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Abstract

In this work, we address one important problem of Katsuno
and Mendelzon update operators, that is to require that any
updated belief base must entail any new input in a consis-
tent way. This assumes that any situation can be updated into
one satisfying that input, which is unrealistic. To solve this
problem, we must relax either the success or the consistency
principle. Each case leads to a distinct family of update oper-
ators, that we semantically characterize by plausibility rela-
tions over possible worlds, considering a credibility limit that
aims to forbid unrealistic changes. We discuss in which cases
one family is more adequate than the other one.

1 Introduction
The aim of Belief Change Theory (Alchourrón, Gärdenfors,
and Makinson 1985; Gärdenfors 1988; Hansson 1999) is
to provide a formal framework for understanding how an
agent’s beliefs evolve in response to new evidence.

Over the past 35 years, various operators have been
proposed to handle different types of situations and evi-
dence (Fermé and Hansson 2011; Fermé and Hansson 2018).
At the heart of this theory lie belief revision operators
(Alchourrón, Gärdenfors, and Makinson 1985; Gärdenfors
1988; Katsuno and Mendelzon 1991; Hansson 1999), which
are designed to correct an agent’s beliefs based on more re-
liable evidence.

Another important class of operators are update operators
(Katsuno and Mendelzon 1992; Winslett 1988; Herzig and
Rifi 1999; Boutilier 1995; Lang 2007). The difference be-
tween revision and update operators is that revision opera-
tors aim to correct an agent’s beliefs, whereas update oper-
ators aim to incorporate the results of changes in the world,
without assuming that the agent’s previous beliefs were in-
correct. This difference is often summarized as belief revi-
sion being concerned with changing beliefs in a static world,
while update is concerned with the evolution of beliefs in a
dynamic world.

Another distinction between revision and update is that
revision involves a selection process, where we choose the
most plausible models of the new evidence based on our
current beliefs, while update involves a transition process,
where we consider the transitions caused by the change in
the new evidence for each model of our current beliefs.

However, while there have been many extensions pro-
posed and studied for belief revision operators, such as syn-
tax dependence (Hansson 1999), non-prioritized revision
(Schlechta 1997; Makinson 1998; Hansson 1998; Fermé and
Hansson 1999; Hansson et al. 2001; Booth et al. 2012), and
iteration (Darwiche and Pearl 1997; Booth and Meyer 2006;
Jin and Thielscher 2007; Konieczny and Pino Pérez 2008;
Schwind, Konieczny, and Pérez 2022), belief update has not
received much attention since its initial characterization by
Katsuno and Mendelzon (Katsuno and Mendelzon 1992).
There have been some criticisms and adaptations proposed
in (Herzig and Rifi 1999; Boutilier 1995; Lang 2007), but
the original proposal by Katsuno and Mendelzon remains
the standard one.

In this work, we aim to raise what we believe is the most
significant criticism of the Katsuno and Mendelzon charac-
terization and propose a more convincing one.

The criticism is that the Katsuno and Mendelzon charac-
terization assumes that any situation (possible world) can be
reached from any initial situation, which is not a reasonable
assumption as some transitions are simply not possible in the
real world. For example, if we represent the state of a cup as
being either broken or unbroken, we know that a cup can go
from an unbroken state to a broken state very quickly, but the
reverse is not possible: it is not possible to “unbreak” a cup.
Therefore, if our belief is that the cup is broken, there is no
credible future where it can become unbroken. Thus, in all
possible worlds where the cup is broken, it is not possible to
reach a plausible possible world where the cup is unbroken.

Katsuno and Mendelzon introduced the idea of using par-
tial pre-orders, or in the limiting case, total pre-orders1, to
represent the plausibility relation associated with each pos-
sible world. This departs from revision operators, which as-
sociate a total pre-order to each belief base as a whole, al-
lowing one to represent the various more or less plausible
transitions from each possible world. However, the assump-
tion that all worlds are reachable from the initial one is open
to criticism.

In this work, we propose a solution to this issue by

1Note that using partial or total pre-orders is not the most im-
portant distinction between update and revision, since in (Katsuno
and Mendelzon 1992) they also define an update using total pre-
orders, and in (Benferhat, Lagrue, and Papini 2005) it is shown
how to define revision operators using partial pre-orders.
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limiting the set of reachable worlds from each possible
world. We accomplish this by using a set of credible
worlds to encode this limit, similar to what has been done
for credibility-limited belief revision (Hansson et al. 2001;
Booth et al. 2012; Booth et al. 2014).

We provide a characterisation of these operators, where
we only need to remove the consistency postulate (U3)
from the standard Katsuno and Mendelzon characterization.
In the representation theorem, we consider the credibility-
limit for each world to encode the set of credible/accessible
worlds from that possible world.

Let us provide an illustrative example in order to show
why the Katsuno-Mendelzon characterization is not satis-
factory and why our model is required.

Example 1. In a room, there is a cup that can be on the
table or on the floor (t), it can be empty or not (e), and it
can be broken or not (b). Our current beliefs about the cup
are that it is on the table, not empty, and not broken, or it
fell off the table, in which case it will be empty and may be
either broken or intact. A broken cup is necessarily empty,
and once broken, it cannot be restored to an unbroken state.
Therefore, our beliefs are: ϕ ≡ β1 ∨ β2 ∨ β3, where β1 =
t ∧ ¬e ∧ ¬b, β2 = ¬t ∧ e ∧ ¬b, and β3 = ¬t ∧ e ∧ b.

Suppose a reliable friend who has left the room tells us
that the cup is not empty (α = ¬e). According to the
Katsuno-Mendelzon characterization, we need to find the
most plausible worlds that correspond to each possibility.
It is straightforward to update β1 with the new evidence
α: since β1 ` α, we keep β1. However, for β2, a possi-
ble explanation is that someone refilled the cup while it was
on the floor, which is strange but possible. This leads to
β4 = ¬t ∧ ¬e ∧ ¬b.

However, there is no feasible transition from a state
where the cup is broken and therefore empty (i.e., β3) to a
state where the cup is not empty (i.e., ¬e). The Katsuno-
Mendelzon model requires us to find some worlds that are
plausible (reachable) from β3, which is counterintuitive in
this situation and can even lead to impossible scenarios. For
example, if our initial belief is ψ = (¬t∧ e∧ b)∨ (t∧ e∧ b),
where the cup is broken, it is difficult to accept that changes
in the world could go from an empty, broken cup to a not-
empty, unbroken cup. In this case, it may be more appro-
priate to acknowledge the impossibility and conclude that
solving it requires a different type of change (such as revi-
sion).

So, one has to be aware that with our model, sometimes,
one can reach an inconsistent belief base, even if the previ-
ous belief base and the new evidence are consistent. This
will just express the fact that the new evidence is not con-
ceivable from the previous belief base.

If one wants to avoid this case, we propose a second
model where we ensure consistency, but whose semantics
is different and seems to be more related to cases where we
have less confidence in the new evidence, or to cases that
correspond to anticipated predictions.

However, we believe that one should not be afraid of the
possible inconsistent result that expresses the fact that our
model of the world was wrong. We will discuss this case

in more detail in the conclusion since this situation is the
starting point for future work.

Below, in Section 2, we will first provide the required for-
mal definitions and notations for this work. Then we will re-
call the classical Katsuno-Mendelzon model for update. In
Section 3, we will present our generalized credibility-limited
update model. In Section 4, we will provide a second char-
acterization where we ensure the consistency of the result.
We will provide some examples to illustrate the behavior of
the corresponding operators in Section 5. Finally, the paper
will conclude with Section 6, where we will discuss these
operators and future work.

2 Preliminaries
Let LP be a propositional language built up from a finite set
of propositional variables P and the usual connectives. The
symbol ⊥ (resp. >) is the Boolean constant always false
(resp. true). An interpretation (or world) is a mapping from
P to {0, 1}. The set of all interpretations (or worlds) is de-
noted by Ω. ` denotes logical entailment, ≡ logical equiv-
alence, and [[ϕ]] denotes the set of models of the formula ϕ.
Given a set of worlds E ⊆ Ω, we denote by γS any formula
such that [[γS ]] = S. When S is a singleton set S = {ω}, γS
is abbreviated as γω . Given a set of worlds F , an ordering
≤ over F and a set E ⊆ F , we denote by min(E,≤) the set
min(E,≤) = {ω ∈ E | ∀ω′ ∈ E,ω′ 6< ω}.

An update operator � is a mapping associating two for-
mulae ϕ (the agent’s belief base) and α (the incoming infor-
mation / piece of evidence) with a new formula ϕ � α (the
updated belief base).

