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Iteration of Iterated Belief Revision

The behavior of iterated belief revision operators with respect to iteration has been characterized by a set of four postulates proposed by Darwiche and Pearl. These postulates give constraints on a single iteration step, and this is not enough to forbid some pathological operators. In this paper, we propose a generalization of these postulates to solve this issue and we study its implications. One surprising consequence is that, for TPO-representable operators (i.e., for operators defined as transitions on total pre-orders on interpretations), there are very few operators that satisfy this generalization.

Introduction

Belief revision aims to correct our current beliefs when reliable new pieces of information arrive and contradict these beliefs. This capability to accommodate conflicting evidence in our beliefs is essential if we want to build truly autonomous robots. For instance, if we send a robot to a new planet, we will teach the robot what we know about this planet, including its physics. The robot will use this information to make decisions, elaborate plans, and so on. But if, upon arrival, the robot discovers evidence that contradicts some of these beliefs, it must be able to modify its beliefs accordingly.

The standard AGM (Alchourrón, Gärdenfors, Makinson) characterization of belief revision [START_REF] Alchourrón | On the logic of theory change: Partial meet contraction and revision functions[END_REF][START_REF] Gärdenfors | Knowledge in flux[END_REF][START_REF] Katsuno | Propositional knowledge base revision and minimal change[END_REF][START_REF] Fermé | AGM 25 years: Twenty-five years of research in belief change[END_REF] has been shown to be the right one, as multiple representation theorems have demonstrated that all natural constructive ways to define belief revision operators satisfy all AGM postulates. Furthermore, this approach has been shown to have tight links with other logical reasoning frameworks, such as non-monotonic inference relations [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF][START_REF] Lehmann | What does a conditional knowledge base entail?[END_REF][START_REF] Gärdenfors | Belief revision and nonmonotonic logic: two sides of the same coin ?[END_REF] or possibilistic logic [START_REF] Dubois | Handbook of Logic in Artificial Intelligence and Logic Programming[END_REF][START_REF] Dubois | Epistemic entrenchment and possibilistic logic[END_REF].

Capturing the core of the belief revision problem is an impressive achievement, but it does not end the story. Nearly all postulates have been criticized, and interesting new operators can be defined when we remove or weaken some of these postulates.

However, even the basic belief revision problem has received criticism for the standard AGM characterization, as it does not provide any rationality constraint on the iteration of the revision process. Belief revision is inherently an iterative process, as each new piece of information received requires a revision of current beliefs. Many efforts were made during the nineties to address this iteration issue.

While alternative postulates and generalized operators have been proposed [START_REF] Konieczny | Improvement operators[END_REF][START_REF] Konieczny | Taxonomy of improvement operators and the problem of minimal change[END_REF], the approach by [START_REF] Darwiche | On the logic of iterated belief revision[END_REF] is widely regarded as providing a suitable framework for iterated belief revision. In this approach, the agent's epistemic state Ψ is represented by more complex objects than simple logical theories. From Ψ, the agent's current beliefs, Bel(Ψ), can be extracted. Additionally, Ψ contains information on the relative plausibility of currently disbelieved information, which guides the iterated revision process. To ensure rational behavior during the iteration of belief revision, four additional postulates are considered. These postulates aim to guarantee the conservation of conditional (counterfactual) information throughout the iteration process.

The AGM postulates only consider one iteration of belief revision, while the DP postulates consider two iterations and provide conservation properties between any epistemic states in the n+1 and n+2 iterations. It is expected that linking these two consecutive steps will recursively give constraints on a complete sequence of any number of iterations. While this is partly true, these constraints may not be strong enough to completely forbid all inappropriate behaviors1 .

For instance, it has been observed in [START_REF] Konieczny | Improvement operators[END_REF]) that the independence of syntax expressed for one iteration does not imply the independence of syntax for any number of iterations. Therefore, an interesting question is whether linking the n+1 and n+2 iterations, as done in the DP operators, is sufficient for characterizing any number of iterations.

In this paper, we investigate this issue and show that this is not the case. We go one iteration further by providing adaptations of the DP postulates when linking the n+2 and n+3 iterations. We demonstrate that this rules out very unintuitive operators and study the consequences of these postu-lates for TPO-representable operators, i.e., for operators defined as transitions on total pre-orders on interpretations.

These new postulates allow us to forbid operators that are not homogeneous enough, i.e., whose behavior can change drastically from one iteration to the next. Thus, they correspond to operators that maintain a similar behavior iteration after iteration.

To illustrate why non-homogeneous operators are problematic, let us consider the following construction on TPOrepresentable operators. We will consider two well-known operators from the literature: Nayak's lexicographical revision [START_REF] Nayak | Iterated belief change based on epistemic entrenchment[END_REF] • L , and Boutilier's natural revision [START_REF] Boutilier | Iterated revision and minimal change of conditional beliefs[END_REF] • N . These can be argued as being the extreme cases of operators allowed by DP postulates, where natural revision is the one that minimally changes the preorder at each revision, and lexicographic revision is the one that maximally changes it, resulting in a drastically different behavior. Now, let us build a new belief revision operator as follows: for each possible formula of the language (up to logical equivalence), select at random • L or • N (let's say • L with a probability of 0.5, and • N otherwise), and for any epistemic state (TPO) Ψ, use the operator that corresponds to its beliefs (Bel(Ψ)). We will denote this operator as

• L/N .
This operator satisfies all DP postulates, so it is acceptable according to the standard characterization. However, this operator exhibits a very peculiar behavior when used in a sequence of revisions. At each iteration, there is an equal chance that we use lexicographic or natural revision, resulting in a drastically different behavior. This is not related to the new piece of information, current beliefs, or the sequence of iterations. It is just determined by a random draw, which is not appropriate. These kinds of operators will not be allowed by our proposed postulates.

We will propose new postulates for iterated revision with homogeneous behavior and provide the corresponding characterization results. We will also examine some surprising consequences for TPO-representable operators.

Preliminaries

We consider a propositional language L P built up from a finite (and of cardinality at least 2) set of propositional variables P and the usual connectives. The set of consistent formulae is denoted by L * P . The symbol ⊥ (resp. ) is the Boolean constant always false (resp. true). An interpretation (or world) is a mapping from P to {0, 1}. The set of all worlds on L P is denoted by Ω. |= denotes logical entailment, ≡ logical equivalence, and [ϕ] denotes the set of models of the formula ϕ. Given a set of worlds E ⊆ Ω, we denote by γ S any formula such that [γ S ] = S. When S is a singleton set S = {ω}, γ S is abreviated as γ ω .

