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Abstract

As a complex and nonlinear systems characterized by inherent delays, supply chains call
for more robust and efficient strategies for their dynamic management. Given the inherent
modeling challenges that often fail to capture their dynamic behavior, this paper examines
the application of model-free control, as introduced by Fliess and Join, to address supply
chain management (SCM) issues. The proposed control framework integrates the principles
of model-free control, further enriched by recent advancements in time series analysis for
delay compensation and customer demand forecasting. The primary objective, in addition to
ensuring effective supply chain control, is to mitigate the intriguing bullwhip effect, where the
system model is assumed unknown, and the delay is constant yet unknown. To substantiate
this approach’s effectiveness, we present several convincing computer simulations using real-
world examples and compare the results with the internal model control strategy.

keyword:
Supply chain management, inventory control, model-free control, time series, forecasting, alge-
braic techniques, bullwhip effect.

1 Introduction

Coined in 1980s-1990s, Supply Chain Management (SCM), as defined by [(Ivanov, et al., 2012)],
[(Bozath and Handfield, 2016)], refers to the management of the flow of services and goods. It
also encompasses a set of strategies deployed to efficiently integrate all the actors within the sup-
ply chain, including suppliers, manufacturers, distributors, and retailers [(Aghezzaf, et al., 2011)].

The primary objective is to guarantee the precise production and timely distribution of goods
in the correct quantities and locations, all aimed at minimizing system-wide costs while maintain-
ing a high level of service. Within the framework of SCM, decisions are typically categorized into
three main domains: strategic, tactical, and operational planning [(Simchi-Levi, D et al., 1999)].
It’s important to note, however, that many decision policies found in the literature rely on the
use of heuristics or mathematical programming techniques to simplify the representation of real
processes [(Perakis et al., 2010)]. This poses a significant obstacle that hinders companies from
competing on a broader scale.

The modern complexity of supply chains, coupled with the constant imperative of increasing
revenues, reducing costs, and enhancing customer satisfaction, within the backdrop of a globalized
economy and fierce competition among companies, underscores the need for enhanced manage-
ment practices where rigorous strategies can assume a pivotal role [(Sarimveis et al., 2008)]. It’s
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worth noting that despite the wealth of existing literature, it is not surprising that the study,
modeling, and control of supply chains remain a thriving area of interest and discussion within
the research community. Numerous comprehensive works and in-depth analyses posit that en-
hancing and dynamically optimizing management significantly heighten the competitiveness and
profitability of supply chain systems [(Schwartz and Rivera, 2010)]. Although it is unconven-
tional in the field of control engineering [(Schwartz and Rivera, 2014)], several tools stemming
from control and systems theory have demonstrated their ability to handle the problem of dy-
namic SCM, where uncertainties, delays, and lack of information are among the most critical
components to consider.

Numerous studies have concentrated on inventory management within production-inventory
systems, encompassing both control and modeling aspects. The primary objective is to maintain
the inventory levels at each node of the studied supply chain at desired levels while fulfilling
customer demands by ordering products from the upstream echelons.

Model analysis allows companies to evaluate the agility of their organizations and antici-
pate their responses to the dynamics of an increasingly innovative and competitive environment.
Consequently, models are extensively utilized due to their lower costs compared to employing
real physical systems, provided they offer an adequate representation of reality. Numerous ap-
proaches to supply chain models have been developed, and classifications may vary depending on
the authors. Min and Zhou [(Min et al., 2002)] classify quantitative models into four main cate-
gories: deterministic models (analytical models with one or more single or multi-criteria objective
functions), stochastic models (analytical models in a stochastic environment, including dynamic
programming and optimal control theory), hybrid models (which combine deterministic and
stochastic aspects, often through simulation), and IT-driven models (which rely on information
technologies). According to Beamon [(Beamon, 1998)], quantitative models can be categorized
into four groups: deterministic models (where all parameters are known), stochastic models
(where at least one parameter is unknown but follows a probabilistic distribution), economic
game theoretic models, and simulation-based models that assess the performance of various sup-
ply chain strategies [(Sarimveis et al., 2008)]. Riddalls, Bennett, et al. [(Riddalls et al., 2000)]
discuss four analytical methods, including continuous-time differential equations, discrete-time
differential equations, discrete-event systems, and operations research methods. In this paper,
the mathematical model used for simulation purposes is based on continuous-time differential
equations.