Definition 1 (KM update operator (Katsuno and Mendelzon
1992)). An operator � is a KM update operator if for all
formulae ϕ, ψ, α, β, the following conditions are satisfied:

(U1) ϕ � α ` α
(U2) If ϕ ` α, then ϕ � α ≡ ϕ
(U3) If ϕ 0 ⊥ and α 0 ⊥, then ϕ � α 0 ⊥
(U4) If ϕ ≡ ψ and α ≡ β then ϕ � α ≡ ψ � β
(U5) (ϕ � α) ∧ β ` ϕ � (α ∧ β)

(U6) If ϕ � α ` β and ϕ � β ` α, then ϕ � α ≡ ϕ � β
(U7) If ϕ is a complete2 formula,

then (ϕ � α) ∧ (ϕ � β) ` ϕ � (α ∨ β)

(U8) (ϕ ∨ ψ) � α ≡ (ϕ � α) ∨ (ψ � α)

KM update operators have been characterized in terms of
partial orderings over worlds, more precisely, faithful as-
signments:

Definition 2 (Faithful assignment (Katsuno and Mendelzon
1992)). A faithful assignment is a mapping associating each
world ωi ∈ Ω with a partial order ≤ωi over Ω such that for
all ωi, ω ∈ Ω, if ω 6= ωi then ωi <i ω.

Proposition 1 ((Katsuno and Mendelzon 1992)). An update
operator � is a KM update operator if and only if there exists

2A complete formula is a formula with a unique model.
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a faithful assignment ωi 7→≤ωi such that for all formulae ϕ,
α,

[[ϕ � α]] =
⋃

ωi∈[[ϕ]]

min([[α]],≤ωi).

This gives us a characterization of Katsuno and Mendel-
zon’s update operators as an operation where we look, for
each possible world ωi, at the most plausible worlds (what
we call the most plausible transitions) reachable from ωi af-
ter the occurrence of α.

3 Credibility-Limited Update
One important technical difference between belief revision
and belief update is that the relation used for finding the
most plausible worlds in belief revision is a total pre-order,
whereas in belief update it is a partial order. While the
use of a partial relation could allow the prohibition of cer-
tain transitions between possible worlds, standard Katsuno-
Mendelzon update operators do not capitalize on this capa-
bility to disallow specific transitions, as they still satisfy the
following reachability property:

(reachability) ∀ω, ω′ ∈ Ω ω ≤ω ω′

As explained in the introduction, in real life, some tran-
sitions are not possible, and there are some possible worlds
that cannot be reached from a given possible world. For ex-
ample, it is impossible to reach a world where the cup is not
broken from a state where the cup is broken.

This means that we aim to remove the reachability prop-
erty in order to fully leverage the power of the partial relation
and obtain more suitable update operators.

From a postulate perspective, removing postulate (U3) is
sufficient to achieve this goal, resulting in a more general
setting than the standard Katsuno-Mendelzon framework.

At the semantic level, this requires the creation of a parti-
tion for each possible world, classifying the possible worlds
into two categories: credible and not credible. Only the
credible worlds are reachable from a given possible world.
Definition 3 (Credibility-limited update operator). An op-
erator �· is a credibility-limited (CL) update operator if it
satisfies (U1-U2), and (U4-U8).

We now intend to provide a representation result in terms
of credible faithful assignments:
Definition 4 (Credible faithful assignment). A credible
faithful assignment is a mapping associating each world
ωi ∈ Ω with a pair (Ci,≤ωi

), where {ωi} ⊆ Ci ⊆ Ω and
≤ωi

is a partial ordering over Ci such that for each ω ∈ Ci,
if ωi 6= ω, then ωi <i ω.

Note that in this definition the plausibility ordering is de-
fined only on the worlds of Ci, so worlds that do not appear
in this set can not be reached from ωi.
Theorem 1. An update operator �· is a CL update operator
if and only if there exists a credible faithful assignment ωi 7→
(Ci,≤ωi

) such that for all formulae ϕ, α,

[[ϕ �· α]] =
⋃

ωi∈[[ϕ]]

min([[α]] ∩ Ci,≤ωi
).

Credibility-limited update clearly generalizes KM update,
as every KM update operator is trivially a CL update oper-
ator. However, the converse is not true in general. An in-
teresting observation is that expansion (i.e., conjunction) is
a simple example of a CL update operator that is not a KM
update operator.
Definition 5 (Expansion). The expansion operator + is de-
fined for all formulae ϕ, α by ϕ+ α = ϕ ∧ α.

It is easy to see that:
Proposition 2. + satisfies (U1-U2), and (U4-U8) but not
(U3).

Credibility-limited update generalizes both KM update
and expansion. Additionally, expansion can be viewed as
the strongest and most skeptical/change-reluctant form of
credibility-limited update. This is evident from the fact that:
Proposition 3. Let �· be a CL update operator. Then for all
formulae ϕ, α, we have that ϕ ∧ α ` ϕ �· α.

Given a credibility-limited update operator, to restore
consistency, one can simply associate with it a “weaker” ver-
sion that satisfies postulate (U3):
Definition 6. Let �· be an update operator. The drastic ex-
tension of �· , denoted by �· d is defined for all formulae ϕ, α
by:

ϕ �· d α =

{
α if ∃ψ ` ϕ, ψ 0 ⊥, ψ �· α ` ⊥,
ϕ �· α otherwise.

Proposition 4. If �· is a CL update operator, then �· d is a
KM update operator, and for all formulae ϕ, α, we have
that ϕ �· α ` ϕ �· d α.

Summing up Propositions 3 and 4, we get for all formulae
ϕ, α that:

ϕ+ α ` ϕ �· α ` ϕ �· d α (1)
Note also that the drastic extension of expansion is simply

the drastic update operator �d (Marquis and Schwind 2014),
defined for all formulae ϕ, α by ϕ �d α = ϕ if ϕ ` α,
otherwise ϕ �d α = α (the proof is direct: if ϕ ` α, then
ϕ + α ≡ ϕ by (U2); and if ϕ 0 α, then one can find a
formula ψ ` ϕ ∧ ¬α, i.e., ψ + α = ψ ∧ α ` ⊥, so in this
case ϕ+d α = α by definition of the drastic extension).

Another interesting observation is that, although the con-
sistency postulate (U3) is not satisfied, credibility-limited
update operators satisfy a weaker form of consistency, which
we call “consistency preservation” (this observation trivially
follows from (U8)).
(CP) If ϕ �· α 0 ⊥ and ϕ ` ψ, then ψ �· α 0 ⊥
Proposition 5. Every Credibility-Limited update operator
satisfies (CP).

4 Consistent Credibility-Limited Update
In this section, we propose an alternative model for update
with a credibility limit. The technical difference with re-
spect to the CL update of the previous section is that, with
CL update, the possible worlds that do not lead to any cred-
ible world of the new information lead to a contradiction,
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whereas here we simply reject the transition caused by the
new information by keeping the original possible world.
This different behavior can be motivated by two different
justifications.

The first motivation is that in some applications, we
want to avoid reaching a contradiction (to satisfy postulate
(U3)). This leads to the name of these operators: consistent
credibility-limited (CCL) update operators.

The second motivation is more intuitive and is related to
the status of the new piece of information. In CL update,
the new piece of information is evidence (a direct observa-
tion), so we must strictly apply the transition to all believed
possible worlds. On the other hand, CCL update is more ap-
propriate in cases where the transition implied by the new
piece of information can fail in some possible worlds. This
may occur if we do not completely trust the new piece of in-
formation and therefore reject it when it leads nowhere from
some possible worlds. This is also the case where we use
update to predict the state of the world after some change
that requires certain preconditions to be true. For example,
suppose we send a robot to a room with instructions to fill
a cup. Then we have to update our beliefs to accommo-
date this change, taking into account that the cup will not be
empty. However, this will only be the case if the cup is not
broken. Therefore, in our possible states where the cup is
not broken, we will follow the transition to new states where
the cup is not empty, but in our possible states where the cup
is broken, we will not change these states.

Definition 7 (Consistent credibility-limited update opera-
tor). An operator �+ is a consistent credibility-limited (CCL)
update operator if it satisfies (U2-U8) and the following con-
ditions, for all formulae ϕ, α:

(RSC) If ϕ is complete, then ϕ �+ α ` α or ϕ �+ α ≡ ϕ
(SM) If α ` β and ϕ �+ α ` α, then ϕ �+ β ` β

(SM) and (RSC) come from postulates used for
credibility-limited revision (Booth et al. 2012)3. (RSC),
which stands for Relative Success for Complete formulae,
states that the result of the update for a complete formula
should either imply the new information or leave the beliefs
of the agent unchanged. Intuitively, the former case occurs
when the update succeeds, while the latter happens when the
new information is rejected due to insufficient credibility or
an impossible transition. As for (SM), Success Monotonic-
ity, it is reasonable to expect that direct consequences of a
succeeded formula are also succeeded formulae.