In iterated belief change, it is standard to assume that the current set of beliefs of an agent is represented by an epistemic state. An epistemic state allows one to represent the current beliefs of the agent and some conditional information guiding the revision process. In all generality, an epistemic state can be any object Ψ from which the set of beliefs of the agent can be extracted through a mapping Bel, so that Bel(Ψ) is a propositional formula from L P . Formally: Definition 1 (Epistemic Space). An epistemic space E is a tuple U, Bel , where U is a set and Bel is a mapping Bel : U → L * P . A simple example is the TPO-based epistemic space: Example 1. Let us define the TPO-based epistemic space2 

The TPO-based epistemic space is the epistemic space E tpo = U tpo , Bel where: • U tpo is the set of all TPOs over the set of all worlds from Ω; • Bel is the mapping associating each TPO from U tpo with a formula ψ ∈ L * P such that [ψ] = min(Ω, ). A belief revision operator • on an epistemic space E = U, Bel associates every epistemic state Ψ from U and every consistent formula µ with a new epistemic state from U , denoted by Ψ • µ. Thus, • is a mapping • : U × L * P → U . In the rest of the paper, when we refer to a revision operator • without specifying the epistemic space on which it is defined, we will assume that • is defined on some arbitrary epistemic space. Furthermore, we will focus on TPOrepresentable revision operators, which can be viewed as transitions between TPOs, elements of the TPO-based epistemic space. For a precise definition and to see that this is just a subclass of DP iterated revision operators, please refer to [START_REF] Schwind | On the representation of Darwiche and Pearl's epistemic states for iterated belief revision[END_REF].

Let us recall the set of postulates which are expected for such operators to have a good iterative behavior [START_REF] Darwiche | On the logic of iterated belief revision[END_REF]: Definition 2 (DP operator [START_REF] Darwiche | On the logic of iterated belief revision[END_REF]. A revision operator • is a DP operator if the following properties are satisfied, for each epistemic state Ψ and all formulae µ, µ , α:

(R*1) Bel(Ψ • µ) |= µ (R*2) If Bel(Ψ) ∧ µ |= ⊥, then Bel(Ψ • µ) ≡ Bel(Ψ) ∧ µ (R*3) If µ |= ⊥, then Bel(Ψ • µ) |= ⊥ (R*4) If µ ≡ µ , then Bel(Ψ • µ) ≡ Bel(Ψ • µ ) (R*5) Bel(Ψ • µ) ∧ µ |= Bel(Ψ • (µ ∧ µ )) (R*6) If Bel(Ψ • µ) ∧ µ |= ⊥, then Bel(Ψ • (µ ∧ µ )) |= Bel(Ψ • µ) ∧ µ (C1) If α |= µ, then Bel((Ψ • µ) • α) ≡ Bel(Ψ • α) (C2) If α |= ¬µ, then Bel((Ψ • µ) • α) ≡ Bel(Ψ • α) (C3) If Bel(Ψ • α) |= µ, then Bel((Ψ • µ) • α) |= µ (C4) If Bel(Ψ • α) |= ¬µ, then Bel((Ψ • µ) • α) |= ¬µ
The postulates (R*1-R*6) are a direct adaptation of the standard KM postulates to epistemic states. The remaining four postulates, (C1-C4), add constraints w.r.t. iteration.

Darwiche and Pearl also provided a characterization of DP operators in terms of TPOs over worlds: Definition 3 (DP assignment). Given an epistemic space E = U, Bel , a mapping Ψ → Ψ associating each epistemic state Ψ ∈ U with a TPO3 over worlds Ψ is a DP assignment if and only if for all worlds ω, ω ∈ Ω:

(1) If ω |= Bel(Ψ) and ω |= Bel(Ψ), then ω Ψ ω (2) If ω |= Bel(Ψ) and ω |= Bel(Ψ), then ω ≺ Ψ ω (CR1) If ω |= µ and ω |= µ, then ω Ψ ω ⇔ ω Ψ•µ ω (CR2) If ω |= µ and ω |= µ, then ω Ψ ω ⇔ ω Ψ•µ ω (CR3) If ω |= µ and ω |= µ, then ω ≺ Ψ ω ⇒ ω ≺ Ψ•µ ω (CR4) If ω |= µ and ω |= µ, then ω Ψ ω ⇒ ω Ψ•µ ω
Theorem 1 ( [START_REF] Darwiche | On the logic of iterated belief revision[END_REF]). An operator • is a DP operator if and only if there exists a DP assignment Ψ → Ψ such that for each epistemic state Ψ and each for-

mula µ, [Bel(Ψ • µ)] = min([µ], Ψ ).
When a DP assignment exists for •, we will say it corresponds to •. As a matter of fact, when such assignment exists it is unique 4 .

Conditions (1) and (2) above define the notion of faithful assignment [START_REF] Darwiche | On the logic of iterated belief revision[END_REF][START_REF] Katsuno | Propositional knowledge base revision and minimal change[END_REF]. Conditions (CR1-CR4) correspond to the iteration postulates (C1-C4). They impose constraints on the TPO Ψ•µ : (CR1) and (CR2), the "rigidity" conditions, say that the order between models of µ is preserved and the order between models of ¬µ is also preserved. (CR3) and (CR4) say that there is no worsening between the models of µ and the models of ¬µ.

Let us now give three important instances of DP operators. Example 2. We consider the Boutilier's natural revision operator • N defined over the epistemic space E tpo . This operator associates each TPO Ψ ∈ U tpo and each formula µ with a TPO Ψ • N µ that satisfies min(Ψ

• N µ) = min([µ], Ψ )
and the following condition:

(Nat) If ω, ω / ∈ min([µ], Ψ), then ω Ψ ω ⇔ ω Ψ• N µ ω , where Ψ denotes Ψ and Ψ• N µ denotes Ψ • N µ.
That is, Boutilier's natural revision operator on E tpo consists in selecting the set of all models of µ that are minimal according to an input TPO, and defining this set as the first level of the revised TPO while leaving the rest of the TPO unchanged. Example 3. Another example is the Nayak's lexicographic operator • L defined also in the epistemic space E tpo . It is defined by min(Ψ

• L µ) = min([µ], Ψ), conditions (CR1- CR4) and: (Lex) If ω |= µ and ω |= µ, then ω ≺ Ψ• L µ ω
Lexicographic revision moves all models of µ below all models of ¬µ, and keeps the relationships between worlds of µ (resp. of ¬µ) unchanged. Example 4. Another example is the Booth and Meyers' restrained operator • R defined also in the epistemic space E tpo . It is defined by min(Ψ • R µ) = min([µ], Ψ), conditions (CR1-CR2) and the two following conditions: 

(PR) If ω |= µ and ω |= µ, then ω Ψ ω =⇒ ω ≺ Ψ• R µ ω 111 
Ψ • R (p ⇔ ¬q) Figure 1: Natural •N , lexicographic •L & restrained •R revision. (DR) If ω |= µ, ω |= µ and ω / ∈ min([µ], Ψ ), then ω ≺ Ψ ω =⇒ ω ≺ Ψ• R µ ω
Note that (PR) is a strenghtening of both (CR3) and (CR4), so accordingly • R is a DP operator.

