grammar in Backus-Naur Form (BNF):

L0
def
= α ::= p | ¬α | α ∧ α | △iα,

where p ranges over Atm and i ranges over Agt. L0 is the language used to
represent explicit beliefs. The formula △iα reads “agent i has the explicit belief
that α”. In our semantics, a state is not a primitive notion but it is decom-
posed into different elements: one belief base per agent and an interpretation of
propositional atoms.

Definition 1 (State). A state is a tuple S =
(
(Bi)i∈Agt,V

)
where Bi ⊆ L0

is agent i’s belief base, and V ⊆ Atm is the actual environment. The set of all
states is noted S.

The following definition specifies truth conditions for formulas in L0.

Definition 2 (Satisfaction relation). Let S =
(
(Bi)i∈Agt ,V

)
∈ S. Then,

S |= p⇐⇒ p ∈ V ,

S |= ¬α⇐⇒ S ̸|= α,

S |= α1 ∧ α2 ⇐⇒ S |= α1 and S |= α2,

S |= △iα⇐⇒ α ∈ Bi.

Observe in particular the set-theoretic interpretation of the explicit belief
operators in the previous definition: agent i has the explicit belief that α if and
only if α is included in its belief base.

The following definition introduces the agents’ epistemic relations. They are
computed from the agents’ belief bases.
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Definition 3 (Epistemic relation). Let i ∈ Agt . Then, Ri is the binary re-
lation on S such that, for all S =

(
(Bi)i∈Agt ,V

)
, S′ =

(
(B ′

i)i∈Agt ,V
′) ∈ S:

SRiS
′ if and only if ∀α ∈ Bi : S

′ |= α.

SRiS
′ means that S′ is an epistemic alternative for agent i at S, that is to

say, S′ is a state that at S agent i considers possible. The idea of the previous
definition is that S′ is an epistemic alternative for agent i at S if and only if, S′

satisfies all facts that agent i explicitly believes at S.
The following definition introduces the concept of model, namely a state sup-

plemented with a set of states, called context. The latter includes all states that
are compatible with the agents’ common ground, i.e., the body of information
that the agents commonly believe to be the case [21].

Definition 4 (Model). A model is a pair (S,Cxt) with S ∈ S and Cxt ⊆ S.
The class of models is noted M.

Note that in a model (S,Cxt), the state S is not necessarily an element of the
context Cxt due to the fact that we model belief instead of knowledge. Therefore,
the agents’ common ground represented by the context Cxt may be incorrect and
not include the actual state. If we modeled knowledge instead of belief, we would
have to suppose that S ∈ Cxt .

Let Γ = (Γi)i∈Agt where, for every i ∈ Agt , Γi represents agent i’s vocabulary.
A Γ -universal model is a model containing all states at which an agent i’s explicit
beliefs are built from its vocabulary Γi. In other words, an agent’s vocabulary
plays a role analogous to that of the notion of awareness in the formal semantics
of awareness [9]. The notion of Γ -universal model is defined as follows.

Definition 5 (Universal model). The model (S,Cxt) in M is said to be Γ -
universal if S ∈ Cxt = SΓ with:

SΓ =
{(

(B ′
i)i∈Agt,V

′) ∈ S | ∀i ∈ Agt,B ′
i ⊆ Γi

}
.

The class of Γ -universal models is noted Muniv (Γ ).

Γ = (Γi)i∈Agt is also called agent vocabulary profile. Clearly, when Γ = Ln
0 , we

have SΓ = S. A model (S,S) in Muniv (Ln
0 ) is a model with maximal ignorance:

it only contains the information provided by the actual state S. For simplicity,
we write Muniv instead of Muniv (Ln

0 ).

2.2 Language

In this section, we introduce a language for implicitly believing at most and
implicitly believing at least on the top of the language L0 defined above. It is
noted L and defined by:

L def
= φ ::= α | ¬φ | φ ∧ φ | □iφ | □∁

iφ,
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where α ranges over L0 and i ranges over Agt . The other Boolean constructions
⊤, ⊥, ∨, →, ⊕, and ↔ are defined from α, ¬ and ∧ in the standard way. The
formula □iφ is read “agent i at least implicitly believes that φ”, while □∁

iφ is read
“agent i at most implicitly believes that ¬φ”. Alternative readings of formulas
□iφ and □∁

iφ are, respectively, “φ is true at all states that agent i considers
possible” and “φ is true at all states that agent i does not consider possible”. The
latter is in line with the reading of the normal modality and the corresponding
“window” modality in the context of boolean modal logics [10]. The duals of the
operators □i and □∁

i are defined in the usual way, as follows: ♢iφ
def
= ¬□i¬φ

and ♢∁
iφ

def
= ¬□∁

i¬φ. Formulas in the language L are interpreted relative to a
model (S,Cxt). (Boolean cases are omitted since they are defined as usual.)

