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On some questions about composition

operators on weighted Hardy spaces

Pascal Lefèvre, Daniel Li,
Hervé Queffélec, Luis Rodŕıguez-Piazza

Dedicated to Gilles Godefroy for its 70th birthday

October 31, 2023

Abstract. We first consider some questions raised by N. Zorboska in her thesis.
In particular she asked for which sequences β every symbol φ : D → D with
φ ∈ H2(β) induces a bounded composition operator Cφ on the weighted Hardy
space H2(β). We give partial answers and investigate when H2(β) is an algebra.
We answer negatively to another question in showing that there are a sequence
β and φ ∈ H2(β) such that ∥φ∥∞ < 1 and the composition operator Cφ is not
bounded on H2(β).

In a second part, we show that for p ̸= 2, no automorphism of D, except those
that fix 0, induces a bounded composition operator on the Beurling-Sobolev
space ℓpA, and even on the weighted versions of this space.

MSC 2010. primary: 47B33 ; secondary: 30H10
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1 Introduction

Let β = (βn)n≥0 be a sequence of positive numbers such that

(1.1) lim inf
n→∞

β1/n
n ≥ 1 .

The associated weighted Hardy space is the Hilbert space of analytic functions
f : D → C such that

(1.2) ∥f∥2 :=

∞∑
n=0

|an|2βn < +∞ ,

if f(z) =
∑∞
n=0 anz

n. We shall denote an = f̂(n). Note that condition (1.1)
ensures that those functions are indeed analytic on D.

1



If φ : D → D is a non-constant analytic self-map of D, we say that φ is a
symbol. To each symbol, we associate the composition operator Cφ defined as
Cφ(f) = f ◦ φ for every analytic function f : D → C.

In [3], we characterized the weights β for which all composition operators
are bounded on H2(β): this happens if and only if β is essentially decreasing
and slowly oscillating.

Definition 1.1. A sequence of positive numbers β = (βn)n≥0 is said to be
1) essentially decreasing if, for some constant C ≥ 1, we have

(1.3) βm ≤ C βn for all m ≥ n ≥ 0 ;

2) slowly oscillating if there are positive constants c < 1 < C such that

(1.4) c ≤ βm
βn

≤ C when n/2 ≤ m ≤ 2n .

In her thesis, N. Zorboska [6] raised the following problems.

1) Determine the spaces H2(β) for which every symbol φ, with φ ∈ H2(β),
induces a bounded composition operator on H2(β) (Problem 2).

2) If φ ∈ H2(β) and ∥φ∥∞ < 1, is the composition operator Cφ necessarily
bounded on H2(β)? (Problem 3).

In the first part of this paper, we give a partial answer to the first problem
(Theorem 2.5), and a negative one to the second problem (Corollary 2.15).

First, for the first problem, we have the following necessary condition.

Theorem 1.2. Assume that limn→∞ β
1/n
n = 1.

If every symbol φ ∈ H2(β) induces a bounded composition operator on
H2(β), then β is slowly oscillating.

Proof. For all a ∈ D, we consider the automorphism Ta defined by

(1.5) Ta(z) =
a+ z

1 + āz
·

Let us point out that for every integer n ≥ 1, we have

T̂a(n) = (−1)n−1ān−1(1− |a|2) .

Therefore, all the symbols Ta are in H2(β) if and only for every a ∈ D,
we have

∑
βn|a|2n < ∞, which is equivalent to the fact that the Taylor series∑

βnz
n has a radius of convergence at least 1 i.e. lim supβ1/n

n ≤ 1.

Since limn→∞ β
1/n
n = 1, the preceding remark implies that all the symbols

Ta define bounded composition operators on H2(β), by the hypothesis. By [3,
Theorem 4.9], it follows that β is slowly oscillating.

In the second part of this paper, we show that for p ̸= 2, no automorphism
Ta of D, with a ̸= 0, induces a bounded composition operator on the weighted
Hardy space hp(β) (defined in Section 3), whatever β.
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2 H2(β) as an algebra

In order to motivate the content of this section, we point out the following
easy fact.

Proposition 2.1. Assume that every symbol φ ∈ H2(β) induces a bounded
composition operator on H2(β). Then H2(β) ∩H∞ is an algebra.

Proof. It suffices to show that f2 ∈ H2(β)∩H∞ for every f ∈ H2(β)∩H∞. Let
f ∈ H2(β)∩H∞, not constant. IfM > ∥f∥∞, then φ = f/M is a symbol. With
en(z) = zn, we have, by hypothesis, φn = Cφ(en) ∈ H2(β). Hence fn ∈ H2(β).
Since it is clear that fn ∈ H∞, we are done.