From a control-based perspective, classical control theory initially introduced tools like the
widely-used PID controllers [(Wikner, 1994)], in which the delay was approximated by a transfer
function, the degree of which depends on the system’s operation [(White, 1999)]. The appli-
cation of a multi-echelon supply chain approach without considering production lead time has
been proposed in [(Rodŕıguez et al., 2009)], aims to maintain inventory levels at their optimal
values and synchronize the incoming and outgoing flows at each node to effectively meet market
demand in a timely manner. Advanced control approaches, such as sliding mode control, internal
model control, and flatness-based control, have been developed [(Schwartz and Rivera, 2010)],
[(Ignaciuk and Bartoszewicz, 2012)], [(Koussaila et., al 2016a)], [(Koussaila et al., (2016b)]. Model
predictive control (MPC) represents one of the most popular approaches to supply chain man-
agement and inventory control. It has the advantage of using current and historical measure-
ments of the process to predict the system behavior at future time. Based on the predicted
horizon and the objective function optimization an optimal control action that satisfies the sys-
tems constraints is then calculated. The MPC control was investigated for a single production-
inventory system and for a multi-echelon supply chain using centralized or decentralized ap-
proach in [(Braun et al., 2003)], [(Kempf, 2004)], [(Wang et al., 2004)], [(Schwartz et al., 2006)],
[(Wang, Rivera, and Kempf, 2007)], [(Schwartz and Rivera, 2010)], [(Schwartz and Rivera, 2014)]
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and [(Fu et al., 2014)]. The excellent papers of [(Sarimveis et al., 2008)], [(Subramanian et al., 2013)],
provide a deep review of the applied to dynamic supply chains management modeling and control
approaches (See also e.g., [(Clarck and Scarf, 1960)], [(Salcedo et al., 2013)], [(Fu et al., 2014)],
[(Kempf, 2004)], [(Wang et al., 2004)] and the references therein).

It’s important to note that the majority of control approaches developed thus far are model-
based strategies. However, as supply chain systems grow in complexity, modeling them becomes
increasingly challenging, making it difficult to capture all of their dynamic phenomena.

The approach this research advocates is to develop decision policies based on a control ori-
ented formulation where the need of any supply chain model become useless. It might be one of
the very few publications that are combine recent advances in time series and model-free con-
trol in the frame of SMC. Preliminary results using model-free control are already proposed in
[(Koussaila et al., 2019)], [(Nyakam and Abouäıssa, 2022b)], [(Nkayam Hachour and Abouäıssa, (2022)],
[(Nyakam and Abouäıssa, 2022a)].

The mathematical model describing the study is replaced by the so-called ultra-local model,
valid only over a short period and continuously updated. Delay compensation and demand
forecasting rely on the new advances in time series techniques using the theorem of Cartier and
Perrin in term of nonstandard analysis.

The remainder of the paper is organized as follows. The problem statement and objective
are presented in Section 2. Section 3 briefly recalls the main principle of model-free control
(MFC) and the corresponding intelligent controllers. Tools for delay compensation and demand
forecasting are reviewed in section 4. Section 5 explains the combination of these two main
tools to design the so-called adaptive model-free control (AMFC) and its application to the real
problem of semiconductors manufacturing. Comparative studies with a so-called internal model
control (IMC) based on performance indices and dynamic analysis appear summarized in Section
6. Finally, Section 7 provides major conclusions and discussion for further work.

2 Problem statement and objective

2.1 System description

Consider a serial, single-product supply chain structure with three echelons (η = 3), which is simi-
lar to the benchmark model used in semiconductor manufacturing, [(Schwartz et al., 2006)],[(Schwartz and Rivera, 2010)].