Definition 6 (Satisfaction relation (cont.)). Let (S,Cxt) ∈ M. Then:

(S,Cxt) |= α⇐⇒ S |= α,

(S,Cxt) |= □iφ⇐⇒ ∀S′ ∈ Cxt : if SRiS
′then (S′,Cxt) |= φ,

(S,Cxt) |= □∁
iφ⇐⇒ ∀S′ ∈ Cxt : if SR∁

iS
′then (S′,Cxt) |= φ,

with R∁
i = (S× S) \ Ri.

Note that SR∁
iS

′ just means that at state S agent i does not consider state S′

possible. Moreover, interpretations of the two modalities □i and □∁
i are restricted

to the actual context Cxt . The only believing modality (□o
i ) and the universal

modality (U) are defined as follows:

□o
iφ

def
= □iφ ∧□∁

i¬φ.

Notions of satisfiability and validity of L-formulas for the class of models M
are defined in the usual way: φ is satisfiable if there exists (S,Cxt) ∈ M such
that (S,Cxt) |= φ, φ is valid if ¬φ is not satisfiable.

In [18, Theorem 26], it is shown that when restricting to the fragment of the
language L where formulas containing explicit beliefs are disallowed (i.e., in the
definition of L α is replaced by p), the set of satisfiable formulas relative to the
class Muniv is the same as the set of satisfiable formulas relative to the class of
qualitative universal type spaces, as defined in [6]. The latter is similar to the
class of k-structures, as defined by Belle & Lakemeyer [2].5 In Section 4, we will
show that Γ -universal models of Definition 5 provide an adequate and compact
semantics for model checking formulas of the language L. But, before delving
into model checking, we illustrate our language with the help of an example.

3 Example

We give two variants of the example, the first focused on first-order beliefs and
the second focused on second-order beliefs.
5 Although it has not been formally proven, we believe that Belle & Lakemeyer’s

semantics and Fagin et al.’s semantics are nothing but different formulations of the
same class of universal epistemic structures.
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Example 1. Agents in Agt are members of a selection committee for an asso-
ciate professor position. They have to choose which candidates to admit to
the second round of selection consisting in an interview. Committee members
and candidates work in the same scientific community. Therefore, it is possible
that they co-authored some papers in the past. Assume there are m candidates
Cand = {c1, . . . , cm}. In order to formalize the example we use atomic propo-
sitions of the form vote(i,c), with i ∈ Agt and c ∈ Cand , standing for “agent i
votes for candidate c”. The first two rules of the game state that each committee
member must vote for exactly one candidate (at least one candidate and no more
than one):

α1
def
=

∧
i∈Agt

∨
c∈Cand

vote(i,c),

α2
def
=

∧
i∈Agt

∧
c,c′∈Cand,c ̸=c′

(
vote(i,c) → ¬vote(i,c′)

)
.

The third rule states that a member of the committee cannot vote for a candidate
with whom she/he co-authored an article in the past:

α3
def
=

∧
i∈Agt

∧
c∈f(i)

¬vote(i,c),

where f : Agt −→ 2Cand is a function mapping each member of the committee
to her/his co-authors. A candidate c is admitted to the interview if and only if
at least one member of the committee has voted for her/him. This is expressed
by the following abbreviation:

adm(c)
def
=

∨
i∈Agt

vote(i,c).

Let us consider the variant of the example in which the evaluation committee
and the set of candidates have the same cardinality and a committee member
co-authored an article with only her/his matching candidate in the linear order.
That is, we suppose:

|Agt | = |Cand | > 2, and
∀i ∈ Agt , f(i) = {ci}.

Furthermore, we suppose that (i) each committee member except the last one
votes for her/his next candidate in the linear order, while the last committee
member n votes for her/his previous candidate n−1; (ii) the vote by a committee
member is secret (i.e., a committee member only has epistemic access to her/his
vote), (iii) all committee members know the results of the selection, namely,
which candidates are admitted to the interview and which are not. The three
hypotheses (i), (ii) and (iii) are fully expressed by the state S0 =

(
(Bi)i∈Agt ,V

)
such that, for every 1 ≤ i < n,

Bi =
{
vote(i,ci+1),¬adm(c1), adm(c2), . . . , adm(cn), α1, α2, α3

}
,
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and moreover,

Bn =
{
vote(n,cn−1),¬adm(c1), adm(c2), . . . , adm(cn), α1, α2, α3

}
,

V =
{
vote(1,c2), . . . , vote(n− 1,cn), vote(n,cn−1)

}
.