Let us state the corresponding representation theorem:

Theorem 2. An update operator �+ is a CCL update operator
if and only if there exists a credible faithful assignment ωi 7→
(≤ωi

, Ci) such that for all formulae ϕ, α,

[[ϕ �+ α]] =
⋃

ωi∈[[ϕ]]

f(ωi, α)

3More precisely, (RSC) is a weaker version of the original Rel-
ative Success postulate introduced in (Booth et al. 2012), which is
discussed at the end of this section.

where for each ωi ∈ Ω and each formula α, f(ωi, α) is
defined as

f(ωi, α) =

{
min([[α]] ∩ Ci,≤ωi) if [[α]] ∩ Ci 6= ∅
{ωi} otherwise

So one can see that, semantically, for each possible world,
there is a decision to either go to the most plausible new
worlds if a possible world from the models of the new piece
of information is reachable (credible), or to remain in the
current possible world.

5 Example and Discusion
Let us come back to the illustrative example from the intro-
duction and formalize it in order to illustrate the behavior of
our operators.

In a room, there is a cup. The cup can be on the table (t) or
on the floor, it can be empty (e) or not, and it can be broken
(b) or not. We will take the order teb for the interpretations,
so 101 means that t and b hold and that e does not hold.

Our current beliefs about the cup are that it is on the table,
not empty, and not broken, or it may have fallen off the table
onto the floor, in which case it will be empty and can be
either intact or broken. So our belief base is a formula ϕ
such that [[ϕ]] = {ω1, ω2, ω3}, with ω1 = 100, ω2 = 010,
and ω3 = 011.

Broken is an irreversible state, i.e., we cannot go from a
broken state to an unbroken state. Moreover, a broken cup is
clearly empty. We encode these physical constraints in the
credible worlds associated with each possible world. Note
that, as credible worlds are a set of possible worlds, they
can be encoded by a propositional formula. So we have that
C(ω1) = C(ω2) = [[b→ e]] and C(ω3) = [[b ∧ e]].

CL update. Suppose a reliable friend who left the room
tells us that he saw that the cup is not empty (α = ¬e).

What should our new beliefs ϕ �· α be? According to the
representation theorem, using CL update, we have to update
each model of our current beliefs individually.

For ω1, since it is consistent with α, we don’t need to do
anything. So, [[ϕω1 �· α]] = {ω1} = {100}.

As for ω2, since it is not a model of α, we need to look for
the most plausible credible possible worlds for ω2. Suppose
that the plausibility order associated with ω2 is {010} <ω2

{110, 000} <ω2
{100} <ω2

{011, 111}. Then, the most
plausible states reachable from ω2 are the ones where the
cup is now on the table and empty or on the floor and not
empty, which are more plausible than the cup being empty
and on the table. The least plausible worlds are the ones
where the cup is now broken. So, with this order, we obtain
[[ϕω2 �· α]] = {000}.

Lastly, ω3 is the most interesting case here since it is a
“broken” state, and none of the models of the new piece of
information α = ¬e is credible for ω3. It is not credible to
go from a “broken” to an “unbroken” state, so [[ϕω3

�· α]] =
⊥.

The result is the disjunction of the results obtained by
each model. Therefore, after the CL update, we believe that
the cup is not empty and not broken: [[ϕ �· α]] = {100, 000}.
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CCL update. Let us consider another scenario now. We
want to update our beliefs based on the same formula as be-
fore (α = ¬e), but the new piece of information is of differ-
ent nature. We send a robot to the room with instructions to
fill the cup4. We need to update our beliefs to reflect what
we expect to happen once the robot has had enough time to
perform the action. We know that in some cases, such as if
the cup is broken, the action will not be possible. In order
to represent the new state of the world, we need to use CCL
update.

For the first two models, there are reachable (credible)
possible worlds in the models of α, so we obtain the same
results as before, i.e., [[ϕω1 �+ α]] = {100} and [[ϕω2 �+ α]] =
{000}.

However, for ω3, there are no credible worlds in α. This
means that if the true world is ω3, then the robot will not be
able to perform α (fill the broken cup), and the world will
remain in this state, i.e., [[ϕω3

�+ α]] = {011}.
The result is the disjunction of the results obtained by

each model, so [[ϕ �+ α]] = {100, 000, 011}. Therefore, we
believe that if the cup is not broken, then it is not empty, and
if the cup is broken, it is empty and on the floor.

Before concluding this section, let us use our example
to discuss how the standard postulate of Relative Success
satisfied by credibility-limited revision operators (Booth et
al. 2012), interacts with our CL and CCL update operators.
This postulate, denoted by (RS), is stronger than our pos-
tulate (RSC), since it applies to every belief base, not only
complete ones:

(RS) ϕ �+ α ` α or ϕ �+ α ≡ ϕ
First, since CL operators satisfy (U1), they clearly satisfy

(RS). However, this is generally not the case for CCL opera-
tors: in our example, the CCL operator �+ satisfies (RSC) but
violates (RS) since ϕ �+ α 0 α and ϕ �+ α 6≡ ϕ. This is due
to the fact that the model 010 of ϕ is effectively “updated”
into the model 000 of α since 000 is reachable from 010,
whereas the model 011 of ϕ remains in the updated beliefs
since no world from α is reachable from 011.

This example also shows why (RS) is not desirable for
CCL update. When the robot is asked to fill the cup, (RS)
present us with a dilemma, since it would require our up-
dated beliefs either to entail that the cup is filled, and thus
disregarding the initial plausible situation where the cup was
initially broken (011); or to remain entirely unchanged, ig-
noring a reasonable update of the two initial plausible situ-
ations where the cup was not broken (100 and 010). Hence
a more reasonable result in this case is to perform a change
when it is deemed credible according to the each specific
initial situation one may be in ϕ. Accordingly, this exam-
ple shows that the notion of relative success is only satisfied
“locally”, i.e., how new information with relative confidence
can be integrated into an agent’s beliefs while adhering to an
update spirit.

4Note that the example used by (Katsuno and Mendelzon 1992)
to motivate the definition of their update operators was also to send
a robot in a room with instructions.

ϕ (t ∧ ¬e ∧ ¬b) ∨ (¬t ∧ e) {100, 010, 011}
α ¬e {000, 001, 100, 101}

ϕ �· α ¬e ∧ ¬b {100, 000}
ϕ �+ α (¬e ∧ ¬b) ∨ (¬t ∧ b ∧ e) {100, 000, 011}

Table 1: Summary of the illustrative example.

6 Conclusion
In this work, we proposed a belief update model that ad-
dresses an issue with Katsuno and Mendelzon’s standard
model, which assumes that any situation can be reached
from any other situation. This assumption is often not real-
istic in practical scenarios where some transitions are phys-
ically or legally impossible.

To overcome this issue, we introduced the notion of cred-
ible worlds, which represent the possible worlds that are
reachable from a given possible world. The update opera-
tors take these credible worlds into account to appropriately
handle updates.

However, we found that there are two ways to handle
cases where the new piece of information is not credible
with respect to a given possible world, and the choice of
the appropriate way depends on the status of the new piece
of information.

If we have very high confidence in this new piece of in-
formation, for instance for direct observations, then we must
conclude that all possible worlds that reject the new infor-
mation were wrong (they do not comply with reality, and
therefore were incorrect models of the world). This defini-
tion leads us to the class of CL (credibility-limited) update
operators. However, one must be aware that with these op-
erators, we can sometimes reach an inconsistent belief base
when updating with a consistent new piece of information in
the case where we detect a credibility issue for each possi-
ble world of our current beliefs. We will discuss a possible
treatment of this case in the future work paragraph below.

Before that, let us recall the second family of operators
we defined, CCL (consistent credibility-limited) update op-
erators, which always ensure a consistent result by remov-
ing the success postulate. With these operators, if the new
piece of information is not credible from a possible world,
then this piece of information is rejected, and we keep the
old possible world in our beliefs. This behavior corresponds
to new pieces of information in which we have some confi-
dence, but less than with CL operators. This can be the case
if the new piece of information is not an observation but a
message that we received from another agent (who can be
wrong), or if the new piece of information is a foreseen con-
sequence of an action that may fail (for example, we know
that the robot is asked to fill the cup, and this action can only
occur successfully when the cup is not broken).