Remark. The conclusion of Proposition 2.1 can be obtained with a hypothesis
of a different nature.

Proposition 2.2. If (βn/n
2)n≥1 is a sequence of moments, then H2(β) ∩H∞

is an algebra.

Proof. By hypothesis, βn ≈ n2γn, where γn =
∫ 1

0
tn−1ω(t) dt with ω a posi-

tive measurable function on [0, 1]. We have, for f(z) =
∑∞
n=0 anz

n (A is the
normalized area measure on D):

I(f) :=

∫
D
|f ′(z)|2 ω(|z|2) dA(z) =

∞∑
n=1

n2|an|2
∫ 1

0

r2n−2 ω(r2) 2r dr

=

∞∑
n=1

n2|an|2
∫ ∞

0

tn−1ω(t) dt ≈
∞∑
n=1

|an|2βn .

Now, we observe that ∥f∥2H2(β) ≈ |f(0)|2 + I(f) and that

I(f2) =

∫
D
4 |f(z)|2 |f ′(z)|2 ω(|z|2) dA(z) ≤ 4 ∥f∥2∞ I(f) ,

which clearly gives the result.

A specific example (different from the Dirichlet space case (!), which corre-
sponds to ω(t) = 1 and γn = 1/n) is:

β0 = β1 = 1 and βn = n log n , for n ≥ 2 ,

for which
∑∞
n=0

1
βn

= +∞. Indeed, if

ω(t) = log+
(

1

log(1/t)

)
, 0 ≤ t ≤ 1 ,

we have, making the changes of variables t = e−x and x = y/n:

γn =

∫ 1

0

tn−1ω(t) dt =
1

n

∫ n

0

e−y log
n

y
dy ∼ log n

n
·

When β is a bounded sequence, it is easy to see that H∞ ⊆ H2 ⊆ H2(β)
(see [7, Proposition 2], for instance).
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Proposition 2.3. Assume that β is a non-increasing sequence. Then H2(β) is
an H∞-module.

Proof. First of all, since β is then bounded, we have H∞ ⊆ H2(β). Moreover,
the shift S : H2(β) → H2(β), defined as (Sf)(z) = zf(z), is a contraction.
By von Neumann’s inequality, we have ∥P (S)∥ ≤ ∥P∥∞ for all polynomials P .
Since P (S)f = Pf , it follows, by approximation, that

∥gf∥H2(β) ≤ ∥g∥∞∥f∥H2(β)

for all g ∈ H∞ and all f ∈ H2(β), and that proves that H2(β) is an H∞-
module.

We will now study when H2(β) is an algebra, and we begin with an elemen-
tary remark.

Proposition 2.4. Assume that H2(β) is an algebra. Then

(i) supn≥0 βn+1/βn < +∞.

(ii) the sequence (β
1/n
n )n≥1 has a limit.

Proof. The shift, which associates to f ∈ H2(β) the function z 7→ zf(z), is
bounded from H2(β) into H2(β). That means that supn≥0 βn+1/βn < +∞ and
(i) is proved.

Since H2(β) is an algebra, there exists a positive constant C such that
∥fg∥ ≤ C ∥f∥ ∥g∥ for all f, g ∈ H2(β). Applying that to f(z) = em(z) = zm

and g(z) = en(z) = zn, we get that, for all m,n ≥ 0:

βm+n = ∥em+n∥ = ∥em en∥ ≤ C ∥em∥ ∥en∥ = C βmβn .

Setting αn = C βn, that means that αm+n ≤ αmαn for all m,n ≥ 0, i.e. the
sequence (αn)n≥0 is submultiplicative.

Now (ii) follows from Fekete’s lemma.

Remark. Given q > 1 and writing β̃n = qnβn, we have:

(2.1) H2(β) is an algebra if and only if H2(β̃) is an algebra.

Indeed, it is clear that f ∈ H2(β̃) if and only if g ∈ H2(β) where g(z) = f(
√
qz).

As a consequence of this remark, we have the following partial answer of the
first question raised in the Introduction.

Theorem 2.5. Assume that H2(β) is an algebra. Let φ be a symbol which is
in H2(β). Then φ induces a bounded composition operator on H2(β) in the
following cases

1) when lim infn→∞ β
1/n
n > 1;

2) when lim infn→∞ β
1/n
n = 1 and φ(0) = 0;

3) when β is slowly oscillating.
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Remark. We will see in Corollary 2.15 that we can have lim infn→∞ β
1/n
n = 1

without the boundedness of all the composition operators onH2(β) with symbol
in H2(β).