The following holds when |Agt | = |Cand | = 3:

(S0,SΓ ) |= φ0,

with

φ0
def
= □o

1ψ1 ∧
∧

i∈{2,3}

□o
iψ2,

ψ1
def
= vote(1,c2) ∧ ¬vote(1,c1) ∧ ¬vote(1,c3)

∧ vote(2,c3) ∧ ¬vote(2,c1) ∧ ¬vote(2,c2)
∧ vote(3,c2) ∧ ¬vote(3,c1) ∧ ¬vote(3,c3),

ψ2
def
= ¬vote(1,c1) ∧ (vote(1,c2)⊕ vote(1,c3))

∧ vote(2,c3) ∧ ¬vote(2,c1) ∧ ¬vote(2,c2)
∧ vote(3,c2) ∧ ¬vote(3,c1) ∧ ¬vote(3,c3).

and Γi = Bi ∪ ¬Bi for every i ∈ Agt , (where ¬Bi is the set of negations of the
formulas in Bi). (S0,SΓ ) so defined is nothing but a Γ -universal model in which
the agents’ vocabularies include all and only those formulas in their actual belief
bases and their negations.

This means that, in the three-agent case, agent 1 only knows for whom an
agent voted and for whom she/he did not vote, while agent 2 and agent 3 only
know for whom they voted and for whom they did not vote, and that agent 1
voted either for 2 or for 3. Therefore, 2 and 3 do not know for whom 1 voted.
Interestingly, when |Agt | = |Cand | > 3:

(S0,SΓ ) ̸|= φ0.

Example 2. It is worth to consider a variant of Example 1 in which agent 1
has higher-order explicit beliefs (i.e., explicit beliefs about other agents’ explicit
beliefs). Specifically, we consider a state S′

0 =
(
(B ′

i)i∈Agt ,V
′) such that,

B ′
1 =B1 ∪ {△2¬adm(c1),△2adm(c2), . . . ,△2adm(cn),△2α1,△2α2,△2α3}

and, for every 1 < i ≤ n:

B ′
i =Bi,

V ′ =V ,

where Bi and V are defined as above. In other words, committee member 1
explicitly knows that committee member 2 explicitly knows the rules of the
game as well as the results of the selection.
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Interestingly, when |Agt | = |Cand | = 3, the following holds:

(S′
0,S) |= □o

2ψ2 ∧□1□2ψ2 ∧ ¬□1□
o
2ψ2.

In words, in the three-agent case, at S′
0, committee member 2 only knows

that ψ2, committee member 1 knows that 2 knows ψ2, but 1 does not know that
2 only knows that ψ2.

4 Model checking

The model checking problem is defined in our framework, as follows:

input: an agent vocabulary profile Γ = (Γi)i∈Agt with Γi finite for every i ∈ Agt ,
a finite state S0 in SΓ , and a formula φ0 ∈ L;

output: yes if (S0,SΓ ) |= φ0; no otherwise.

Remark 1. We suppose w.l.o.g. that outer most subformulas of φ0 of the form
△iα are such that α ∈ Γi. If this is not the case for some subformulas △iα, then
the subformula △iα will be false anyway and can be replaced by ⊥.

Direct PSPACE algorithm Figure 1 shows an algorithm mc(S, Γ, φ) that
checks whether (S,SΓ ) |= φ. Note that SΓ is not computed explicitly, but im-
plicitly represented by Γ . In the algorithm, states S are represented as vectors
of bits indicating for all i, for each element α of Γi whether α belongs to i’s base
in S or not. It also encodes the valuation over atomic propositions appearing in
Γ and φ0. The states S manipulated by the algorithm are of size polynomial in
the size of the input. The loop for all S′ ∈ S0 such that SRiS

′ works as follows.
We consider all the vectors S′. Each such vector S′ represents a state in SΓ . For
each S′ we check in polynomial time whether SRiS

′.