As future work, we aim to solve the inconsistent case with
CL update operators. When we reach an inconsistent be-
lief base after a CL update by a consistent formula that is
not credible for each possible world of our current beliefs, it
means that our current possible worlds were wrong, as they
do not comply with reality, and cannot incorporate the result
of the evolution of the world into our current model of the
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world. Therefore, our current view of the world is wrong and
needs to be corrected. And the solution to adjust an agent’s
beliefs when trustworthy evidence contradicts them is belief
revision, an operation that modifies an agent’s beliefs based
on reliable evidence that contradicts them. Our next goal
is to characterize operators that can perform updates when
possible, as small, foreseen evolutions of the world. Still,
when faced with an inconceivable situation from the current
beliefs’ point of view, the operators will perform a revision.

Appendix: Proofs
Proof of Theorem 1. (Only if part) Let ωi 7→ (Ci,≤ωi

)
be a credible faithful assignment, and let �· be an up-
date operator such that for all formulae ϕ, α, [[ϕ �· α]] =⋃
ωi∈[[ϕ]] min([[α]] ∩ Ci,≤ωi

). Let us show that it is a CL
update operator, i.e., that is satisfies (U1-U2) and (U4-U8).
The proofs for (U1), (U4) and (U8) are direct by definition
of �· , so let us prove the remaining postulates are satisfied.

(U2) Assume that ϕ ` α, and let us show that ϕ �·
α ≡ ϕ. Let us first show that for each world ωi ∈ [[ϕ]],
min([[α]] ∩ Ci,≤ωi

) = {ωi}. So let ωi ∈ [[ϕ]]. Since ϕ ` α,
we know that ω ∈ [[α]]. And since ωi ∈ Ci by definition
of Ci, we get that ωi ∈ [[α]] ∩ Ci. Yet ≤ωi

is faithful, so
for each world ω ∈ Ci, we have that ωi <i ω. This means
that min([[α]] ∩ Ci,≤ωi

) = {ωi}, for each world ωi ∈ [[ϕ]].
Then,

⋃
ωi∈[[ϕ]] min([[α]] ∩ Ci,≤ωi) =

⋃
ωi∈[[ϕ]]{ωi}, from

which we get that [[ϕ �· α]] = [[ϕ]]. Hence, ϕ �· α ≡ ϕ.
(U5) Let us first show that for each world ωi ∈ [[ϕ]],

min([[α]] ∩ Ci,≤ωi
) ∩ [[β]] ⊆ min([[α ∧ β]] ∩ Ci,≤ωi

).
Assume toward a contradiction that there is a world ω ∈
min([[α]] ∩ Ci,≤ωi

) ∩ [[β]] such that ω /∈ min([[α ∧ β]] ∩
Ci,≤ωi

). Since ω ∈ [[α ∧ β]] ∩ Ci, this means that there
is a world ω′ ∈ [[α ∧ β]] ∩ Ci such that ω′ <i ω. Yet
ω′ ∈ [[α]] ∩ Ci ∩ [[β]], so ω /∈ min([[α]] ∩ Ci, ≤ωi)
∩[[β]], which leads to a contradiction. We got that
min([[α]] ∩ Ci,≤ωi) ∩ [[β]] ⊆ min([[α ∧ β]] ∩ Ci, ≤ωi),
which means that

⋃
ωi∈[[ϕ]] min([[α]] ∩ Ci,≤ωi) ∩ [[β]] ⊆⋃

ωi∈[[ϕ]] min([[α ∧ β]] ∩ Ci, ≤ωi
), thus [[(ϕ �· α) ∧ β]] ⊆

[[ϕ �· (α ∧ β)]]. Hence, (ϕ �· α) ∧ β ` ϕ �· (α ∧ β).
(U6) Assume that ϕ �· α ` β and ϕ �· β ` α. We only

need to prove that ϕ �· α ` ϕ �· β: the proof for ϕ �· β `
ϕ �· α is similar since α and β play symmetrical roles in the
statement of the postulate. Toward a contradiction, assume
that ϕ �· α 0 ϕ �· β. This means that there exists a world
ω ∈ [[ϕ �· α]] such that ω /∈ [[ϕ �· β]]. By definition of �· ,
this implies that there exists a world ωi ∈ [[ϕ]] such that
ω ∈ min([[α]] ∩ Ci,≤ωi) and ω /∈ min([[β]] ∩ Ci,≤ωi). Yet
ϕ �· α ` β, so since ω ∈ [[ϕ �· α]], we get that ω ∈ [[β]]. And
since ω ∈ Ci, we get that ω ∈ [[β]] ∩ Ci. So [[β]] ∩ Ci 6= ∅.
But ω /∈ min([[β]] ∩ Ci,≤ωi

), so there exists a world ω′ ∈
[[β]] ∩ Ci, i.e., ω′ ∈ min([[β]] ∩ Ci,≤ωi

), such that ω′ <i ω.
Yet ϕ �· β ` α, so we get that ω′ ∈ [[α]]. We found a world
ω′ ∈ [[α]] ∩ Ci such that ω′ <i ω, which contradicts the fact
that ω ∈ min([[α]] ∩ Ci,≤ωi

). Hence, ϕ �· α ` ϕ �· β. This
proves that ϕ �+ α ≡ ϕ �+ β.

(U7) Let ϕ be a complete formula, i.e., ϕ = γωi
for some

world ωi ∈ Ω. We need to show that (γωi
�· α) ∧ (γωi

�·

β) ` γωi �· (α ∨ β). Toward a contradiction, assume
that there exists a world ω ∈ [[γωi �· α]] ∩ [[γωi �· β]] such
that ω /∈ [[γωi

�· (α ∨ β)]]. By definition of �· , we know
that ω ∈ min([[α]] ∩ Ci,≤ωi

) ∩ min([[β]] ∩ Ci,≤ωi
). This

means that [[α]] ∩ [[β]] ∩ Ci 6= ∅, and in particular that
[[α ∨ β]] ∩ Ci 6= ∅. So let ω′ ∈ min([[α ∨ β]] ∩ Ci,≤ωi

).
Since ω /∈ min([[α ∨ β]] ∩ Ci,≤ωi

), we get that ω′ <i ω.
If ω′ ∈ [[α]], then ω′ ∈ [[α]] ∩ Ci, yet ω′ <i ω, which
contradicts the fact that ω ∈ min([[α]] ∩ Ci). Similarly, if
ω′ ∈ [[β]], then ω′ ∈ [[β]] ∩ Ci, so ω′ <i ω, contradicts the
fact that ω ∈ min([[β]]∩ Ci). Both cases lead to a contradic-
tion, so for every world ω ∈ Ω, if ω ∈ [[γωi �· α]]∩[[γωi �· β]]
then ω ∈ [[γωi �· (α ∨ β)]]. Stated equivalently, we got that
(γωi

�· α) ∧ (γωi
�· β) ` γωi

�· (α ∨ β).
This concludes the (only if) part of the proof.

(If part) Let �· be a CL update operator, and let us con-
sider the assignment associating every world ωi with the pair
(Ci,≤ωi

) where Ci is defined as the set Ci = {ω ∈ Ω |
[[γωi

�· γω]] = {ω}}, and ≤ωi
is the relation ≤ωi

⊆ Ci × Ci
defined for all worlds ω, ω′ ∈ Ci as ω ≤ωi

ω′ if and only
if (ω = ωi or [[γωi

�· γ{ω,ω′}]] = {ω}). Let ωi ∈ Ω. From
(U2) we know that [[γωi

�· γωi
]] = {ωi}, so we directly get

that {ωi} ⊆ Ci by definition of Ci. Let us show that ≤ωi
is a

(partial) order.
(Reflexivity) Let ω ∈ Ci, we must show that ω ≤ωi

ω.
Since ω ∈ Ci, by definition of Ci we get that [[γωi

�· γω]] =
{ω}. Thus ω ≤ωi

ω by definition of ≤ωi
.

(Antisymmetry) Let ω ≤ωi
ω′, ω′ ≤ωi

ω, and let us show
that ω = ω′. Assume toward a contradiction that ω 6= ω′.