The restrained revision operator ensures that the models of µ that were as plausible as the models of its negation before the revision step become strictly more plausible after the revision, but it takes care not to make more changes than necessary (except that the minimal models of µ for Ψ are now the minimal models of Ψ • R µ, as required).

Let us now illustrate how the behaviors of these three revision operators differ from each other. Example 5. Let P = {p, q, r}. Figure 1 depicts a TPO Ψ over worlds5 , and the revised TPOs Ψ

• N (p ⇔ ¬q), Ψ • L (p ⇔ ¬q) and Ψ• R (p ⇔ ¬q).
We have that Bel(Ψ) ≡ p∧q, and for the three operators, Bel(Ψ • N (p ⇔ ¬q)) ≡ p ∧ ¬q, but the three associated TPOs are different. Therefore, in later iterations, their respective beliefs will differ.

These are three well-known instances of DP revision operators, but there are many others (see, e.g., [START_REF] Rott | Shifting priorities: Simple representations for twenty-seven iterated theory change operators[END_REF]).

Note also that they are DP revision operators that are not TPO-representable, i.e., that require more complex structure, such as an OCF (Ordinal Conditional Function) [START_REF] Spohn | Ordinal Conditional Functions: A Dynamic Theory of Epistemic States[END_REF], for being formally defined [START_REF] Schwind | On the representation of Darwiche and Pearl's epistemic states for iterated belief revision[END_REF].

Iteration of Iterated Postulates

So let us now propose our extended iteration postulates. The idea is to provide conditions between the n + 2 and n + 3 iterations to ensure that the change behavior remains the same throughout iterations and to characterize homogeneous operators. Let us first propose an initial version that gives rise to HDP (Homogeneous DP) operators. Definition 4 (Homogenous DP revision operator). A DP operator • is a Homogeneous DP revision operator (HDP revision operator for short) if the following properties are satisfied, for each epistemic state Ψ and all formulae µ, α, α 1 , α 2 , β:

(CE1) If β |= µ, then Bel(Ψ • µ • α • β) ≡ Bel(Ψ • α • β) (CE2) If β |= ¬µ, then Bel(Ψ•µ•α•β) ≡ Bel(Ψ•α•β) (CE3) If Bel(Ψ • α • β) |= µ, then Bel(Ψ • µ • α • β) |= µ (CE4) If Bel(Ψ•α•β) |= ¬µ, then Bel(Ψ•µ•α•β) |= ¬µ (CE5) If α 1 ∧β ≡ α 2 ∧β, Bel(Ψ•α 1 ) |= ¬β and Bel(Ψ• α 2 ) |= ¬β, then Bel(Ψ • α 1 • β) ≡ Bel(Ψ • α 2 • β)
These postulates express rigidity and monotonicity conditions in a similar vein to the DP postulates (C1-C4). The difference is that while (C1-C4) express these conditions on conditional beliefs, (CE1-CE4) extends them to the level of change in conditional beliefs. Postulate (CE5) is dedicated to the homogeneity of change. It states that a formula β whose conjunction with two formulae α 1 and α 2 is identical will have exactly the same impact (i.e., will lead to the same beliefs) regardless of whether we revise by α 1 or α 2 . Intuitively, this means that the plausibility of the formula α 1 ∧ β will change identically if we revise by α 1 or by α 2 .

It is easy to see that (CE1-CE4) strengthen (C1-C4) (under a very light condition): Proposition 1. Let • be an operator that satisfies (Tau).

(Tau) Ψ • = Ψ For each i ∈ {1, . . . , 4}, if an operator • satisfies (CEi) then it satisfies (Ci).
Proof. The proof is direct by replacing α with in the statement of each postulate (CEi), from which we get the statement of (Ci).

Let us see the corresponding conditions on the faithful assignment. Definition 5 (Homogeneous DP assignment). A DP assignment Ψ → Ψ is a Homogeneous DP assignment (HDP assignment for short) if and only if for each epistemic state Ψ, all formulae µ, α, α 1 , α 2 , and all worlds ω, ω ∈ Ω:

(CRE1) If ω |= µ and ω |= µ, then ω Ψ•µ•α ω ⇔ ω Ψ•α ω (CRE2) If ω |= µ and ω |= µ, then ω Ψ•µ•α ω ⇔ ω Ψ•α ω (CRE3) If ω |= µ and ω |= µ, then ω ≺ Ψ•α ω ⇒ ω ≺ Ψ•µ•α ω (CRE4) If ω |= µ and ω |= µ, then ω Ψ•α ω ⇒ ω Ψ•µ•α ω (CRE5) If ω |= α 1 ∧ α 2 , ω |= ¬α 1 ∧ ¬α 2 and ω / ∈ min([α 1 ], Ψ ) ∪ min([α 2 ], Ψ ), then ω Ψ•α1 ω ⇔ ω Ψ•α2 ω (CRE1-CRE4)
do not require a lot of explanation, since they can be compared to the standard (CR1-CR4), and it can be seen that we go one step further. Instead of giving conditions between the current epistemic state and the one after one iteration, we give conditions between the epistemic states after one and two iterations.

However, it is more interesting to comment on (CRE5) since it provides another interpretation of the homogeneity of change. (CRE5) states that for non-minimal worlds of the new piece of information, each revision must lead to the same increase in plausibility. In other words, regardless of the formula used to revise the epistemic state, if ω is a model of this formula, its (potential) increase in plausibility (relative to non-models of the formula) will be the same.

Let us now state the correspondence between the new postulates and their semantical counterparts. Proposition 2. For each i ∈ {1, . . . , 5}, a DP revision operator • satisfies (CEi) if and only if its corresponding DP assignment satisfies (CREi).

Proof. Let • be a DP revision operator, Ψ → Ψ be its corresponding DP assignment. Let Ψ be an epistemic state and µ, α, α 1 , α 2 be formulae.

(Only if part) Let ω, ω be two worlds. Assume that • satisfies (CE1), and assume that ω, ω |= µ.

Then ω Ψ•µ•α ω iff ω |= Bel(Ψ • µ • α • γ {ω,ω } ) (by Theorem 1) iff ω |= Bel(Ψ • α • γ {ω,ω } ) (by (CE1)) iff ω Ψ•α ω (by Theorem 1). So ω Ψ•µ•α ω ⇔ ω Ψ•α ω , thus Ψ → Ψ satisfies (CRE1).
Assume that • satisfies (CE2), and assume that ω, ω |= µ.