Reduction to TQBF In order to efficiently implement the algorithm above,
we propose a reduction to TQBF (true quantified binary formulas) that mimics
the algorithm. To do this, we introduce TQBF propositional variables xα,k for
all α ∈ L0 and for all integers k. The variables indexed by k are said to be of
level k. They correspond to the recursive nesting in the procedure mc described
in Figure 1 for the cases □iφ and □∁

iφ. For instance, xα,k is true if α is true at
some state at depth k. Let Xk be the set of formulas of level k. More precisely,
Xk contains exactly formulas x△iα,k with α ∈ Γi for any agent i, and xp,k with
p appearing in Γ or φ0.

Definition 7. We define the function tr that maps any formula of L to a QBF-
formula by tr(φ0) := tr0(φ0) with:

– trk(p) = xp,k,
– trk(¬φ) = ¬trk(φ),
– trk(φ ∧ ψ) = trk(φ) ∧ trk(ψ),
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function mc(S, Γ, φ)
match φ do

case p: return p ∈ V
case △iα: return α ∈ Bi

case ¬ψ: return not mc(S, Γ, ψ)
case ψ1 ∧ ψ2: return mc(S, Γ, ψ1) and mc(S, Γ, ψ2)
case □iψ:

for all S′ ∈ SΓ such that SRiS
′ do

if not mc(S′, Γ, ψ) return false
return true

case □∁
iψ:

for all S′ ∈ SΓ such that SR∁
iS

′ do
if not mc(S′, Γ, ψ) return false

return true

Fig. 1. Generic algorithm for model checking L-formulas.

– trk(△iα) = x△iα,k,
– trk(□iφ) = ∀Xk+1, Rik → trk+1(φ),
– trk(□∁

iφ) = ∀Xk+1,¬Rik → trk+1(φ),

where:

Rik :=
∧

α∈Γi

x△iα,k → trk+1(α).

The translation trk(□iφ) corresponds to case □iφ in the algorithm. State
S (resp. S′) is represented by the truth values of variables in Xk (resp. Xk+1).
Formula Rik reformulates SRiS

′.

Proposition 1. Let φ0 ∈ L. Then, the following two statements are equivalent:

– (S0,SΓ ) |= φ0

– ∃X0(descS0
(X0) ∧ tr0(φ0)) is QBF-true

where:

descS0
(X0) :=

∧
i∈Agt

 ∧
α∈Bi

x△iα,0 ∧
∧

α∈Γi\Bi

¬x△iα,0

 ∧
∧
p∈V

xp,0 ∧
∧
p ̸∈V

¬xp,0

with S0 = ((Bi)i∈Agt , V ).

Proof. Let valS(Xk) represent the unique valuation on Xk satisfying descS(Xk).
We prove by induction on the structure of φ that (S,SΓ ) |= φ iff valS(Xk) |=
trk(φ), for all k.

Induction base. Let φ = p, for some p ∈ Atm. We have (S,SΓ ) |= p iff p ∈ V
iff xk,p ∈ valS(Xk) iff valS(Xk) |= trk(p).

Induction step. The cases for operators ¬ and ∧ are straightforward. We
proceed with the modal operators in the language:
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– Let φ = △iα. We have: (S,SΓ ) |= △iα iff α ∈ Bi iff xk,△iα ∈ valS(Xk) iff
valS(Xk) |= trk(△iα).

– Let φ = □iψ. We denote by valS(Xk) + valS′(Xk+1) the valuation obtained
by concatenating the valuation valS(Xk) and valS′(Xk+1) (we take the truth
values of propositions in Xk from the former and the truth values of propo-
sitions in Xk+1 from the latter). We have:

(S,SΓ ) |= □iψ ⇐⇒ for all S′ ∈ SΓ , SRiS
′ implies (S′,SΓ ) |= ψ

⇐⇒ for all S′ ∈ SΓ , SRiS
′ implies valS′(Xk+1) |= trk+1(ψ)

⇐⇒ for all S′ ∈ SΓ valS(Xk) + valS′(Xk+1) |= Rik → trk+1(ψ)

⇐⇒ valS(Xk) |= ∀Xk+1, Rik → trk+1(ψ)

⇐⇒ valS(Xk) |= trk(□iα)

– Let φ = □∁
iφ. The proof is analogous to that for operator □i above. In

particular, we use relation R∁
i and formula ¬Rik.

Therefore, (S0,SΓ ) |= φ0 iff valS0
(X0) |= tr0(φ). In addition, valS0

(X0) |=
tr0(φ) is equivalent to ∃X0(descS0(X0) ∧ tr0(φ0)) is QBF-true. This concludes
the proof. ⊓⊔

In [18], it is proved that the previous model checking problem formulated in
the belief base semantics is PSPACE-hard, already for the fragment of L with
only “at least” implicit belief operators, but with no “at most” implicit belief
operators involved. Thus, the fact that the generic model checking problem given
in Figure 1 runs in polynomial space as well as Proposition 1 allow us to state
the following complexity result.