Proof. 1) Since lim infn→∞ β
1/n
n > 1, the functions in H2(D) are actually an-

alytic in a disk D(0, R) containing the closed unit disk D. Since H2(β) is an
algebra, we have H2(β) = M

(
H2(β)

)
(see (2.2)). By [4, Proposition 20 and

Corollary 1 of Proposition 31], the spectrum of each φ ∈ H2(β), as an element
of the algebra H2(β) = M

(
H2(β)

)
is φ(D). If φ is moreover a symbol, we

have φ(D) ⊆ D. By the analytic functional calculus, we have f(φ) ∈ H2(β)
for every function f analytic in an open neighborhood of D. In particular,
f ◦ φ = f(φ) ∈ H2(β) for every f ∈ H2(β).

2) Let f ∈ H2(β). Let q > 1 and set β̃n = qnβn; then lim infn→∞ β̃
1/n
n > 1.

We set φ̃(z) =
√
q φ(z/

√
q); we have φ̃ ∈ H2(β̃) and, since φ(0) = 0, φ̃ maps D

into D, by the Schwarz lemma, so φ̃ is a symbol. We set now g(z) = f(z/
√
q);

then g ∈ H2(β̃) and, by 1), we have g ◦ φ̃ ∈ H2(β̃). But

g[φ̃(z)] = f [φ(z/
√
q)] ,

and saying that g ◦ φ̃ ∈ H2(β̃) is equivalent to saying that f ◦φ ∈ H2(β). Hence
Cφ is bounded on H2(β).

3) By the parts 1) and 2), all the symbols φ ∈ H2(β) with φ(0) = 0
induce a bounded composition operator on H2(β), whatever β. Now, if β
is slowly oscillating, by [3, Theorem 4.6], all the automorphisms Ta induce
bounded composition operators on H2(β). It follows classically that then all
symbols φ ∈ H2(β) induce bounded composition operators (if a = −φ(0), then
ψ = Ta ◦ φ =

∑∞
n=0 T̂a(n)φ

n is in H2(β) and ψ(0) = 0; the result follows since
φ = T−a ◦ ψ and Cφ = Cψ ◦ CT−a).

The space M
(
H2(β)

)
of multipliers of H2(β) is, by definition, the set of all

analytic functions h on D such that hf ∈ H2(β) for all f ∈ H2(β). It is easy to
see (see [3, beginning of Section 6]) that M

(
H2(β)

)
⊆ H∞. Actually, we have

M
(
H2(β)

)
⊆ H2(β) ∩H∞ .

Clearly H2(β) = M
(
H2(β)

)
when H2(β) is an algebra; hence

(2.2) If H2(β) is an algebra, then H2(β) ⊆ H∞ ,

Theorem 2.6. We have H2(β) ⊆ H∞ if and only if
∑∞
n=0

1
βn

< +∞.

Note that this last condition implies that H2(β) ⊆ W+(D), where W+(D)
is the Wiener algebra of all analytic functions f : D → C such that

∑∞
n=0 |an| <

+∞ if f(z) =
∑∞
n=0 anz

n.
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Corollary 2.7. If H2(β) is an algebra, then
∑∞
n=0

1
βn

< +∞.

Proof of Theorem 2.6. Assume that
∑∞
n=0

1
βn

< +∞. Then, for f ∈ H2(β) and

f(z) =
∑∞
n=0 anz

n, we have, by the Cauchy-Schwarz inequality:

∞∑
n=0

|an| ≤
( ∞∑
n=0

|an|2βn
)1/2( ∞∑

n=0

1

βn

)1/2

< +∞ .

Hence f ∈W+(D). Therefore H2(β) ⊆W+(D) ⊆ A(D) ⊆ H∞.

Conversely, assume that H2(β) ⊆ H∞. Let (an)n≥0 be a sequence such that∑∞
n=0 |an|2βn < +∞. Then, setting f(z) =

∑∞
n=0 anz

n, we have f ∈ H2(β).
Now, if g(z) =

∑∞
n=0 |an| zn, we have g ∈ H2(β) and ∥g∥ = ∥f∥. By hypothesis,

we hence have g ∈ H∞. Then

sup
|z|<1

∣∣∣∣ ∞∑
n=0

|an| zn
∣∣∣∣ = ∥g∥∞

implies that
∑∞
n=0 |an| ≤ ∥g∥∞. We have proved that

∑∞
n=0 |an| < +∞ when-

ever
∑∞
n=0 |an|2βn < +∞. That means that

∑∞
n=0

1
βn

< +∞.