The system depicted in Fig.1 consists of three (n = 3) logistic nodes1: Fabrication/test
(N1), Assembly/test (N2) and finished product (N3) nodes (See e.g., [(Wang et al., 2004)],
[(Schwartz et al., 2006)], [(Schwartz and Rivera, 2010)], for more details about this supply chain
system).

Figure 1: Three-echelon semiconductors manufacturing [(Wang et al., 2004)]

The equivalent fluid representation for a representative three-echelon semiconductor manu-
facturing supply chain is depicted in Fig. 2.

1Generalization to multi-echelons, multi-nodes, multi-products supply chain is straightforward.
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Figure 2: Fluid representation for a representative three-echelon supply chain

There are three control points: u1(t) for fabrication starts; u2(t) for assembly starts and
u3(t) for finished starts. After each control operation the product is stored in N1, N2 and N3,
respectively.

Applying a straightforward conservation principle, a model analogous to this delay system
can be formulated as follows:

ẏi(t) = ζiui(t− θi)− di(t), t ≥ θi (1)

where, the output variable yi(t) (i = 1, ..., n), represents the material inventory level; ui(t) is the
factory starts (the input pipe flow, control variable); di(t) is the total customer demand. The
yield parameter ζi 6= 0 and the throughput time θi may be known or not.

Equation (1) shows that the considered supply chain represents a typical example of delay
systems, (See e.g., [(Koussaila et al., 2019)] for mathematical explanations about the difficulty
to control such infinite-dimensional system and the clear illustration of the so-called “bullwhip
effect”). The customer demand di(t) in (1) is the sum of two quantities: a forecasted demand
dFi(t), knowns θFi days ahead of time, and unforecasted demand dUi(t):

di(t) = dFi(t− θi) + dUi(t) (2)

The overall dynamical system can be expressed as follows:

ẏi(t) = ζiui(t− θi)− dFi(t− θi)− dUi(t) (3)

Equation (3) represents the nominal model for production-inventory system control oriented
tactical decisions policies. Based on this equation it is possible to derive feedback-only decision
policies that manipulate factory starts ui(t) to maintain inventory level yi(t) at a desired setpoint
yd,i(t).

The system disturbance di(t) corresponds to the flow of products leaving the storage at any
time t due to the customer demand. The input of the system ui(t) represents the order to
produce and deliver the flow of products. Fig. 3, outlines the different components of the model.
Table 1 summarizes all variable definitions and notations.

Application of the model (3) to the studied semiconductors manufacturing supply chain of
three echelons leads to: 

ẏ3(t) = ζ3u3(t− θ3)− d3(t)

ẏ2(t) = ζ2u2(t− θ2)− d2(t)

ẏ1(t) = ζ1u1(t− θ1)− d1(t)

(4)
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Figure 3: Definition of states, control variables, and outputs

Table 1: Definitions of variable and notation
Variables Symbol description Variable type
u1(t) Starts of Fab/Test1 node Manip var.
u2(t) Starts of Assembly/Test2 node Manip var.
u3(t) Starts of Finish/Pack node Manip var.
y1(t) Starts of Fab/Test1 node Measured var.
y2(t) Starts of Assembly/Test2 node Measured var.
y3(t) Starts of Finish/Pack node Measured var.
d3(t) Customer demand Measured disturbance
θ1 Throughput time of Fab/Test1 node Model para.
θ2 Throughput time of Assembly/Test2 node Model para.
θ3 Throughput time of Finish/Pack node Model para.
ζ1 Yield of of Fab/Test1 node Model para.
ζ2 Yield of of Assembly/Test2 node Model para.
ζ3 Yield of Finish/Pack node Model para.