Then ω Ψ•µ•α ω iff ω |= Bel(Ψ • µ • α • γ {ω,ω } ) (by Theorem 1) iff ω |= Bel(Ψ • α • γ {ω,ω } ) (by (CE2)) iff ω Ψ•α ω (by Theorem 1). So ω Ψ•µ•α ω ⇔ ω Ψ•α ω , thus Ψ → Ψ satisfies (CRE2).
Assume that • satisfies (CE3), and assume that ω |= µ, ω |= µ, and ω

≺ Ψ•α ω . By Theorem 1, [Bel(Ψ • α • γ {ω,ω } )] = {ω}. Then by (CE3) and since Bel(Ψ • α • γ {ω,ω } ) |= µ, we get that Bel(Ψ • µ • α • γ {ω,ω } ) |= µ, which means that Bel(Ψ • µ • α • γ {ω,ω } ) = {ω} (by (R*1) and (R*3)), from which we get that ω ≺ Ψ•µ•α ω by Theorem 1. We got that ω ≺ Ψ•α ω =⇒ ω ≺ Ψ•µ•α ω , thus Ψ → Ψ satisfies (CRE3).
Assume that • satisfies (CE4), and assume that ω |= µ, ω |= µ, and

ω Ψ•α ω . By Theorem 1, ω |= Bel(Ψ • α • γ {ω,ω } ), which means that Bel(Ψ • α • γ {ω,ω } ) |= ¬µ.
Then by (CE4) we get that Bel(Ψ

• µ • α • γ {ω,ω } ) |= ¬µ, which means that ω |= Bel(Ψ • µ • α • γ {ω,ω } ) (by (R*1)), from which we get that ω Ψ•µ•α ω by Theorem 1. We got that ω Ψ•α ω =⇒ ω Ψ•µ•α ω , thus Ψ → Ψ satisfies (CRE4).
Assume that • satisfies (CE5), and assume

that ω |= α 1 ∧ α 2 , ω |= ¬α 1 ∧ ¬α 2 and ω / ∈ min([α 1 ], Ψ ) ∪ min([α 2 ], Ψ ). We directly get that α 1 ∧ γ {ω,ω } ≡ α 2 ∧ γ {ω,ω } (≡ γ ω ). And by Theorem 1 we know that Bel(Ψ • α 1 ) |= ¬γ {ω,ω } and Bel(Ψ • α 2 ) |= ¬γ {ω,ω } . Then ω Ψ•α1 ω iff ω |= Bel(Ψ • α 1 • γ {ω,ω } ) (by Theorem 1) iff ω |= Bel(Ψ • α 2 • γ {ω,ω } ) (by (CE5)) iff ω Ψ•α2 ω (by Theorem 1). So ω Ψ•α1 ω ⇔ ω Ψ•α2 ω , thus Ψ → Ψ satisfies (CRE5). (If part) Let β be a formula. Note by Theorem 1 that [Bel(Ψ•α•β)] = min([β], Ψ•α ) and [Bel(Ψ•µ•α•β)] = min([β], Ψ•µ•α ).
Assume that Ψ → Ψ satisfies (CRE1), and that β |= µ. By (CRE1), we get that min(

[β], Ψ•α ) = min([β], Ψ•µ•α ), so Bel(Ψ • α • β) ≡ Bel(Ψ • α • β). Hence, • satisfies (CE1).
Assume that Ψ → Ψ satisfies (CRE2), and that β |= ¬µ. By (CRE2), we get that min(

[β], Ψ•α ) = min([β], Ψ•µ•α ), so Bel(Ψ • α • β) ≡ Bel(Ψ • α • β). Hence, • satisfies (CE2).
Assume that Ψ → Ψ satisfies (CRE3), and that Bel(Ψ

• α • β) |= µ. This means that min([β], Ψ•α ) ⊆ [µ], so we can write that min([β], Ψ•α ) = min([β ∧ µ], Ψ•α ). Now, assume toward a contradiction that Bel(Ψ • µ • α • β) |= µ.
This means that there exists a world ω |= ¬µ such that ω ∈ min([β], Ψ•µ•α ), which precisely means that for every world ω ∈

[β], ω Ψ•µ•α ω. In particular, for every world ω ∈ [β ∧ µ], ω Ψ•µ•α ω. From (CRE3) we get for every world ω ∈ [β ∧ µ] that ω Ψ•α ω, so if ω / ∈ min([β], Ψ•α ) then ω / ∈ min([β], Ψ•α ). Yet ω |= ¬µ and we saw that min([β], Ψ•α ) = min([β ∧ µ], Ψ•α ), so ω / ∈ min([β], Ψ•α ), and thus ω / ∈ min([β], Ψ•α ), for every world ω ∈ [β ∧ µ]. We found that for every world ω ∈ [β ∧µ], ω / ∈ min([β], Ψ•α ), which contradicts the fact that min([β], Ψ•α ) = min([β∧µ], Ψ•α ). This shows that Bel(Ψ • µ • α • β) |= µ, thus • satisfies (CE3).
Assume that Ψ → Ψ satisfies (CRE4), and that

Bel(Ψ • α•β) |= ¬µ. We need to show that Bel(Ψ•µ•α•β) |= ¬µ. Then let ω be a world such that ω ∈ min([β], Ψ•α ) ∩[µ].
We have for every world ω |= β that ω Ψ•α ω . In particular, for every world

ω |= β ∧ ¬µ, ω Ψ•α ω . By (CRE4), for every world ω |= β ∧ ¬µ, ω Ψ•µ•α ω . We fall into two cases: Case 1: ω ∈ min([β], Ψ•µ•α ). In this case, ω ∈ [Bel(Ψ • µ • α • β)], so since ω |= µ we directly get that Bel(Ψ • µ • α • β) |= ¬µ. Case 2: ω / ∈ min([β], Ψ•µ•α ).
In that case, let ω be a world such that ω ∈ min([β], Ψ•µ•α ). We have that ω ≺ Ψ•µ•α ω. Yet we have seen for every world ω |= β ∧ ¬µ that ω Ψ•µ•α ω , which means that ω |= β ∧ µ. We got that ω ∈ min(

[β], Ψ•µ•α ) ∩ [µ], thus Bel(Ψ • µ • α • β) |= ¬µ.
In both cases, we got that Bel(Ψ • µ • α • β) |= ¬µ, which shows that • satisfies (CE4).