Theorem 2.8. If
∑∞
n=0

1
βn

< +∞ and β is slowly oscillating, then H2(β) is
an algebra.

Using Theorem 2.5, we get the following corollary.

Corollary 2.9. If
∑∞
n=0

1
βn

< +∞ and β is slowly oscillating, then all symbols

φ ∈ H2(β) induce bounded composition operators on H2(β).

In order to prove this theorem, we introduce the following notation:

(2.3) Bn =

n∑
k=0

1

βkβn−k
·

Note that Bn ≥ 1
β0βn

so infn≥0Bnβn > 0.

The proof will follow from the next two lemmas.

Lemma 2.10. If
∑∞
n=0

1
βn

< +∞ and β is slowly oscillating, then Bn ≲ 1/βn.

Proof. Set M =
∑∞
n=0

1
βn

. We have

Bn ≤ 2
∑

0≤k≤n/2

1

βkβn−k
·

But 1
βn−k

≤ C 1
βn

, since n/2 ≤ n − k ≤ n for 0 ≤ k ≤ n/2, and β is slowly

oscillating. Hence

Bn ≤ 2C
1

βn

∑
0≤k≤n/2

1

βk
≤ 2CM

1

βn
·
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Lemma 2.11. If Bn ≲ 1/βn, then H
2(β) is an algebra.

Proof. It suffices to show that f2 ∈ H2(β) for all f ∈ H2(β). Let f ∈ H2(β)
and write f(z) =

∑∞
n=0 anz

n. We have

[f(z)]2 =

∞∑
n=0

( n∑
k=0

akan−k

)
zn .

By the Cauchy-Schwarz inequality, we have

∞∑
n=0

∣∣∣∣ n∑
k=0

akan−k

∣∣∣∣2βn ≤
∞∑
n=0

( n∑
k=0

|akan−k|2βkβn−k
)( n∑

k=0

1

βkβn−k

)
βn

≲
∞∑
n=0

( n∑
k=0

|akan−k|2βkβn−k
)

=

( ∞∑
j=0

|aj |2βj
)2

= ∥f∥4 < +∞ ,

which says that f2 ∈ H2(β).

Proposition 2.12. If H2(β) is an algebra, then
∑∞
n=0 βnB

2
n < +∞.

Proof. Let f(z) =
∑∞
n=0

1
βn
zn; we have ∥f∥2 =

∑∞
n=0

1
βn

< +∞, so f ∈ H2(β).

Since H2(β) is an algebra, we have f2 ∈ H2(β). But [f(z)]2 =
∑∞
n=0Bnz

n, so
we get

∑∞
n=0B

2
nβn < +∞.

The necessary conditions of Corollary 2.7 and of Proposition 2.12 are not
sufficient.

Proposition 2.13. There exists a sequence β such that
∑∞
n=0 βnB

2
n < +∞,

hence
∑∞
n=0

1
βn

< +∞, but for which H2(β) is not an algebra.

Proof. We take βn = nγ for n even and βn = nγ
′
for n odd, where 1 < γ′ < γ

and 2γ′ > γ+1 (for example, γ′ = 3 and γ = 4). Since βn+1/βn is not bounded,
H2(β) is not an algebra. It is clear that

∑∞
n=0

1
βn

< +∞.
Now

B2n =

2n∑
k=0

1

βkβ2n−k

=
∑
k even

1

kγ(2n− k)γ
+
∑
k odd

1

kγ′(2n− k)γ′ ≲
1

nγ
+

1

nγ′ ≲
1

nγ′ ,

so (2n)γB2
2n ≲ (2n)γ−2γ′

.

Similarly (2n+ 1)γ
′
B2

2n+1 ≲ (2n+ 1)−γ
′
.

Since γ − 2γ′ < −1 and γ′ > 1, we obtain the convergence of the series∑∞
n≥0 βnB

2
n.
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Actually, we can improve Proposition 2.13, with the additional requirement
that βn+1/βn −→

n→∞
1.

Theorem 2.14. There exists a sequence β such that βn+1/βn −→
n→∞

1, and for

which:

1)
∑∞
n=0

1
βn

< +∞; so H2(β) ⊆ H∞;

2) H2(β) is not an algebra.

Corollary 2.15. There exist a sequence β such that βn+1/βn −→
n→∞

1, and a

symbol φ such that φ ∈ H2(β) and ∥φ∥∞ < 1, but Cφ is not bounded on H2(β).