Given the interconnection between nodes, the customer demands in each node i are defined
as follows: 

d3(t) = dF3(t− θ3) + dU3(t)

d2(t) = u3(t) = dF2(t− θF2) + dU2(t)

d1(t) = u2(t) = dF1
(t− θF1

) + dU1
(t)

(5)

Remark 2.1. The customer demands are considered as disturbances. This contrasts with tradi-
tional level control problems where the outflow is manipulated in order to control the fluid level
subject to disturbances at the inflow [(Schwartz and Rivera, 2014)].

2.2 Constraints and objective

The considered problem consists on a basic logistic processes, where the time-delayed system
with a constant lead time θi is subject to physical limitations. The maximal and minimum
production rates of each node i are denoted by ui,max and ui,min respectively. Maximum and
minimum inventory capacities are yi,max and yi,min. The controller should be designed in such
a way that, for all t ≥ 0 the system, while adhering to the physical limitations of (6), must
effectively compensate for the various delays and be capable of attenuating the variability and
uncertainties in demand, notably addressing the “bullwhip effect”.{

yi,min ≤ yi(t) ≤ yi,max
ui,min ≤ ui(t) ≤ ui,max

(6)
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3 Model-free control: an overview

3.1 Main principle

The complexity of studying and managing supply chains is compounded by the challenge of
describing all the dynamic phenomena in such a meshed network. Here, we adopt an alternative
approach, replacing the more or less complex model of the supply chain with the so-called “ultra-
local” model derived from model-free control theory.

Model-free control (MFC) is an approach to linear and nonlinear systems control introduced
by Fliess and Join a few years ago [(Fliess and Join, 2009)]. While Model-Free Control (MFC)
is a relatively recent concept in modern control theory, its practical successes in several do-
mains are indisputably attributed to the straightforward gain tuning and remarkable robust-
ness of its corresponding intelligent controllers (See, e.g., [(Abouäıssa, Fliess and Join, 2017)],
[(Abouäıssa, and S. Chouraqui, 2019)], [(Afsi, et al., 2018)], [(Barth, et al., 2020)], [(Bara, et al., 2018)],
[(Bekcheva et al., 2018)], [(Coşkun and İtik, 2023)] [(Hong et al., 2011)], [(Menhour et al., 2018)],
[(Telsang et al., 2018)], [(Ismail et al., 2021)], [(Scherer et al., 2023)], [(Yaseri, 2023)], [(Ziane et al., 2022)]
and the reference therein). Fig. 4 provides non-exhaustive statistics of works based on such the-
ory.

Figure 4: Number of annual publications related to MFC since 2009. The statistical data are
based on searching of Scopus

It also explain why it has already been summarized recently many times: [(Abouäıssa et al., 2017)],
[(Coşkun and İtik, 2023)], [(Join et al., 2017)]. This leads us to present only the general scheme
and the main equations. The main theoretical ideas which are shaping the MFC can be founded
in [(Fliess and Join, 2013)]. In brief, under some weak assumptions, the complex mathematical
model of the studied system can always be substituted with the so-called ultra-local model or
phenomenological model of the form

y(ν)(t) = F (t) + αu(t) (7)

where, α ∈ R is a parameter chosen by the practitioner such that αu(t) and y(ν)(t) are of the
same order magnitude: it does not need to be precisely known. The ultra-local model is only
valid during a short time period: it must be continuously updated.
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As stated in [(Mounier et al., 2023)], numerous successful applications have demonstrated
that a first order (ν = 1) ultra-local model suffices to describe and design the control law for the
system, a principle that holds true for our supply chain model.

ẏ(t) = F (t) + αu(t) (8)

where the data-driven F (t), which subsumes not only the unmodeled dynamics, but also all the
unknown disturbances, is estimated at any sample time by algebraic techniques as developed in
[(Mboup, Join and Fliess, 2007)], [(Mboup, Join and Fliess, 2009)].

F̂ (t) = − 6

τ3

∫ t

t−τ
((τ − 2σ)y(σ) + ασ(τ − σ)u(σ)) dσ (9)

Remark 3.1. The integral in (9), is a low pass filter which may, in practice, be replaced by a
simple classical digital filter [(Fliess and Join, 2013)].