Theorem 1. Model checking L-formulas is PSPACE-complete.

5 Implementation and experimental results

We implemented a symbolic model checker,6which uses the translation to TQBF.
The resulting TQBF is then translated into a binary decision diagram (BDD),
in the same way as done in [3]. The program is implemented in Haskell and the
BDD library used is HasCacBDD [11]. It was compiled with GHC 9.2.7 in a
MacBook Air with a 1.6 GHz Dual-Core Intel Core i5 processor and 16 GB of
RAM, running macOS Ventura 13.3.1.

Table 1 shows the performance of the model checker on the examples of
Section 3. It shows execution times for different instances. For both examples,
the size of the model (states) is given by the number of possible valuations
times the number of possible multi-agent belief bases: 2|Atm| × (2ratoms)|Agt|.
The value of ratoms is the number of “relevant atoms”. There is one such atom
for each formula in Γ , each propositional variable appearing in Γ and in the
input formula, each formula α that is a sub-formula of the input formula, plus
6 Available at https://src.koda.cnrs.fr/tiago.de.lima/lda/-/releases/0.0.4.4
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cands = voters = |Agt | 3 4 5 6 7 8 9 10
|Atm| 9 16 25 36 49 64 81 100
ratoms 100 164 244 340 452 580 724 884
states 2309 2672 21245 22076 23213 24704 26597 28940

Execution time (sec.) 0.076 0.015 0.026 0.047 0.066 0.101 0.157 0.248

cands = voters = |Agt | 3 4 5 6 7 8 9 10
|Atm| 9 16 25 36 49 64 81 100
ratoms 133 210 305 418 549 698 865 1050
states 2408 2856 21550 22544 23892 25648 27866 210600

Execution time (sec.) 0.081 0.063 0.334 3.066 17.588 90.809 KO KO

Table 1. Symbolic model checker performance on Examples 1 (above) and 2 (below).

one atom for each formula △iα such that α ∈ Γ . The number of states gives an
idea of the size of the search space for modal formulas. In principle, to check a
formula of the form □oφ, one must check φ in every state of the model. Because
of that, a naive implementation cannot be used. Indeed, in our tests with such
a solution, no instance could be solved under the timeout of 10 minutes.

One can notice that the model checker is slower in the case of 3 candidates
than in the case of 4 candidates (and in Example 1 the latter is true even up
to 7 candidates). The reason is that the input formula is true for 3 candidates,
whereas it is false on all the other cases. Checking that a box formula is false
is easier, because the checker needs to find only one state where the formula in
the scope of the box operator is false. Also note that instances of Example 1 are
solved much faster than those of Example 2. This is due to two factors. First,
Example 2 has larger belief bases, which imply larger number of states. Second,
the input formula of the second example has a larger modal depth, which obliges
the checker to generate a larger search tree.

6 Dynamic extension

In this section, we present a simple extension of the language L by dynamic
operators for modeling the agents’ belief dynamics of private type. Similar op-
erators were introduced in [19]. The novel result of this section is to show that
adding them to the language L does not increase complexity of the model check-
ing problem. More generally, we provide a simple dynamic extension of the static
language of implicitly believing at least and implicitly believing at most whose
model checking problem remains in PSPACE.

The extended language is noted L+ and is defined by the following grammar:

L+ def
= φ ::= α | ¬φ | φ ∧ φ | □iφ | □∁

iφ | [+iα]φ,

where α ranges over L0 and i ranges over Agt .
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Events of type +iα are called informative events. In particular, +iα is the
event of agent i privately expanding its belief base with α.

The formula [+iα]φ is read “φ holds after the informative event +iα has
occurred”. It has the following semantic interpretation relative to a model.

Definition 8 (Satisfaction relation, cont.). Let S = (B1, . . . ,Bn,V ) ∈ S
and let (S,Cxt) ∈ M. Then:

(S,Cxt) |= [+iα]φ⇐⇒ (S+iα,Cxt) |= φ,

where B+iα
i = Bi ∪ {α} and B+iα

j = Bj for all j ̸= i.

Intuitively speaking, the private belief expansion of i’s belief base by α simply
consists in agent i adding the information that α to its belief base, while all other
agents keep their belief bases unchanged. Let us go back to the Example 1 we
introduced in Section 3 to illustrate the expressiveness of our dynamic extension.