Proof of Corollary 2.15. We use the sequence obtained in Theorem 2.14. There
exists φ ∈ H2(β) ⊂ H∞ such that φ2 /∈ H2(β); we can assume that ∥φ∥∞ < 1.
Clearly Cφ is not bounded on H2(β) since z2 ∈ H2(β) and Cφ(z

2) = φ2.

Proof of Theorem 2.14. Take mk = 3k and{
βmk

= m2
k

β2mk
= m5

k ,

and

βn+1 =

{
m

3/mk

k βn for mk ≤ n ≤ 2mk − 1 ;

(9/mk)
3/mkβn for 2mk ≤ n ≤ mk+1 − 1 .

Since βn ≥ n2, we have
∑∞
n=0

1
βn

< +∞. Since m
1/mk

k −→
k→∞

1, we have

βn+1/βn −→
n→∞

1. Moreover, setting en(z) = zn, we have

∥e 2
mk

∥2

∥emk
∥2

=
∥e2mk

∥2

∥emk
∥2

=
β2mk

βmk

= m3
k = 33k −→

k→∞
+∞ ;

hence H2(β) is not an algebra, since otherwise, we would have a positive con-
stant C for which ∥fg∥ ≤ C∥f∥ ∥g∥ for all f, g ∈ H2(β).

We now see that β slowly oscillating is not necessary for H2(β) to be an
algebra.

Example 2.16. Let βn = e
√
n for all n ≥ 0. Then H2(β) is an algebra, though

β is not slowly oscillating.

That β is not slowly oscillating is clear. To see that H2(β) is an algebra,
we will prove a more general result: Theorem 2.19 below. Let us give right now
the following consequence, using Theorem 1.2.

Corollary 2.17. There exist a sequence β such that H2(β) is an algebra, and
a symbol φ ∈ H2(β) for which Cφ is not bounded on H2(β).

The following notion will be used.
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Definition 2.18. A function τ : R+ → R+ is said good if τ(0) = 0 and

1. τ is C1 on (0,+∞) with τ ′ ≥ 0 and τ ′ decreasing;

2. lim inf
x→+∞

τ(x)
log x > 1;

3. supx≥1
τ ′(tx)
τ ′(x) −→

t→+∞
0.

Examples.

▷ τ(x) = a log(x+ 1), with a > 1;

▷ τ(x) = xa, with 0 < a < 1;

We now have the following result.

Theorem 2.19. Let τ be a good function and βn = eτ(n). Then, H2(β) is an
algebra.

For τ(x) = a log(x + 1) with a > 1, we have the weighted Dirichlet space
Da.

Note that if, moreover, we have lim
x→+∞

τ(x)
x = 0, then lim

n→∞
β
1/n
n = 1.

Proof. By Lemma 2.11, it suffices to show that the sequence of numbers

In =
∑

1≤k≤n/2

exp
[
−
(
τ(k) + τ(n− k)− τ(n)

)]
is bounded.

We set, for each n ≥ 2 and x ∈ [1, n/2]:

κ(x) = τ(x) + τ(n− x)− τ(n) .

Let ρ > 1 such that lim inf
x→+∞

τ(x)
log x > ρ. There exists some n0 ≥ 1 such that

τ(x) ≥ ρ log x for every x ≥ n0.
Fix ε > 0 so that (1− ε)ρ > 1. By the goodness condition 3, we can choose

an integer A = Aε > 1 such that for every x ≥ 1 and every t ≥ A, we have
τ ′(tx) ≤ ε τ ′(x).

Take n ≥ (A+ 1)n0. Then, with λ = 1/(A+ 1), we have, for 1 ≤ x ≤ λn:

n− x

x
=
n

x
− 1 ≥ 1

λ
− 1 = A .

Therefore

1 ≤ x ≤ λn =⇒ τ ′(n− x) = τ ′
(n− x

x
· x
)
≤ ε τ ′(x) .

Hence

κ′(x) = τ ′(x)− τ ′(n− x) ≥ (1− ε) τ ′(x) for 1 ≤ x ≤ λn .
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Moreover, κ′(x) = τ ′(x) − τ ′(n − x) is positive on [0, n/2], since τ ′ is de-
creasing. Hence κ is increasing on [0, n/2]. Since κ(0) = 0, we get also that κ is
positive on [0, n/2].

Now, we considerN the integer part of λn, and we have, for 1 ≤ k ≤ N ≤ λn:

(2.4) κ(k) ≥
∫ k

1

κ′(t) dt ≥ (1− ε)

∫ k

1

τ ′(t) dt = (1− ε)
(
τ(k)− τ(1)

)
.