3.2 The corresponding intelligent controllers

The intelligent controllers permit to close the loop as follows for ν = 2 in (7)

u(t) = −
F̂ (t)− ÿ?(t) +KP e(t) +KI

∫
e+KD ė(t)

α
(10)

KP , KI and KD are the usual tuning gains. e(t) = y?(t) − y(t) is the tracking error. y?(t)
represents the output reference trajectory. C(e(t)) = KP e(t) + KI

∫
e + KD ė(t) is a causal

function of the error e(t).
Combining Eqs (7) (for ν = 2) and (10) yieds ė+KP e+KI

∫
e+KD ė = F − F̂ . With a good

estimate F̂ , i.e., if F − F̂ ≈ 0, then limt→+∞ e(t) ≈ 0, if, and only if KP ,KI ,KD > 0. Figure 5,
resumes the main principle of MFC.

Figure 5: General Model-free control principle

3.3 Ultra-local model with delay

The introduction of delay in (7) leads:

ẏ(t) = F(t) + αu(t− θ) (11)

In (11), F(t) plays the same role as F (t) in Eq. (7) and reads

F̂(t) = − 6

τ3

∫ t

t−τ
((τ − 2σ)y(σ) + ασ(τ − σ)u(σ − θ)) dσ (12)

Most of the applications use the Smith predictors[(Smith, 1959)] as an efficient tool for delay
compensation. As Smith predictor is a model-based, the proposed control approach is enriched
by the recent trends in time series for delay compensation and demand forecasting.
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4 Time series and prediction

4.1 New viewpoint of time series

Consider a real-valued polynomial Taylor function in τ

p(τ) =

∞∑
i=0

p(i)(0)
τ i

i!
(13)

where pn(τ) = p(τ) +π(τ) a noisy observation on a finite interval of time from a signal p(τ) (the
denoising signal). The numerical differentiation principle is based on the fact that each signal
can be replaced by its truncated Taylor expansion of order N :

p(τ) =

N∑
i=0

p(i)(0)
τ i

i!
(14)

Let us start with the first degree polynomial time function N = 1,

p(τ) = p(0) + p(1)(0)
τ1

1!
(15)

The main tool allowing the prediction via time series rests on the use of the algebraic methods
of derivatives estimate. This is summarized via the parameters estimation (ai = p(i)(0), for
i = 0, 1) of p(τ) = a0 + a1τ, τ > 0, a0, a1 ∈ R [(Fliess and Join, 2009b)]. Rewrite (15) in
operational calculus L{t(n)} = n!

sn+1 . With respect to the Laplace variable s, p(τ) reads

P (s) =
a0

s
+
a1

s2
(16)

Simple algebraic manipulations, as well described many times (See e.g., [(Tian et al., 2008)],
[(Fliess and Join, 2009b)], [(Koussaila et al., 2019)], [(Mounier et al., 2023)]) allow the obtention
of all the unknown parameters a0 and a1 as follow:

a0 = 2sP (s) + s2 dP (s)

ds
(17)

a1 = −s2P (s)− s3 dP (s)

ds
(18)

Remark 4.1. Recall that d
ds corresponds to the multiplication by t, the obtained, in time domain

parameters estimate correspond to a set of iterated integrals which are low pass filters attenuating
the corrupting noises.

Remark 4.2. A quite short time window is sufficient for obtaining accurate values of the pa-
rameters a0 and a1.

From the above derivatives estimate, the estimation of the mean, or trend E(X)(t) of a time
series X(t) defined according to the theorem of Cartier and Perrin [(Cartier and Perrin, 1995)]:

X(t) = E(X)(t) +Xfluctuation(t) (19)

where E(X)(t) is quite smooth and it is obtained like a0 in (17), and Xfluctuation is quickly
fluctuating.
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4.2 Forecasting via time series

Having the estimation of the mean, or trend E(X)(t), the following forecast Xforecast(t+ ∆T ),
where ∆T > 0 is not too “large” reads

Xforecast(t+ ∆T ) = E(X)(t) +

[
dE(X)(t)

dt

]
e

∆T (20)[
dE(X)(t)

dt

]
e

is estimated like a1 from (18).