Assume that Ψ → Ψ satisfies (CRE5), and that

α 1 ∧ β ≡ α 2 ∧ β, Bel(Ψ • α 1 ) |= ¬β and Bel(Ψ • α 2 ) |= ¬β. Let ω, ω |= β. By Theorem 1 we know that ω / ∈ min([α 1 ], Ψ ) ∪ min([α 2 ], Ψ ). Let us show that ω Ψ•α1 ω ⇔ ω Ψ•α2 ω . Since α 1 ∧ β ≡ α 2 ∧ β, we fall into one of the following four cases: (i) ω, ω |= α 1 ∧ α 2 . Then ω Ψ•α1 ω iff ω Ψ ω (by (CR1)) iff ω Ψ•α2 ω (by (CR1)). (ii) ω, ω |= ¬α 1 ∧¬α 2 . Then ω Ψ•α1 ω iff ω Ψ ω (by (CR2)) iff ω Ψ•α2 ω (by (CR2)). (iii) ω |= α 1 ∧ α 2 and ω |= ¬α 1 ∧¬α 2 . Then ω Ψ•α1 ω ⇔ ω Ψ•α2 ω (by (CRE5)). (iv) ω |= ¬α 1 ∧ ¬α 2 and ω |= α 1 ∧ α 2 .
This case is identical to case (iii) above, since ω, ω play symmetrical roles.

In every case we get that ω

Ψ•α1 ω ⇔ ω Ψ•α2 ω . By Theorem 1, this means that Bel(Ψ • α 1 ) ≡ Bel(Ψ • α 2 ). Hence, • satisfies (CE5).
As a direct consequence, we get the following representation theorem for HDP operators: Theorem 2. A DP revision operator • is an HDP revision operator if and only if there is a HDP assignment Ψ → Ψ such that for each epistemic state Ψ and each formula µ,

[Bel(Ψ • µ)] = min([µ], Ψ ).
Let us now focus on the consequences on TPOrepresentable revision operators.

First, concerning the three operators • L , • N , • R , only • L satisfies the five postulates (CE1-CE5): Proposition 3. CE1) and (CE3-CE5), but not (CE2).

1. • L satisfies (CE1-CE5) 2. • N satisfies (CE3-CE5), but not (CE1-CE2) 3. • R satisfies (
Proof Sketch. We only show that • N and • R do not satisfy (CE2) and that • N does not satisfy (CE1), but the rest of the proof is available at [START_REF] Schwind | Iteration of iterated belief revision[END_REF]. It is enough from Proposition 2 to show that their corresponding assignments do not satisfy the semantic counterparts of (CE1) and (CE2). We do so by proving a counterexample in each case.

• Proof that Ψ → N Ψ and Ψ → R Ψ do not satisfy (CRE2): Let ∈ {N, R}. Let ω 1 , ω 2 , ω 3 be three worlds, µ, α be two formulae such that [µ] = {ω 3 } and [α] = {ω 2 , ω 3 }, and Ψ be any TPO where ω 1 ≺ Ψ ω 2 ≺ Ψ ω 3 . Note that ω 1 , ω 2 |= µ. On the one hand, we get that ω 2 ≺ Ψ• α ω 1 . On the other hand, we get that

ω 3 ≺ Ψ• µ ω 1 ≺ Ψ• µ ω 2 , and thus ω 1 ≺ Ψ• µ• α ω 2 . So both assignments Ψ → N Ψ and Ψ → R Ψ do not satisfy (CRE2). • Proof that Ψ → N
Ψ does not satisfy (CRE1): Let ω 1 , ω 2 , ω 3 be three worlds, µ, α be two formulae such that [µ] = {ω 1 , ω 2 } and [α] = {ω 2 , ω 3 }, and Ψ be any TPO where ω 3 ≺ N Ψ ω 1 Ψ ω 2 . Note that ω 1 , ω 2 |= µ. On the one hand, we get that ω 1 N Ψ• N α ω 2 . On the other hand, we get that ω 1

N Ψ• N µ ω 2 ≺ N Ψ• N µ ω 3 , and thus ω 2 ≺ N Ψ• N µ• N α ω 1 . So the assignment Ψ → N
Ψ does not satisfy (CRE1). But let us try to identify exactly what the HDP operators exactly are. We will introduce a condition that will be useful in proving our results:

(Fun) If (ω Ψ1 ω ⇔ ω Ψ2 ω ), then (ω Ψ1•α ω ⇔ ω Ψ2•α ω )
This condition, denoted by (Fun) (for "Functionality"), is a kind of relational property. It states that the only information that is relevant to define the new relation between two worlds is the current relation between these two worlds only. That is, we do not compare them to other worlds. Proposition 4. Let • be a DP operator defined on the TPO-based epistemic space. If its DP assignment satisfies (CRE2), then it satisfies (Fun).

Proof. Let Ψ → Ψ be a DP assignment, and assume that it satisfies (CRE2). We need to show that it also satisfies (Fun). So let Ψ 1 , Ψ 2 be two TPOs, ω, ω be two worlds, and α be a formula, and assume that ω Ψ1 ω if and only if ω Ψ2 ω . We need to show that ω Ψ1•α ω if and only if ω Ψ2•α ω .

Let S ⊆ Ω be the set of worlds defined such that S ∩ {ω, ω } = ∅ and S ∪ {ω, ω } = Ω; and let us write S = {ω 1 , . . . , ω m }. Then let σ be the sequence of complete formulae σ = (γ ω1 , . . . , γ ωm ). Now, for i ∈ {1, 2}, let Ψ 1 i = Ψ i and for each k ∈ {1, . . . , m -1}, let Ψ k+1 i be defined as 

Ψ k+1 i = Ψ k i • γ ω k . (Part 1) We first intend to prove that Ψ m 1 = Ψ m 2 . Let i ∈ {1,
ω k+1 ≺ Ψ m i ω k , (2) 
and that for each k ∈ {1, . . . , m},

ω k ≺ Ψ m i ω and ω k ≺ Ψ m i ω (3)
Equations 1, 2 and 3 together with our initial assumption that ω Ψ1 ω , ω Ψ2 ω , fully characterize the TPOs Ψ m 1 and Ψ m 2 , and also show that Ψ m 1 and Ψ m 2 are the same TPO, which we denote by Ψ * .

(Part 2) Now, we intend to prove that for each i ∈ {1, 2}, ω Ψi•α ω if and only if ω Ψ * •α ω . This is done as follows, similarly as in part 1 of this proof, by induction on the sequence (Ψ k i ) k∈{1,...,m} , but this time taking advantage of (CRE2) instead of (CR2). The base case where k = 1 is trivial: since 

Ψ i = Ψ 1 i ,
i ∈ {1, 2}, ω Ψi•α ω if and only if ω Ψ m i •α ω . But since Ψ m 1 = Ψ m 2 = Ψ * , we can write that for each i ∈ {1, 2}, ω Ψi•α ω if and only if ω Ψ * •α ω (4)
Equation 4 shows that ω Ψ1•α ω if and only if ω Ψ2•α ω , which shows that (Fun) is satisfied.

Proposition 5. If a DP assignment satisfies (Fun), then it satisfies (Lex).