Summing up, and using the condition 2, we get

(2.5)

N∑
k=1

e−κ(k) ≲
N∑
k=1

exp[−(1− ε) τ(k)] ≤ n0 +

N∑
k=n0

exp[−(1− ε) ρ log k]

which is bounded since (1− ε)ρ > 1.
On the other hand, we already pointed out that κ is increasing on [0, n/2],

and we get, using (2.4):

(2.6)

n/2∑
k=N+1

e−κ(k) ≤ n e−κ(λn) ≲ n exp[−(1− ε)τ(λn)] ≲ n1−ρ(1−ε) = o(1) ,

using the condition 2 and the fact that n ≥ (A+ 1)n0 (i.e. λn ≥ n0) and

τ(λn) ≥ ρ log(λn) = ρ log n− ρ log(λ) ,

and once more that ρ(1− ε) > 1.

Putting (2.5) and (2.6) together, that proves the theorem.

The function τ defined by τ(x) = x/ log x for x > 1 is not a good function
(because the condition 3 is not fulfilled). Nevertheless, it induces an algebra.

Proposition 2.20. For β(n) = en/ logn, n ≥ 2 (and β0 = β1 = 1, for instance),
the space H2(β) is an algebra.

Proof. The proof follows the same lines as that of Theorem 2.19.
We set τ(0) = τ(1) = 0 and τ(x) = x

log x for x > 1. We wish to control

In =
∑

1≤k≤n/2

exp
[
−
(
τ(k) + τ(n− k)− τ(n)

)]
.

We have, for x > 1, τ ′(x) = 1
log x − 1

log2 x
; in particular τ ′(x) > 0 for x > e.

Since 1
X − 1

X2 ≥ 1
2X if X ≥ 2, we have τ ′(x) ≥ 1

2 log x if x ≥ 8 > e2. Hence,

for y ≥ x4, we have

τ ′(x) ≥ 1

2 log x
≥ 2

log y
≥ 2τ ′(y) ·

Let n ≥ 213 be an integer. For every x ≥ 8 such that 2x4 ≤ n, we have n−x ≥ x4

hence τ ′(x)− τ ′(n− x) ≥ τ ′(x)/2.
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Now we consider the function, defined for x ∈ [1, n/2], as

κn(x) = τ(x) + τ(n− x)− τ(n) .

We first point out that lim
x→+∞

τ ′(x) = 0, hence, for each x ≥ 1, the sequence

(κn(x))n is bounded and there exists M > 0, not depending on n, such that
κn(k) ≥ −M for every 1 ≤ k ≤ 8. In particular, we have∑

1≤k≤7

e−κn(k) ≤ 7 eM .

Let kn be the integer part of (n/2)1/4, we have κ′n(x) ≥ τ ′(x)/2 for 8 ≤ x ≤
kn hence, for every 8 ≤ k ≤ kn, we get

κn(k) ≥ κn(8) +

∫ k

8

κ′n(t) dt ≥ κn(8) +
1

2

∫ k

8

τ ′(t) d ≥ −M +
1

2

(
τ(k)− τ(8)

)
.

Therefore,

kn∑
k=8

e−κn(k) ≤ exp
(
M + τ(8)/2

) ∞∑
k=8

e−
k

2 log k < +∞ .

Now, τ ′ is decreasing on [8,+∞), so κ′n(x) ≥ 0 when 8 ≤ x ≤ n/2, and

κn(k) ≥ κn(kn) ≥ c+
1

2
τ(kn) for kn ≤ k ≤ n/2, where c ∈ R. We get∑

kn<k≤n/2

e−κn(k) ≲ n e−
kn

2 log kn = O (1) .

That finishes the proof.

Actually the problem to know whether H2(β) is an algebra or not can be
formulated in terms of Schur multipliers acting on a family of Hankel matrices.

Theorem 2.21. H2(β) is an algebra if and only if the map

Ψ : ℓ2 −→ B(ℓ2)

u 7−→

(
uk+l

√
βk+l

βkβl

)
k,l

is bounded.

Let us point out that Lemma 2.11 also follows from the previous theorem.
Actually condition Bn ≲ 1/βn is equivalent to the fact that Ψ is bounded from
ℓ2 to HS(ℓ2) ⊆ B(ℓ2) (where HS(ℓ2) stands for the space of Hilbert-Schmidt
operators on ℓ2).