Example 3. It worth noting that private belief dynamics allow agents to gather
new information and to gain new knowledge. Suppose in the three-agent variant
of the example agent 2 and agent 3 privately learn that 1 voted for 2. This
ensures that there is no longer any information asymmetry between agent 1 and
agents 2 and 3. Formally, we have

(S0,SΓ ) |=
[
+2 vote(1,2)

][
+3 vote(1,2)

]
χ0,

where

χ0
def
=

∧
i∈{1,2,3}

□o
iψ1,

and ψ1, S0, SΓ are defined as in Example 1 in Section 3. This means that, in
the three-agent variant of the example, after agent 2 and agent 3 privately learn
that agent 1 voted for 2, everybody only knows for whom an agent voted and
for whom she/he did not vote.

As the following proposition highlights, we have reduction principles for the
dynamic operators.

Proposition 2. The following equivalences are valid for the class M:

[+iα]p↔ p

[+iα]¬φ↔ ¬[+iα]φ

[+iα](φ1 ∧ φ2) ↔
(
[+iα]φ1 ∧ [+iα]φ2

)
[+iα]△jβ ↔ △jβ if i ̸= j or α ̸= β

[+iα]△iα↔ ⊤
[+iα]□jφ↔ □jφ if i ̸= j

[+iα]□iφ↔ □i(α→ φ)

[+iα]□
∁
jφ↔ □∁

jφ if i ̸= j

[+iα]□
∁
iφ↔

(
□i(¬α→ φ) ∧□∁

iφ
)
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Proof. We only prove cases □iφ and □∁
iφ, since other cases are straightforward.

(S,Cxt) |= [+iα]□iφ⇐⇒ (S+iα,Cxt) |= □iφ,

⇐⇒ ∀S′ ∈ Cxt : if S+iαRiS
′ then (S′,Cxt) |= φ,

⇐⇒ ∀S′ ∈ Cxt : if SRiS
′ and S′ |= α then (S′,Cxt) |= φ,

⇐⇒ (S,Cxt) |= □i(α→ φ).

(S,Cxt) |= [+iα]□
∁
iφ⇐⇒ (S+iα,Cxt) |= □∁

iφ,

⇐⇒ ∀S′ ∈ Cxt : if S+iαR∁
iS

′ then (S′,Cxt) |= φ,

⇐⇒ ∀S′ ∈ Cxt : if SR∁
iS

′ or (SRiS
′ and S′ |= ¬α) then

(S′,Cxt) |= φ,

⇐⇒ (S,Cxt) |= □i(¬α→ φ) ∧□∁
iφ. ⊓⊔

Model checking for formulas in the language L+ is analogous to model check-
ing for formulas in L we defined in Section 4. The valid equivalences in Proposi-
tion 2 could be used to find a procedure for reducing model checking for formulas
in L+ to model checking for formulas in L. The problem is that such reduction is
exponential due to the fact that every time we find a formula of type [+iα]□∁

iφ

we have to duplicate it into two parts □i(¬α→ φ) and □∁
iφ.

Fortunately we can easily adapt the generic algorithm presented in Section
4 in order to obtain a PSPACE procedure for model checking formulas of the
language L+. It is sufficient to add the following case for the dynamic operators
to the main routine of the algorithm in Figure 1:

case [+iα]ψ : return mc(S+iα, Γ, ψ)

The resulting algorithm clearly runs in polynomial space. Thus, we can generalize
the complexity result given in Theorem 1 to the language L+.

Theorem 2. Model checking L+-formulas is PSPACE-complete.

7 Conclusion

This paper describes optimal procedures for model checking multi-agent only
believing formulas. As far as we know, we are the first to tackle the problem of
automating model checking for the logic of multi-agent only believing or knowing.
We implemented these procedures and presented some experimental results on
computation time. Moreover, we extended the formalism with private belief ex-
pansion operators and showed that model checking remains PSPACE-complete.
In the future, we plan to implement the dynamic extension presented in Section
6 and to extend the setting to introspective agents whose logic of belief (resp.
knowledge) is K45 (resp. S5). Last but not least, we intend to apply our seman-
tics for multi-agent only believing and model checking approach to epistemic
planning. We believe that the compactness of our semantics can offer an advan-
tage in terms of ease of implementation compared to the multi-relational Kripke
semantics traditionally used in the context of epistemic planning [4, 5].
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