Proof. Let Ψ → Ψ be a DP assignment, and assume that it satisfies (Fun). Assume toward a contradiction that it does not satisfy (Lex). That is to say, there exists an epistemic state Ψ 1 , two worlds ω, ω , and a formula α such that ω |= α, ω |= α, and ω Ψ1•α ω . By (CR3), we know that ω Ψ1 ω . Let S = {ω * |= α | ω * ≺ Ψ1 ω }, and let Ψ S 1 be an epistemic state such that ω 1 Ψ S 1 ω 2 if and only if

ω 1 Ψ1 ω 2 , if ω 1 , ω 2 ∈ S or ω 1 , ω 2 / ∈ S (i) , if ω 1 ∈ Ω \ S and ω 2 ∈ S (ii) ⊥, otherwise (iii) 
That is, Ψ S 1 is any epistemic state built from Ψ 1 , where in

Ψ S
1 all worlds from S (i.e., all worlds strictly more plausible than ω in Ψ1 ) are shifted on top of the TPO Ψ S 1 (ii), in a strict manner (iii), while keeping from Ψ1 all remaining relationships between worlds (i). Note by construction of Ψ S 1 that ω Ψ S 1 ω , since ω Ψ1 ω and ω, ω / ∈ S. Since the assignment satisfies (Fun), and since ω Ψ1 ω , ω Ψ S 1 ω , and ω Ψ1•α ω , we get that ω Ψ S 1 •α ω . Yet by construction of Ψ S 1 we have that ω ∈ min([α], Ψ S 1 ), so by Theorem 1, we get that ω ≺ Ψ S 1 •α ω, which leads to a contradiction.

As a direct consequence of Propositions 3.1, 4 and 5, we get that: Theorem 3. • L is the only TPO-representable HDP operator.

So, there is only one HDP operator, Nayak's lexicographic revision. This provides an alternative characterization of this operator. However, this can also be interpreted as the fact that these conditions (CE1-CE2) are too strong. In fact, this is the case. This can be illustrated, for instance, by the property (Fun), which is a consequence of (CE2) and requires homogeneity of the evolution of each possible world, whatever its plausibility.

But belief revision operators impose a very special treatment to minimal models (i.e., the most plausible ones) of the new piece of information, which have to become strictly more plausible than worlds of the negation of the new piece of information. So, requiring this similar behavior for any cases (even when these worlds are not the most plausible) leads to the strong change encoded by Nayak's lexicographic revision.

In fact, what we really want is not a homogeneous change in any situation but in all situations when the world is not among the most plausible ones. This additional condition will lead to another class of operators.

hDP Revision Operators

Let us focus on two weaker variations of (CE1) and (CE2): Definition 6 (hDP revision operator). A DP operator • is a weak homogeneous DP operators (hDP operator for short) if it satisfies (CE3), (CE4), (CE5), and the following properties, for each epistemic state Ψ and all formulae µ, α, β:

(CE1w) If β |= µ, Bel(Ψ•α) |= ¬β and Bel(Ψ•µ•α) |= ¬β, then Bel(Ψ • µ • α • β)) ≡ Bel(Ψ • α • β) (CE2w) If β |= ¬µ, Bel(Ψ • α) |= ¬β and Bel(Ψ • µ • α) |= ¬β, then Bel(Ψ • µ • α • β)) ≡ Bel(Ψ • α • β)
In both properties, we have added the conditions Bel(Ψ • α) |= ¬β and Bel(Ψ • µ • α) |= ¬β, which ensure that β is not believed after revising by α and by µ. Thus, we are talking about true counterfactual beliefs, and these two conditions are, like the DP conditions they come from, conditions for the preservation of counterfactual beliefs.

(CE1w) and (CE2w) correspond to the following semantical conditions: Definition 7 (hDP assignment). A DP assignment Ψ → Ψ is a weak Homogeneous DP assignment (hDP assignment for short) if and only if it satisfies conditions (CRE3), (CRE4) and (CRE5), and for each epistemic state Ψ, all formulae µ, α, and all worlds ω, ω ∈ Ω:

(CRE1w) If ω, ω |= µ and ω, ω / ∈ min([α], Ψ ) ∪ min([α], Ψ•µ ), then ω Ψ•µ•α ω ⇔ ω Ψ•α ω (CRE2w) If ω, ω |= µ and ω, ω / ∈ min([α], Ψ ) ∪ min([α], Ψ•µ ), then ω Ψ•µ•α ω ⇔ ω Ψ•α ω
These additional conditions are maybe clearer here than in the postulates. They state that the worlds we are interested in when talking about preservation of their relationship are those that are not the most plausible under α for Ψ and Ψ•µ . These most plausible worlds will have a particular treatment imposed by the standard revision postulates, so we want to focus on the other ones and state that they will keep their relative relationship.

We can show that these conditions are true counterparts of the postulates (the proof is omitted for space reasons, but can be found at [START_REF] Schwind | Iteration of iterated belief revision[END_REF] and is similar to the part of the proof of Proposition 2 showing the correspondence between (CEi) and (CREi), for each i ∈ {1, 2}): Proposition 6. For each i ∈ {1, 2}, a DP revision operator • satisfies (CEiw) if and only if its corresponding DP assignment satisfies (CREiw).

As a direct consequence, we get the following representation theorem for hDP revision operators: Theorem 4. A DP revision operator • is a hDP operator if and only if there is a hDP assignment Ψ → Ψ such that for each epistemic state Ψ and each formula µ, [Bel(Ψ • µ)] = min([µ], Ψ ).

Let us now focus on the consequences on TPOrepresentable revision operators. This time our three illustrative operators are member of this subclass of operators: Proposition 7. • L , • N and • R are hDP operators.

Proof. Using Propositions 3 and 6 it is enough to prove that Ψ → N Ψ satisfies (CRE1w) and (CRE2w), and that Ψ → R Ψ satisfies (CRE1w), where the assignments Ψ → N Ψ and Ψ → R Ψ denote the DP assignment corresponding to • N and • R , respectively. Let Ψ be any epistemic state, µ, α be two formulae, and ω, ω be two worlds.

• Proof that Ψ → N Ψ satisfies (CRE1w) and (CRE2w): The proof is identical to the one for (CRE1w) above, using (CR2) instead of (CR1).