Indeed, for every u ∈ ℓ2, we have ∥Ψ(u)∥2HS =
∑
n

|un|2βnBn .

This remark gives a hint on the gap between the sufficient condition Bn ≲ 1/βn
and a potential characterization.
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Proof of Theorem 2.21. The vector space H2(β) is an algebra if and only if
fg ∈ H2(β) for all f, g ∈ H2(β). In other words, H2(β) is an algebra if and
only if

∞∑
n=0

∣∣∣∣ n∑
p=0

apbn−p

∣∣∣∣2βn < +∞

whenever
∑∞
n=0 |an|2βn < +∞ and

∑∞
n=0 |bn|2βn < +∞. Equivalently,

sup
a,b∈ℓ2

∥a∥=∥b∥=1

∞∑
n=0

∣∣∣∣∣ ∑
k+l=n

ak√
βk

bl√
βl

√
βk+l

∣∣∣∣∣
2

< +∞

or, in other words,

sup
a,b,u∈ℓ2

∥a∥=∥b∥=∥u∥=1

∣∣∣∣∣
∞∑
n=0

∑
k+l=n

akblun

√
βk+l
βkβl

∣∣∣∣∣ < +∞ .

Let us point out that

∞∑
n=0

∑
k+l=n

akblun

√
βk+l
βkβl

=

∞∑
k=0

ak

∞∑
l=0

Mk,lbl =

∞∑
k=0

ak

(
Ψ(u)(b)

)
k

where Mk,l = uk+l

√
βk+l
βkβl

·

Therefore, H2(β) is an algebra if and only if

sup
b,u∈ℓ2

∥b∥=∥u∥=1

∥∥∥Ψ(u)(b)
∥∥∥ < +∞ .

and the result follows.

3 Composition operators induced by the auto-
morphisms on hp(β)

For 1 ≤ p ≤ ∞, the Banach space ℓpA = hp (a copy of ℓp, called the Beurling-
Sobolev space in [5]) is the space of all analytic functions f(z) =

∑∞
n=0 anz

n on
the unit disk D such that

∥f∥pp :=
∞∑
n=0

|an|p < +∞ .

If β = (βn)n≥0 is a sequence of positive numbers satisfying (1.1), the
weighted space hp(β) is defined by the finiteness of

∥f∥pβ :=

∞∑
n=0

|an|pβn .
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Observe that h2 is none other than the usual Hardy space H2, and that h2(β) =
H2(β). But note also that hp, for p ̸= 2, has nothing to do with the usual Hardy
space Hp, even if, for example, Hp ⊆ h∞. But in the spirit of our recent work
[3], the case of hp seems a natural one to consider.

Remark that (1.1) is equivalent to the inclusion hp(β) ⊆ H (D) and allows
to treat the elements of hp(β) as analytic functions on D.

For p = 2, it is easy to check that all the composition operators CTa
, for

a ∈ D, generated by the automorphisms Ta, defined in (1.5), (and actually all
composition operators, by Littlewood’s subordination principle) are bounded
on H2. We recently studied [3] the weighted version H2(β) of this space and
gave a complete characterization of those weights β = (βn) for which either Cφ
is bounded on H2(β) for all automorphisms, or for all symbols. In this section,
we show that this is never the case for p ̸= 2. We mention in passing that this
boundedness issue was previously considered by Blyudze and Shimorin [1] in
the case when the initial space is h1 and hp is the target space. In that case,
the authors show that CTa

: h1 → hp is bounded if and only if p ≥ 2. This has
been made much more precise in [5].

We will prove the following result.

Theorem 3.1. Let p ∈ [1,+∞], with p ̸= 2. Then CTa
is unbounded on hp for

all a ∈ D \ {0}.
Moreover, CTa

is never bounded on hp(β), whatever the choice of β satisfying
(1.1).

S. Charpentier, N. Espouiller and R. Zarouf informed us that they proved,
independently, Theorem 3.1 for β ≡ 1, using [5] (see [2]).

Nevertheless, we present below a self-contained argument, more elementary,
directly relying on our paper [3], and which works for all weights β.

Proof. Set
I = [1/2, 2/3] and J = [α−1, α] ,

(α = 5/4 for instance).
As in [3, Proposition 4.2], the rotation invariance of hp(β) allows us to claim

that, if CTa
is bounded on hp(β) for some a ∈ D, a ̸= 0, then there exists a

constant K such that

(3.1) ∥CTa
∥ ≤ K , ∀a ∈ I .