Let us first show that ω 6= ωi and ω′ 6= ωi. Toward a
contradiction, assume that ω = ωi. Then by (U2) we get
that [[γωi �· γ{ω,ω′}]] = [[γω �· γ{ω,ω′}]] = {ω} 6= {ω′}.
Since ω = ωi, we know that ω′ 6= ωi. Yet ω′ ≤ωi

ω,
so [[γωi

�· γ{ω,ω′}]] = {ω′}, which leads to a contradic-
tion. Hence, ω 6= ωi. We can use a similar argument
to prove that ω′ 6= ωi. Now, by definition of ≤ωi , since
ω ≤ωi ω

′ and ω′ ≤ωi ω and since we proved that ω 6= ωi
and ω′ 6= ωi, we get that [[γωi �· γ{ω,ω′}]] = {ω} and
[[γωi �· γ{ω,ω′}]] = {ω′}. This contradicts our initial as-
sumption that ω 6= ω′. Hence, ω = ω′. This concludes
the proof that ≤ωi

satisfies (antisymmetry).
(Transitivity) Let ω, ω′, ω′′ ∈ Ci, and assume that ω ≤ωi

ω′ and ω′ ≤ωi
ω′′. We must show that ω ≤ωi

ω′′. The proof
is trivial by definition of≤ωi

in the case when ω = ωi, so as-
sume that ω 6= ωi. Let us first prove that ω′ 6= ωi and ω′′ 6=
ωi. Assume toward a contradiction that ω′ = ωi. Since ω 6=
ωi and ω ≤ωi ω

′, we get that [[γωi �· γ{ω,ω′}]] = {ω} by def-
inition of ≤ωi . Yet from (U2) and since ω′ = ωi, we have
that [[γωi �· γ{ω,ω′}]] = [[γω′ �· γ{ω,ω′}]] = {ω′} = {ωi}.
We got that [[γωi

�· γ{ω,ω′}]] = {ω} and [[γωi
�· γ{ω,ω′}]] =

{ωi}, which contradicts ω 6= ωi. Hence, ω′ 6= ωi. The same
arguments can be used to prove that ω′′ 6= ωi.

At this point, we know that {ω, ω′, ω′′}∩{ωi} = ∅. When
ω = ω′ or ω′ = ω′′, we trivially get that ω ≤ωi

ω′′; and
when ω = ω′′, we also get that ω ≤ωi

ω′′ since ≤ωi
satis-

fies (symmetry). Then, assume that ω, ω′ and ω′′ are pair-
wise different, i.e., ω 6= ω′, ω′ 6= ω′′ and ω 6= ω′′. By
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definition of ≤ωi and since ω ≤ωi ω
′ and ω′ ≤ωi ω

′′, we
know that [[γωi �· γ{ω,ω′}]] = {ω} and [[γωi �· γ{ω′,ω′′}]] =
{ω′}. By (U5), (γωi �· γ{ω,ω′,ω′′}) ∧ γ{ω,ω′} ` γωi

�·
γ{ω,ω′}. Yet [[γωi

�· γ{ω,ω′}]] = {ω}, which means that ω′ /∈
[[γωi �· γ{ω,ω′,ω′′}]]. Similarly, by (U5), (γωi �· γ{ω,ω′,ω′′})∧
γ{ω′,ω′′} ` γωi

�· γ{ω′,ω′′}. Yet [[γωi
�· γ{ω′,ω′′}]] = {ω′},

which means that ω′′ /∈ [[γωi
�· γ{ω,ω′,ω′′}]]. Hence, by (U1),

we get that [[γωi �· γ{ω,ω′,ω′′}]] ⊆ {ω}. Yet [[γωi �· γω]] =
{ω} by definition of Ci and since ω ∈ Ci. By (U6), since
[[γωi

�· γ{ω,ω′,ω′′}]] ⊆ {ω} and [[γωi
�· γω]] ⊆ {ω, ω′, ω′′},

we get that [[γωi �· γ{ω,ω′,ω′′}]] = [[γωi �· γω]] = {ω}.
By (U6) again, since [[γωi

�· γ{ω,ω′′}]] ⊆ {ω, ω′, ω′′} (by
(U1)) and [[γωi

�· γ{ω,ω′,ω′′}]] ⊆ {ω, ω′′}, we get that
[[γωi �· γ{ω,ω′′}]] = [[γωi

�· γ{ω,ω′,ω′′}]] = {ω}. This shows
that ω ≤ωi

ω′′ and concludes the proof that ≤ωi
satisfies

(transitivity).
To show that the assignment ωi 7→ (Ci,≤ωi

) is faithful,
we only need to prove that for each ω ∈ Ω, if ω 6= ωi then
ωi <i ω, but this is direct from the fact that ωi ≤ωi ω by def-
inition of ≤ωi and since ≤ωi satisfies (antisymmetry). This
concludes the proof that ωi 7→ (Ci,≤ωi) is a credible faith-
ful assignment.

We now intend to show that for each formula α and each
world ωi ∈ Ω, min([[α]] ∩ Ci,≤ωi

) = [[γωi
�· α]]. Assume

first that ωi ∈ [[α]]. Since ωi ∈ Ci and ωi <i ωj for each
ωj ∈ [[α]], we get that min([[α]] ∩ Ci,≤ωi

) = {ωi}. And
by (U2), [[γωi

�· α]] = {ωi}. So, min([[α]] ∩ Ci,≤ωi
) =

[[γωi
�· α]]. So assume now in the rest of the proof that ωi /∈

[[α]].
Let us first show that min([[α]] ∩ Ci,≤ωi

) ⊆ [[γωi
�· α]].

So let ω ∈ min([[α]] ∩ Ci,≤ωi
), we must show that ω ∈

[[γωi �· α]]. Let us write the set of models of α as [[α]] =
{ω1, . . . , ωk} (k ≥ 1). Since ω ∈ [[α]], we can also write
[[α]] = {ω, ω1} ∪ . . . ∪ {ω, ωk}. Let ωj ∈ [[α]] and let us
prove that ω ∈ [[γωi �· γ{ω,ωj}]].
Case 1: ωj ∈ Ci. Assume toward a contradiction that
[[γωi

�· γ{ω,ωj}]] = ∅. We know that ω 6= ωi (since ω ∈ [[α]]

and ωi /∈ [[α]]), so ω 6≤ωi ω
j by definition of ≤ωi . This

contradicts the fact that ω ∈ min([[α]]∩Ci,≤ωi), since ωj ∈
[[α]]∩Ci. Hence, [[γωi

�· γ{ω,ωj}]] 6= ∅. And in the case when
ωj 6= ω, since ω ∈ [[α]] ∩ Ci, we know that ωj 6≤ωi

ω (since
≤ωi is antisymmetric), thus [[γωi �· γ{ω,ωj}]] 6= {ωj} by def-
inition of ≤ωi

. We have that [[γωi
�· γ{ω,ωj}]] ⊆ {ω, ωj}

(by (U1)), that [[γωi
�· γ{ω,ωj}]] 6= ∅, and if ωj 6= ω that

[[γωi
�· γ{ω,ωj}]] 6= {ωj}. Hence, ω ∈ [[γωi

�· γ{ω,ωj}]].
Case 2: ωj /∈ Ci. Assume toward a contradiction
that ω /∈ [[γωi

�· γ{ω,ωj}]]. By (U1), [[γωi
�· γ{ω,ωj}]] ⊆

{ωj}. Yet [[γωi
�· γωj ]] = ∅ since ωj /∈ Ci, so

since [[γωi
�· γωj ]] ⊆ {ω, ωj}, by (U6) we get that

[[γωi
�· γ{ω,ωj}]] = [[γωi

�· γωj ]] = ∅. Yet [[γωi
�· γω]] =

{ω} since ω ∈ Ci. So [[γωi �· γω]] ⊆ {ω, ωj} and
[[γωi �· γ{ω,ωj}]] ⊆ {ω}, and by (U6) again we get that
[[γωi

�· γω]] = [[γωi
�· γ{ω,ωj}]] = ∅, which leads to a contra-

diction. Hence, ω ∈ [[γωi �· γ{ω,ωj}]].
We have proved that ω ∈ [[γωi

�· γ{ω,ωj}]] for each ωj ∈
[[α]]. Thus ω ∈ [[(γωi

�· γ{ω,ω1}) ∧ . . . ∧ (γωi
�· γ{ω,ωk})]].

Using (U7) multiple times, we get that ω ∈
[[(γωi �· (γ{ω,ω1} ∨ . . . ∨ γ{ω,ωk}))]], that is, ω ∈ [[γωi �· α]].
This shows that min([[α]] ∩ Ci,≤ωi

) ⊆ [[γωi
�· α]].