Assume that (a) ω, ω / ∈ min([α], N Ψ ) and that (b) ω, ω / ∈ min([α], N Ψ• N µ ): (CRE1w) Let ω, ω |= µ. We need to prove that ω N Ψ• N α ω ⇔ ω N Ψ• N µ• N α ω . The case when ω |= α ⇔ ω |= α is direct using (CR1), (CR2) and (CR4). Assume that ω |= α, ω |= α. Then ω N Ψ• N α ω iff ω N Ψ• N ω (by (a) and (Nat)) iff ω N Ψ• N µ ω (by (CR1)) iff ω N Ψ• N µ• N α ω (by
• Proof that Ψ → R Ψ satisfies (CRE2w): Assume that ω, ω |= µ, that (a) ω, ω / ∈ min([α], R Ψ ) and that (b) ω, ω / ∈ min([α], R Ψ• R µ ).
The proof is identical to the one of Proposition 3 showing that Ψ → R Ψ satisfies (CRE1) when ω / ∈ min([α], R Ψ ), using (CR2) instead of (CR1). And the proof when ω |= α, ω |= α is identical since ω and ω play symmetrical roles.

Let us now also show that the • L/N of the introduction is not a hDP operator. Example 6. Let us consider the operator • L/N of the introduction, that assigns randomly to each formula either the operator • L or • N . And suppose that to the formula whose models are {111, 110}, it is • L that has been drawn, and to the formula whose models are {110}, it is • N that has been drawn. Now consider the same epistemic state Ψ as the one in Figure 2, and the formulae α = p ⇔ ¬q and µ = ¬p ∨ ¬q ∨ ¬r.

As the beliefs of Ψ are the models {111, 110}, we have to use • L to revise it. So we give in Figure 2 the results when we revise Ψ by α and by µ.

When we revise by µ, the beliefs of Ψ• L/N µ are the model {110}. So this epistemic state has to be revised using • N . And the result is the last order on the figure. Now consider the two interpretations ω = 110 and ω = 011. We have

ω |= µ, ω |= µ and ω, ω / ∈ min([α], Ψ ) ∪ min([α], Ψ•µ ). So by (CRE1w) we should have ω Ψ• L/N µ• L/N α ω ⇔ ω Ψ• L/N α
ω . These two worlds are highlighted in Figure 2 and one can check that this is not the case.

Let us check if we can characterize more precisely this class. We introduce a weakening of (Fun), where we restrict its scope to non-minimal worlds:

(FunW) If ω, ω / ∈ min([α], Ψ1 ) ∪ min([α], Ψ2 ) and (ω Ψ1 ω ⇔ ω Ψ2 ω ), then (ω Ψ1•α ω ⇔ ω Ψ2•α ω )
And we can show that: Proposition 8. Let • be a DP operator defined on the TPO-based epistemic space. If its DP assignment satisfies (CRE2w), then it satisfies (FunW).

Then we can verify that the preconditions for (FunWP) are satisfied, i.e., we have that ω

|= α, ω |= α, ω 2 |= β, ω 3 |= β, ω, ω / ∈ min([α], Ψ ), ω 2 , ω 3 / ∈ min([β], Ψ2 ), ω Ψ ω and ω 3 Ψ2 ω 2 .
Then by (FunWP) and since we have shown that ω ≺ Ψ•α ω , we get that ω 2 ≺ Ψ2•β ω 3 . This shows that • satisfies (Lex) and concludes the proof.

Lemma 2. If a DP assignment satisfies (FunWP), then it satisfies (PR) or (Nat).

Proof. Let Ψ → Ψ be a DP assignment and assume that it does not satisfy (PR), i.e., there exists an epistemic state Ψ, a formula α and two worlds ω, ω such that ω |= α, ω |= α, ω Ψ ω and ω Ψ•α ω. Let us first remark by Theorem 1 that ω / ∈ min([α], Ψ ). Then, let us first show that ω Ψ ω and ω Ψ•α ω . On the one hand, since ω Ψ ω , by (CR4) we get that ω Ψ•α ω , and since ω Ψ•α ω we get that ω Ψ•α ω . On the other hand, since ω Ψ•α ω, by (CR3) we get ω Ψ ω, and since ω Ψ ω we get ω Ψ ω . Now, we want to prove that Ψ → Ψ satisfies (Nat). So let Ψ 2 be an epistemic state, β be a formula and ω 2 , ω 3 be two worlds such that ω 2 , ω 3 / ∈ min([β], Ψ2 ). We need to show that ω

2 Ψ2 ω 3 ⇔ ω 2 Ψ2•β ω 3 . The case when ω 2 |= β ⇔ ω 3 |= β is direct using (CR1-CR2). So as- sume that ω 2 |= β and ω 3 |= β. If ω 2 ≺ Ψ2 ω 3 , by (CR3) we get that ω 2 ≺ Ψ2•β ω 3 . So assume that ω 3
Ψ2 ω 2 , and let us show that ω 3 Ψ2•β ω 2 . Yet we can verify that the preconditions for (FunWP) are satisfied, i.e., we have that ω

|= α ⇔ ω 2 |= β, ω |= α ⇔ ω 3 |= β, ω, ω / ∈ min([α], Ψ ), ω 2 , ω 3 / ∈ min([β], Ψ2 ), ω Ψ ω and ω 3 Ψ2 ω 2 .
Then by (FunWP) and since ω Ψ•α ω, we get that ω 3 Ψ2•β ω 2 . The remaining case is when ω 2 |= β and ω 3 |= β, which can be proved identically to the case when ω 2 |= β and ω 3 |= β by permuting ω 2 and ω 3 , and since all preconditions for (FunWP) are also satisfied when permuting ω and ω . We have shown that ω 2 Ψ2 ω 3 ⇔ ω 2 Ψ2•β ω 3 in every case, which concludes the proof that Ψ → Ψ satisfies (Nat).

As a consequence of the previous results, we get that: Theorem 5. • N , • L and • R are the only TPO-representable hDP revision operators.

So there are only three hDP operators: Nayak's lexicographic revision • L , Boutilier's natural revision • N , and Booth and Meyer's restrained revision • R . They are the only choice if one wants to have an homogeneous behaviour for TPO-representable iterated belief revision operators.

Note that these three operators are called elementary revision operators in [START_REF] Chandler | Elementary belief revision operators[END_REF], and they are characterized (for TPO-representable operators) by an axiom of "Independence of Irrelevant Alternatives" (IIA * ), inspired by a well-known axiom from social choice. So it is interesting to obtain this class from these two different intuitions and constructions.

Conclusion

We have studied the consequences of pushing one iteration further than Darwiche and Pearl's postulates, i.e., instead of linking iterations n+1 and n+2, we linked iterations n+2 and n+3. We have shown that this leads to more restricted subclasses of operators, which rule out non-homogeneous operators.

We do not claim that non-homogeneous operators have to be completely forbidden since they may make sense in some applications where the state of mind of an agent changes during its life (depending on the sequence of iterations) and there are some non-homogeneities at some points.

However, for many "normal" cases, this homogeneity requirement seems more than natural. Thus, we wanted to start the study of these homogeneous operators in this work. The results were quite surprising since very few operators satisfy these requirements: there is only one homogeneous DP (HDP) revision operator, namely Nayak's lexicographic revision.