Now, everything will rely on the matrix A = (am,n)m,n, where

am,n = (̂Ta)n(m)

(
βm
βn

)1/p

,

which represents CTa on the canonical (Schauder) basis of hp(β). If this matrix
defines a bounded operator, its columns and rows (the columns of the transposed

13



operator) are respectively uniformly bounded on ℓp and on the dual space ℓq (q
the conjugate exponent of p), that is (with some R independent of a ∈ I):

(3.2) Cn =

∞∑
m=0

|am,n|p
βm
βn

satisfies sup
n
Cn ≤ R < +∞ ,

and

(3.3) Lm =

∞∑
n=0

|am,n|q
(
βm
βn

)q/p
satisfies sup

m
Lm ≤ R < +∞ .

We will show that, for p ̸= 2, one of the necessary conditions (3.2) or (3.3)
fails. We will hence separate two cases.

We need an auxiliary result. Recall first the following elementary lemma
(see [3, Lemma 4.16]).

Lemma 3.2. Let f : [A,B] → R be a C2-function such that |f ′| ≥ δ and |f ′′| ≤
M . Then ∣∣∣∣ ∫ B

A

eif(x) dx

∣∣∣∣ ≤ 2

δ
+
M(B −A)

δ2
·

This lemma implies the following extended version of [3, Proposition 4.12].

Proposition 3.3. If r ∈ J = [α−1, α] and s ≥ 1, it holds, when r = m/n:

(3.4)

∫
I

|T̂na (m)|s da ≳

(∫
I

|T̂na (m)| da
)s

≥ δ n−s/2 .

Proof. The first inequality in (3.4) is just Hölder’s inequality. For the second
one, we proved in [3, Proposition 4.14] that

(3.5) |T̂na (m)| ≥ δ n−1/2
∣∣ cos(nψr(a) + π/4)

∣∣+O (n−3/5) ,

where ψr = f satisfies the assumptions of Lemma 3.2. Moreover, we have the
classical Fourier expansion

| cosx| = c+

∞∑
l=1

δl cos lx ,

with c > 0 and δl = O (l−2). Hence (actually
∑∞
l=1 |δl| < +∞ would suffice):

(3.6) |T̂na (m)| ≥ δ n−1/2

(
c+

∞∑
l=1

δl cos
(
l(nψr(a) + π/4)

))
+O (n−3/5) .

We now apply Lemma 3.2 with f(a) = l
(
nψr(a) + π/4

)
. Here, for given l, we

have |f ′| ≥ δ nl and |f ′′| ≤Mnl on I, so that∣∣∣∣ ∫
I

cos
(
l(nψr(a) + π/4)

)
da

∣∣∣∣ ≤ C

(
1

nl
+

nl

n2l2

)
=
C

nl
·
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It now follows from (3.2) that∫
I

|T̂na (m)| da ≥ δ n−1/2

(
c+O

( ∞∑
l=1

|δl|
nl

))
+O (n−3/5)

≥ δc n−1/2 +O (n−3/5) ≥ δ′ n−1/2 ,

and this ends the proof.

We now come back to the proof of Theorem 3.1. We will reason by contra-
diction, and separate two cases.

We set Jl = [l/
√
α ,

√
α l].

• Case p < 2.
It follows from (3.2) that, for n ∈ Jl, we have∑

m∈Jl

|T̂na (m)|p βm
βn

≤ R .

Integrating on I and using Proposition 3.3 give, sincem,n ∈ Jl (hencem/n ∈ J)
have the same size as l:

l−p/2
∑
m∈Jl

βm
βn

≲ R .

Now, summing up over n ∈ Jl further gives

l−p/2
(∑
k∈Jl

βk

)(∑
k∈Jl

β−1
k

)
≲ R l .

But, by the Cauchy-Schwarz inequality:

l2 ≲ |Jl|2 ≤
(∑
k∈Jl

βk

)(∑
k∈Jl

β−1
k

)
,

and we get l2−p/2 ≲ R l or R ≳ l1−p/2.
Since 1− p/2 > 0, we have a contradiction for large l.

• Case p > 2.
The proof is nearly the same. It now follows from (3.3) that, for m ∈ Jl:∑

n∈Jl

|T̂na (m)|q
(
βm
βn

)q/p
≤ R .

Set γk = β
q/p
k and proceed as in the case p < 2 to get

l−q/2
(∑
k∈Jl

γk

)(∑
k∈Jl

γ−1
k

)
≲ R l ,

or, again by the Cauchy-Schwarz inequality, l2−q/2 ≲ R l or R ≳ l1−q/2.
Since this time 1− q/2 > 0, we have again a contradiction for large l.
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