Let us now show the other inclusion, i.e., [[γωi
�· α]] ⊆

min([[α]]∩Ci,≤ωi
). Let ω ∈ [[γωi

�· α]], and assume toward
a contradiction that ω /∈ min([[α]] ∩ Ci,≤ωi

).
Case 1: min([[α]] ∩ Ci,≤ωi

) = ∅. In this case, we have that
[[α]] ∩ Ci = ∅. This means that for each world ωj ∈ [[α]],
[[γωi

�· γωj ]] = ∅ (by definition of Ci and from (U1)). Yet
ω ∈ [[γωi �· α]], so by (U1) we know that ω ∈ [[α]], thus
[[γωi �· γω]] = ∅. Now, since ω ∈ [[γωi �· α]], we can write
that [[γωi �· α]] ∩ {ω} = {ω}. Yet by (U5), we know that
(γωi �· α) ∧ γω ` γωi �· γω . That is, ω ∈ [[γωi �· γω]]. This
contradicts the fact that [[γωi

�· γω]] = ∅.
Case 2: min([[α]] ∩ Ci,≤ωi

) 6= ∅. In this case, we have
that [[α]] ∩ Ci 6= ∅. Since ω ∈ [[γωi

�· α]], we can write
that [[γωi

�· α]] ∩ {ω} = {ω}. And similarly to case 1
above, we get by (U5) that ω ∈ [[γωi

�· γω]]. So by def-
inition of Ci and from (U1), we get that ω ∈ [[α]] ∩ Ci.
Yet we initially assumed (toward a contradiction) that ω /∈
min([[α]] ∩ Ci,≤ωi), which means that there exists a world
ω′ (i.e., ω′ ∈ min([[α]] ∩ Ci,≤ωi)) such that ω′ <ωi ω. By
(U5), (γωi �· α) ∧ γ{ω,ω′} ` γωi �· γ{ω,ω′}. Yet ω 6≤ωi ω

′,
so γωi �· γ{ω,ω′} = {ω′} (by definition of ≤ωi ). Hence,
ω /∈ [[γωi

�· α]], which leads to a contradiction.
We got for each world ωi ∈ Ω and for each formula α that

min([[α]] ∩ Ci,≤ωi
) = [[γωi

�· α]]. Then by (U8), we get for
all formulae ϕ, α that [[ϕ �· α]] =

⋃
{min([[α]] ∩ Ci,≤ωi

) |
ωi ∈ [[ϕ]]}, which concludes the proof.

Proof of Proposition 2. The fact that + satisfies (U1-U2)
and (U4-U8) can be verified trivially. Likewise, a counter-
example for (U3) can trivially be found by taking two con-
sistent formulae ϕ, α such that ϕ ∧ α ` ⊥.

Proof of Proposition 3. Let �· be a CL update operator, and
ϕ, α be two formulae. The case where ϕ ∧ α ` ⊥ is trivial,
so assume that ϕ ∧ α 0 ⊥. Let ω ∈ [[ϕ ∧ α]]. We need to
show that ω ∈ [[ϕ �· α]]. Since γω ` α, from (U2) we know
that γω �· α ≡ γω . And since γω ` ϕ, from (U8) we get that
ϕ �· α ≡ (ϕ∨γω) �· α ≡ (ϕ �· α)∨(γω �· α) ≡ (ϕ �· α)∨γω ,
which means that γω ` ϕ �· α, i.e., that ω ∈ [[ϕ �· α]]. This
concludes the proof.

Proof of Proposition 4 (proof sketch). Let �· be a
Credibility-Limited update operator, and let us show that �· d
is a KM update operator. By Theorem 1, there exists a cred-
ible faithful assignment ωi 7→ (≤ωi

, Ci) such that for all
formulae ϕ, α, [[ϕ �· α]] =

⋃
ωi∈[[ϕ]] min([[α]] ∩ Ci,≤ωi

).

For each world ωi, let ≤Ω
ωi

be the binary relation over all
worlds from Ω defined as ≤Ω

ωi
=≤ωi ∪Ei where Ei =⋃

{{(ω, ω′), (ω′, ω′)} | ω ∈ Ci, ω′ ∈ Ω \ Ci}. It is not
difficult to verify that the assignment ωi 7→≤Ω

ωi
is faithful

(the full proof can be found at (Fermé et al. 2023)).
Now, we intend to show that for all formulae ϕ, α,

[[ϕ �· d α]] =
⋃
ωi∈[[ϕ]] min([[α]],≤Ω

ωi
). Let ϕ, α be two for-

mulae. We consider two cases:
Case 1: assume first that there exists a formula ψ `

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

258



ϕ, ψ 0 ⊥, ψ �· α ` ⊥. We need to show that
[[ϕ �· d α]] = [[α]]. We know from Theorem 1 that [[ψ �· α]] =⋃
ωi∈[[ψ]] min([[α]] ∩ Ci,≤ωi

). Yet [[ψ �· α]] = ∅, which
means that for each world ωi ∈ [[ψ]], we have that [[α]]∩Ci =
∅, or stated equivalently, that for each world ω ∈ [[α]],
ω /∈ Ci. Let ωi ∈ [[ψ]]. Since ωi 7→≤Ω

ωi
is a faithful as-

signment, ωi <Ω
i ω. And we can see by definition of ≤Ω

ωi

that for all ω, ω′ /∈ Ci, if ω 6= ω′ then ω 6≤Ω
ωi
ω′, i.e., all

non-credible worlds w.r.t. ωi are pairwise incomparable. Yet
[[α]]∩Ci = ∅, so min([[α]],≤Ω

ωi
) = [[α]]. And since ωi ∈ [[ψ]]

and ψ |= ϕ, we get that
⋃
ωi∈[[ϕ]] min([[α]],≤Ω

ωi
) = [[α]],

and so [[ϕ �· d α]] =
⋃
ωi∈[[ϕ]] min([[α]],≤Ω

ωi
).

Case 2: assume that case 1 does not hold. In particular, this
means that for each complete formula ψ = γωi such that
γωi ` ϕ, we have that γωi �· ϕ 0 ⊥. Yet we know from
Theorem 1 that [[γωi

�· α]] = min([[α]] ∩ Ci,≤ωi
), so this

means that (i) for each world ωi ∈ [[ϕ]], [[α]] ∩ Ci 6= ∅. Now
for each world ωi ∈ [[ϕ]], by definition of≤Ω

ωi
, for all worlds

ω ∈ Ci, ω′ ∈ Ω, we can easily see that:

(ii) ω ≤Ω
ωi
ω′ iff ω ≤ωi

ω′ if ω′ ∈ Ci,
(iii) ω <Ω

i ω
′, otherwise.

For each world ωi ∈ [[ϕ]], we got that min([[α]] ∩ Ci,
≤ωi) = min([[α]] ∩ Ci,≤Ω

ωi
) (from (ii)), and min([[α]] ∩

Ci,≤Ω
ωi

) = min([[α]],≤Ω
ωi

) (from (i) and (iii)), so
min([[α]] ∩ Ci,≤ωi

) = min([[α]],≤Ω
ωi

). Hence, [[ϕ �· d α]] =⋃
ωi∈[[ϕ]] min([[α]],≤Ω

ωi
).

We have shown that ωi 7→≤Ω
ωi

is a faithful assign-
ment and that for all formulae ϕ, α, [[ϕ �· d α]] =⋃
ωi∈[[ϕ]] min([[α]],≤Ω

ωi
). From Proposition 1, this means

that �· d is a KM update operator.
The fact that ϕ �· α ` ϕ �· d α for all formulae ϕ, α, is

direct by definition of �· d and since �· d satisfies (U1). This
concludes the proof.

Proof of Theorem 2. (Only if part) Let ωi 7→ (Ci,
≤ωi

) be a credible faithful assignment, and �+ be an up-
date operator such that for all formulae ϕ, α, [[ϕ �+ α]] =⋃
ωi∈[[ϕ]] f(ωi, α), where for each ωi ∈ Ω and each formula

α, f(ωi, α) is defined as

f(ωi, α) =

{
min([[α]] ∩ Ci,≤ωi

), if [[α]] ∩ Ci 6= ∅,
{ωi}, otherwise.

Let us show that �+ is a CCL update operator, i.e., that is
satisfies (RSC), (SM) and (U2-U8). The proofs for (RSC),
(U3), (U4) and (U8) are direct by definition of �+, so let us
prove that the remaining postulates are satisfied.

(SM) Assume that ϕ �+ α ` α and α ` β, and let us show
that ϕ �+ β ` β. So let ω ∈ [[ϕ �+ β]] and let us prove that
ω ∈ [[β]]. By definition of �+, it is enough to prove for each
world ωi ∈ [[ϕ]] that f(ωi, β) ⊆ [[β]]. So let ωi ∈ [[ϕ]]. We
fall into one of the following two cases:
Case 1: [[β]]∩Ci 6= ∅. Then f(ωi, β) = min([[β]]∩Ci,≤ωi

),
so we directly get that f(ωi, β) ⊆ [[β]].
Case 2: [[β]] ∩ Ci = ∅. Since [[α]] ⊆ [[β]], we also get that

[[α]] ∩ Ci = ∅. So f(ωi, α) = f(ωi, β) (= {ωi}). Yet ϕ �+
α ` α, so f(ωi, α) ⊆ [[α]] ⊆ [[β]]. Hence, f(ωi, β) ⊆ [[β]].