If we relax these (obviously strong) conditions of HPD revision, we obtain hDP revision operators that could be considered the most interesting class of this work. Even here, we have only three operators in this class, namely Nayak's lexicographic revision, Boutilier's natural revision, and Booth and Meyer's restrained revision. If we add the "separation" postulate (P) (whose semantical counterpart is denoted by (PR)), this rules out Boutilier's natural revision, and we have a characterization of the two remaining operators. This class is restricted but very meaningful since these three operators are the only TPO-representable operators that satisfy a property of locality (that we call functionality -(FunW)), which states that the relative plausibility of two (non-minimal) worlds is only a function of these two worlds.

Thus, the hDP postulates can be seen as very strong since they are satisfied by only three TPO-representable revision operators. However, we want to stress that this is caused by the combination of these postulates and the other constraints on revision operators, especially the special behavior that belief revision operators impose on minimal worlds of the new piece of information. If hDP postulates are applied to improvement operators, it is expected that the class of corresponding operators will be larger. However, the extent of this increase in the class size remains unknown and will be a subject for future investigation.

One possible relaxation could be to study operators that do not satisfy (CE2/CE2w). In fact this postulate has been criticized in several works [START_REF] Spohn | Ordinal Conditional Functions: A Dynamic Theory of Epistemic States[END_REF][START_REF] Konieczny | A framework for iterated revision[END_REF][START_REF] Rodrigues | Iterated revision and automatic similarity generation[END_REF][START_REF] Rodrigues | Belief revision[END_REF][START_REF] Schwind | Non-prioritized iterated revision: Improvement via incremental belief merging[END_REF] since in some cases it forces a stronger behaviour than expected, in particular by linking together all the information coming in one step of revision. So studying the class of homogeneous operators that do not satisfy (CE2w) seems interesting.

Another future work is related to these notions of homogeneity, locality, and functionality. In this work, we impose homogeneity using a (particular) functionality condition, but one can figure out other notions of functionality and homogeneity. Having a more general view of these two notions seems to be an interesting issue.
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 2 Figure 2: The • L/N operator is not a hDP operator
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Proof. The proof is almost identical to the one of Proposition 4, by assuming the DP assignment Ψ → Ψ satisfies (CRE2w) instead of (CRE2) and by proving that it satisfies (FunW) instead of (Fun). The only difference is that one initially assumes that the two TPOs Ψ 1 , Ψ 2 , the two worlds ω, ω and the formula α are such that ω, ω / ∈ min([α], Ψ1 ) ∪ min([α], Ψ2 ). Doing so, one can easily see that all TPOs Ψ k 1 , Ψ k 2 (k ∈ {1, . . . , m}) involved in the proof are such that ω, ω / ∈ min ([α],

), from which we can conclude that (FunW) is satisfied.

Interestingly, we can generalize (FunW) to a version with a kind of additional anonymity condition (i.e. the worlds do not have to be the same for Ψ1 or Ψ2 , but just to be in the same situations).

). Proposition 9. A DP assignment satisfies (FunW) if and only if it satisfies (FunWA).

Proof. The (if) part of the proof is direct by setting ω = ω 2 and ω = ω 3 . Let us show the (only if) part. Let Ψ → Ψ a DP assignment satisfying (FunW), and let us show that (FunWA) is satisfied. So let Ψ 1 , Ψ 2 be two epistemic states, α, β be two formulae and ω, ω , ω 2 , ω 3 be four worlds, such that (i)

Ψ ω 3 . Second, by (i), (ii), (vi) and (CR1-CR2) we get that (x) ω Ψ•α ω 2 and ω Ψ•α ω 3 , Hence, by (ix) and (x) we get that (xi

From (iii), (vii), (viii) and (FunW), we get that (xiii) ω Ψ•α ω ⇔ ω Ψ1•α ω , and so by (xii) and (xiii) we get that (xiv)

, and then by (iv), (viii), (xvi) and (FunW),

Let us give a generalisation of (FunWA):

). Let us now show that in fact, (FunWP) does not bring more than (FunWA) for homogeneous operators: Proposition 10. A DP assignment satisfies (FunWA) and (CRE5) if and only if it satisfies (FunWP).

Proof Sketch. The (if) part of the proof is direct by setting α = β to prove (FunWA), and by setting ω = ω 2 , ω = ω 3 and Ψ 1 = Ψ 2 to prove (CRE5). Let us show the (only if) part. Let Ψ → Ψ be a DP assignment satisfying (FunWA) and (CRE5). Let Ψ 1 , Ψ 2 be two epistemic states, α, β be two formulae, and ω, ω , ω 2 , ω 3 be four worlds such that (ω

)), and (ω Ψ1 ω ⇔ ω 2 Ψ2 ω 3 ). We must prove that (ω Ψ1•α ω ⇔ ω 2 Ψ2•β ω 3 ). We only provide the proof in the case when all four worlds ω, ω , ω 2 , ω 3 are pairwise distinct (the remainder of the proof can be found at [START_REF] Schwind | Iteration of iterated belief revision[END_REF]). Assume first that ω, ω |= α.

The case when ω, ω |= α is proved similarly by using (CR2) instead of (CR1). So, assume now that ω |= α and ω |= α. Then, ω 2 |= β and ω 3 |= β. Since all worlds ω, ω , ω 2 , ω 3 are pairwise distinct, there exists a formula γ such that

, which shows that Ψ → Ψ satisfies (FunWP) and concludes the proof.

And interestingly this gives us two dichotomy results on the properties satisfied by the operators: Lemma 1. If a DP assignment satisfies (FunWP), then it satisfies (DR) or (Lex).

Proof. Let Ψ → Ψ be a DP assignment and assume that it does not satisfy (DR), i.e., there exists an epistemic state Ψ, a formula α and two worlds ω, ω such that ω

, so by (CR1) we get that (iii) ω ≺ Ψ •α ω 2 . And ω 3 ≺ Ψ ω , so by (CR2) we get that (iv) ω 3 ≺ Ψ •α ω . But (i-iv) contradict the transitivity of Ψ •α . Hence, ω ≺ Ψ•α ω .

We intend now to prove that • satisfies (Lex), that is, let Ψ 2 be any epistemic state, β be any formula, ω 2 , ω 3 be two worlds such that ω 2 |= β and ω 3 |= β, and let us show that ω 2 ≺ Ψ2•β ω 3 . The proof is direct when ω 2 ∈ min([β], Ψ2 ) by Theorem 1 or when ω 2 ≺ Ψ2 ω 3 by (CR3), so assume that ω 2 / ∈ min([β], Ψ2 ) and ω 3 Ψ2 ω 2 .