(U2) Assume that ϕ ` α, and let us show that ϕ �+
α ≡ ϕ. We can prove that for each world ωi ∈ [[ϕ]],
min([[α]]∩Ci,≤ωi

) = {ωi} identically to the proof of Theo-
rem 1. Then by definition of �+, we get that f(ωi, α) = {ωi}.
Then,

⋃
ωi∈[[ϕ]] f(ωi, α) =

⋃
ωi∈[[ϕ]]{ωi}, from which we

get that [[ϕ �+ α]] = [[ϕ]]. Hence, ϕ �+ α ≡ ϕ.
(U5) Let us first show that for each world ωi ∈ [[ϕ]],

f(ωi, α) ∩ [[β]] ⊆ f(ωi, α ∧ β). When [[α]] ∩ Ci 6= ∅ and
[[β]]∩Ci 6= ∅, we must prove that min([[α]]∩Ci,≤ωi)∩[[β]] ⊆
min([[α ∧ β]] ∩ Ci,≤ωi), but this is done identically to the
proof of Theorem 1. When [[α]]∩Ci = ∅ then [[α ∧ β]]∩Ci =
∅, so f(ωi, α) ∩ [[β]] ⊆ f(ωi, α ∧ β). The remaining case
is when [[α]] ∩ Ci 6= ∅ and [[α ∧ β]] ∩ Ci = ∅. Then,
[[α]]∩ Ci ∩ [[β]] = ∅, thus min([[α]] ∩Ci,≤ωi

)∩ [[β]] = ∅, so
f(ωi, α)∩ [[β]] = ∅, and we get f(ωi, α)∩ [[β]] ⊆ f(ωi, α∧
β). We got f(ωi, α)∩[[β]] ⊆ f(ωi, α∧β) for each ωi ∈ [[ϕ]].
So,
⋃
ωi∈[[ϕ]] f(ωi, α) ∩ [[β]] ⊆

⋃
ωi∈[[ϕ]] f(ωi, α ∧ β), thus

[[(ϕ �+ α) ∧ β]] ⊆ [[ϕ �+ (α ∧ β)]]. Hence, (ϕ �+ α)∧β ` ϕ �+
(α ∧ β).

(U6) Assume that ϕ �+ α ` β and ϕ �+ β ` α. Simi-
larly to the proof of Theorem 1, we only need to prove that
ϕ �+ α ` ϕ �+ β. Toward a contradiction, assume that
ϕ �+ α 0 ϕ �+ β. This means that there exists a world
ω ∈ [[ϕ �+ α]] such that ω /∈ [[ϕ �+ β]]. By definition of �+,
this implies that there exists a world ωi ∈ [[ϕ]] such that
ω ∈ f(ωi, α) and ω /∈ f(ωi, β).
Case 1: [[α]] ∩ Ci = ∅. Then f(ωi, α) = {ωi}. But
since ϕ �+ α ` β, f(ωi, α) ⊆ [[β]], so ωi ∈ [[β]]. Yet
ωi ∈ Ci by definition of Ci, so [[β]] ∩ Ci 6= ∅. In that case,
f(ωi, β) = min([[β]] ∩ Ci,≤ωi) 6= ∅. Since ϕ �+ β ` α,
f(ωi, β) ⊆ [[α]], so min([[β]]∩Ci,≤ωi) ⊆ [[α]], which means
that there is a world ω ∈ [[β]] ∩ Ci ∩ [[α]] and contradicts the
fact that [[α]] ∩ Ci = ∅.
Case 2: [[α]] ∩ Ci 6= ∅. In this case, since f(ωi, α) =
min([[α]] ∩ Ci,≤ωi

) 6= ∅, and since ϕ �+ α ` β, f(ωi, α) ⊆
[[β]], so min([[α]] ∩ Ci,≤ωi

) ⊆ [[β]], thus [[β]] ∩ Ci 6= ∅,
so f(ωi, β) = min([[β]] ∩ Ci,≤ωi

). Then the proof that a
contradiction is raised in this case is done identically to the
proof of Theorem 1.
Since both cases lead to a contradiction, we get that ϕ �+ α `
ϕ �+ β. Hence, ϕ �+ α ≡ ϕ �+ β.

(U7) Let ϕ be a complete formula, i.e., ϕ = γωi
for some

world ωi ∈ Ω. We need to show that (γωi
�· α) ∧ (γωi

�·
β) ` γωi

�· (α ∨ β), i.e., that [[γωi
�· α]] ∩ [[γωi

�· β]] ⊆
[[γωi

�· (α ∨ β)]]. So let ω ∈ [[γωi
�· α]] ∩ [[γωi

�· β]]. We
have ω ∈ f(ωi, α) ∩ f(ωi, β). Let us show that ω ∈
[[γωi

�· (α ∨ β)]]. We fall into one of the following cases:
Case 1: [[α]] ∩ Ci = [[β]] ∩ Ci = ∅. In this case, f(ωi, α) =
f(ωi, β) = {ωi}, and so ω = ωi. Yet ([[α]]∪ [[β]])∩ Ci = ∅,
so [[α ∨ β]]∩ Ci = ∅, thus f(ωi, α∨ β) = {ωi}. This shows
that ω ∈ f(ωi, α ∨ β), so ω ∈ [[γωi �· (α ∨ β)]].
Case 2: [[α]] ∩ Ci = ∅ iff [[β]] ∩ Ci 6= ∅. We can as-
sume that [[α]] ∩ Ci = ∅ and [[β]] ∩ Ci 6= ∅: the proof
in the dual case when [[α]] ∩ Ci 6= ∅ and [[β]] ∩ Ci = ∅
is similar since α and β play symmetrical roles. Since
[[α]] ∩ Ci = ∅, we get that f(ωi, α) = {ωi}. Then, ω = ωi.
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Yet ([[α]] ∪ [[β]]) ∩ Ci 6= ∅, so [[α ∨ β]] ∩ Ci 6= ∅, thus
f(ωi, α∨ β) = min([[α ∨ β]]∩ Ci,≤ωi). Yet ωi ∈ [[α ∨ β]],
ωi ∈ Ci by definition of Ci, and ωi <ωi ω

′ for each world
ω′ ∈ [[α ∨ β]] ∩ Ci by definition of ≤ωi . This means that
ωi ∈ min([[α ∨ β]] ∩ Ci,≤ωi

). And since ω = ωi, we get
that ω ∈ min([[α ∨ β]]∩Ci,≤ωi

), so ω ∈ f(ωi, α∨β), thus
ω ∈ [[γωi

�· (α ∨ β)]].
Case 3: [[α]] ∩ Ci 6= ∅ and [[β]] ∩ Ci 6= ∅. In this case,
f(ωi, α) = min([[α]] ∩ Ci,≤ωi

) and f(ωi, β) = min([[β]] ∩
Ci,≤ωi). And since ([[α]]∪ [[β]])∩Ci 6= ∅, we also have that
f(ωi, α∨β) = min([[α ∨ β]]∩Ci,≤ωi). Then the proof that
ω ∈ min([[α ∨ β]]∩Ci,≤ωi) for this case is done identically
to the proof of Theorem 1.
In all cases, we showed [[γωi

�· α]] ∩ [[γωi
�· β]] ⊆

[[γωi
�· (α ∨ β)]]. So, (γωi

�· α)∧(γωi
�· β) ` γωi

�· (α∨β).
This concludes the (only if) part of the proof.

(If part) Let �+ be a CCL update operator, and let us con-
sider the assignment associating every world ωi with the pair
(Ci,≤ωi

) where Ci is defined as the set Ci = {ω ∈ Ω |
[[γωi

�· γω]] = {ω}}, and ≤ωi
is the relation ≤ωi

⊆ Ci × Ci
defined for all worlds ω, ω′ ∈ Ci as ω ≤ωi

ω′ if and only
if (ω = ωi or [[γωi

�· γ{ω,ω′}]] = {ω}). Let ωi ∈ Ω. Note
that the construction of the assignment above is identical to
the one from a CL operator �· in the (if) part of the proof of
Theorem 1. As a consequence, some parts of this proof are
identical to some of the (if) parts of the proof of Theorem 1,
namely those when the postulate (U1) is not used. So we can
already state that {ωi} ⊆ Ci, that ≤ωi

satisfies (reflexivity)
and (antisymmetry). We still need to show that ≤ωi

satis-
fies (transitivity), which will be enough to conclude that the
assignment ω 7→ (≤ωi

, Ci) is a credible faithful assignment.
(Transitivity) Let ω, ω′, ω′′ ∈ Ci, and assume that ω ≤ωi

ω′ and ω′ ≤ωi
ω′′. We must show that ω ≤ωi

ω′′. The proof
that {ω, ω′, ω′′}∩{ωi} = ∅ is covered in the proof of Theo-
rem 1, as well as the case when the three worlds ω, ω′ and ω′′

are not pairwise different. So assume that ω 6= ω′, ω′ 6= ω′′

and ω 6= ω′′. By definition of ≤ωi and since ω ≤ωi ω′

and ω′ ≤ωi ω
′′, we know that [[γωi �+ γ{ω,ω′}]] = {ω} and

[[γωi
�+ γ{ω′,ω′′}]] = {ω′}. By (U5), (γωi

�+ γ{ω,ω′,ω′′}) ∧
γ{ω,ω′} ` γωi

�+ γ{ω,ω′}. Yet [[γωi
�+ γ{ω,ω′}]] = {ω},

which means that ω′ /∈ [[γωi �+ γ{ω,ω′,ω′′}]]. Using a simi-
lar reasoning, we get that ω′′ /∈ [[γωi

�+ γ{ω,ω′,ω′′}]]. Hence,
by (RSC) and (U3), we get that [[γωi �+ γ{ω,ω′,ω′′}]] ∈
{{ω}, {ωi}}. But [[γωi

�+ γω]] = {ω} by definition of
Ci and since ω ∈ Ci, so γωi

�+ γω ` γω . And
since γω ` γ{ω,ω′,ω′′}, by (SM) we get that γωi

�+
γ{ω,ω′,ω′′} ` γ{ω,ω′,ω′′}, that is, [[γωi

�+ γ{ω,ω′,ω′′}]] =
{ω} (recall that {ω, ω′, ω′′} ∩ {ωi} = ∅). Using (SM)
again and a similar argument, we get [[γωi �+ γ{ω,ω′′})]] ⊆
{ω, ω′′}. Then by (U6), since [[γωi

�+ γ{ω,ω′′})]] ⊆
{ω, ω′, ω′′} and [[γωi

�+ γ{ω,ω′,ω′′})]] ⊆ {ω, ω′′}, we get
that [[γωi �+ γ{ω,ω′′})]] = [[γωi �+ γ{ω,ω′,ω′′})]] = {ω}. This
shows that ω ≤ωi

ω′′, so ≤ωi
satisfies (transitivity).

The rest of the proof showing that ωi 7→ (Ci,≤ωi
) is faith-

ful is identical to the one of Theorem 1.
We now intend to show that for each formula α, we have

that f(ωi, α) = [[γωi
�+ α]]. Let us write the set of models of

α as [[α]] = {ω1, . . . , ωk} (k ≥ 1). Assume first that ωi ∈
[[α]]. Since ωi ∈ Ci and ωi <i ωj for each ωj ∈ [[α]], we
get that f(ωi, α) = {ωi}. And by (U2), [[γωi �+ α]] = {ωi}.
Hence, f(ωi, α) = [[γωi

�+ α]]. So assume now in the rest of
the proof that ωi /∈ [[α]]. We consider two cases separately:

Case 1: [[α]] ∩ Ci = ∅. Then f(ωi, α) = {ωi}. We
want to show that [[γωi

�+ α]] = {ωi}. Using (RSC) we
can see that it is enough to show that γωi

�+ α 0 α. Let
us first show that for each world ωj ∈ [[α]], γωi

�+ γωj ≡
γωi

. So let ωj ∈ [[α]]. Since [[α]] ∩ Ci = ∅, we get
that ωj /∈ Ci, and then by definition of Ci we know that
[[γωi �+ γωj ]] 6= {ωj}. And by (U3), [[γωi �+ γωj ]] 6= ∅.
So by (RSC), we get that [[γωi �+ γωj ]] = {ωi}. We got
that γωi �+ γωj ≡ γωi for each world ωj ∈ [[α]]. Thus
ωi ∈ [[(γωi �+ γω1) ∧ . . . ∧ (γωi

�+ γωk)]]. Using (U7) mul-
tiple times, we get that ωi ∈ [[(γωi

�+ (γω1 ∨ . . . ∨ γωk))]],
that is, ωi ∈ [[γωi

�+ α]]. But we know that ωi ∈ Ci, and since
[[α]] ∩ Ci = ∅, ωi /∈ [[α]]. We got that ωi ∈ [[γωi

�+ α]] \ [[α]],
which shows that γωi

�+ α 0 α. Then from (RSC),
[[γωi

�+ α]] = {ωi}, which concludes the proof for case 1.
Case 2: [[α]]∩Ci 6= ∅. So f(ωi, α) = min([[α]]∩Ci,≤ωi

),
so we want to show that min([[α]] ∩ Ci,≤ωi

) = [[γωi
�+ α]].

Let us first show that min([[α]] ∩ Ci,≤ωi
) ⊆ [[γωi

�+ α]].
So let ω ∈ min([[α]] ∩ Ci,≤ωi

), and let us show
that ω ∈ [[γωi �+ α]]. Since ω ∈ [[α]], we can write
[[α]] = {ω, ω1} ∪ . . . ∪ {ω, ωk}. Let ωj ∈ [[α]] and
let us prove that ω ∈ [[γωi �· γ{ω,ωj}]]. Since ω ∈ Ci,
ω ∈ [[γωi

�+ γω]], so by (SM) and (RSC) and since ωi 6= ω,
we get that [[γωi

�+ γ{ω,ωj}]] ⊆ {ω, ωj}.
Case 2-i: ωj ∈ Ci. If ωj 6= ω, since ω ∈ [[α]] ∩ Ci, we
know that ωj 6≤ωi ω (since ≤ωi is antisymmetric), thus
[[γωi

�+ γ{ω,ωj}]] 6= {ωj} by definition of ≤ωi
. So from

(U3), we get that ω ∈ [[γωi
�+ γ{ω,ωj}]].

Case 2-ii: ωj /∈ Ci. Assume toward a contra-
diction that ω /∈ [[γωi

�+ γ{ω,ωj}]]. Then by (U3)
[[γωi

�+ γ{ω,ωj}]] = {ωj} (and ω 6= ωj). But by (U5),
(γωi �+ γ{ω,ωj}) ∧ γωj ` γωi �+ γωj , which means that
ωj ∈ [[γωi

�+ γωj ]] and contradicts ωj /∈ Ci.
We proved that ω ∈ [[γωi

�+ γ{ω,ωj}]] for each ωj ∈ [[α]].
Thus ω ∈ [[(γωi �+ γ{ω,ω1}) ∧ . . . ∧ (γωi �+ γ{ω,ωk})]].
Using (U7) multiple times, we get that ω ∈
[[(γωi

�+ (γ{ω,ω1} ∨ . . . ∨ γ{ω,ωk}))]], i.e., ω ∈ [[γωi
�+ α]].

This shows that min([[α]] ∩ Ci,≤ωi
) ⊆ [[γωi

�+ α]] in case 2.
Let us now show the other inclusion in case 2, i.e.,

[[γωi
�+ α]] ⊆ min([[α]] ∩ Ci,≤ωi

). Let ω ∈ [[γωi
�+ α]], and

assume toward a contradiction that ω /∈ min([[α]]∩Ci,≤ωi
).

Since ω ∈ [[γωi
�+ α]], we get that [[γωi

�+ α]] ∩ {ω} = {ω}.
By (U5), (γωi

�+ α) ∧ γω ` ϕ �+ γω , thus ω ∈ [[γωi
�+ γω]].

So by definition of Ci, ω ∈ [[α]]∩Ci. Yet ω /∈ min([[α]]∩Ci,
≤ωi), so there is a world ω′ ∈ [[α]] ∩ Ci such that ω′ <i ω.
By (U5), (γωi �+ α) ∧ γ{ω,ω′} ` γωi �+ γ{ω,ω′}. Yet
[[γωi

�+ γ{ω,ω′}]] = {ω′} by definition of ≤ωi
. Since ω 6≤ωi

ω′, we get ω /∈ [[γωi
�+ α]], which leads to a contradiction.

We got for each world ωi ∈ Ω and for each formula α
that f(ωi, α) = [[γωi

�+ α]]. Then from (U8), we get for all
formulae ϕ, α that [[ϕ �+ α]] =

⋃
{f(ωi, α) | ωi ∈ [[ϕ]]},

which concludes the proof.
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