5 Adaptive model-free control: an application

5.1 Principle

The ultra-local model (11) of section 3.3 can be rewritten in the form

ˆ̇y(t+ θ) = F̂(t+ θ) + αu(t) (21)

where ˆ̇y(t+θ) and F̂(t+θ) are the estimate and forecast of y(t) and F(t), respectively. Introduce
the corresponding intelligent proportional (iP) controller

u(t) =
1

α

(
−F̂(t+ θ) + ẏ?(t+ θ)−KP ê(t+ θ)

)
(22)

where ê(t + θ) = ŷ?(t + θ) − ŷ(t + θ) is the estimation of the tracking error at time (t + θ). In
order to estimate ŷ(t+ θ), integrate (21)

ŷ(t+ θ) =

∫ (
F̂(t+ θ) + αu(t)

)
(23)

Notice that the estimation of ŷ(t + θ) needs the forecast F̂(t + θ) of F. The main tool which is

used here rests on the new trend in time series presented below 2. The forecast of F̂ is obtained
via Expressions (12) and (20).

The main issues encountered in the proposed strategy concern the case where the delay is
unknown. Therefore, the approach depicted in Fig. 6, introduces a so-called Adaptive Model-
Free Control (AMFC). The core of the idea consists to estimate and update the time delay in
the system control model.

5.2 Delay estimation

Rewrite the delay ultra-local model (11)

ẏ(t) = F(t) + αu(t− θ) (24)

The estimation of the delay θ is achieved according to the following steps:

Step 1: Apply to Eq. (11) the Laplace transforms

sY (s)− y0 = F (s) + αe−θsU(s) (25)

Using the first-order Padé approximation on the delay term e−θs ≈ −
θ
2 s+1
θ
2 s+1

, (25) reads:

sY (s)− y0 = F (s) + α

[
− θ2s+ 1
θ
2s+ 1

]
U(s) (26)

2The same approach is very useful for customer’s demand forecasting.
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Figure 6: Adaptive model-free control scheme

Step 2: Take the two derivatives of (26) with respect to the complex variable s in order to get rid
of the initial conditions y0

θ

2

[
s2 d

2Y (s)

ds2
+ 4s

dY (s)

ds
+ 2Y (s) +W (s)

]
= R1(s) (27)

W (s) = αs
d2U(s)

ds2
+ 2α

dU(s)

ds
− 2

dF (s)

ds
− sd

2F (s)

ds2
(28)

R1(s) = −sd
2Y (s)

ds2
− 2

dY (s)

ds
+ α

d2u(s)

ds2
+
d2F (s)

ds2
(29)

Step 3: Finally, multiplying both sides of (27) by s−3, in order to eliminate any non causal term
and to avoid differentiation with respect to time

=⇒ θ = 2

(
R∗1(s)

R∗2(s)

)
(30)

R∗
1(s) = −s−2 d

2Y (s)

ds2
− 2s−3 dY (s)

ds
+ s−3 d

2F (s)

ds2
+ αs−3 d

2U(s)

ds2
(31)

R∗
2(s) = s−1 d

2Y (s)

ds2
+ 4s−2 dY (s)

ds
+ 2s−3Y (s) + αs−2 d

2U(s)

ds2

+ 2αs−3 du(s)

ds
− 2s−3 dF (s)

ds
− s−2 d

2F (s)

ds2
(32)

Step 4: Back in the time domain via the inverse Laplace transform on the interval σ ∈ [0, T ].3

Expression (30) becomes:

θ = 2

(
R∗1(t)

R∗2(t)

)
(33)

where R∗1(t) and R∗2(t) are the inverse Laplace transform.

3Notice that dk

dsk
, k ≥ 1 is equivalent to (−t)k in time domain and sk is equivalent to dk

dtk
.
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R∗
1(t) = −

∫ (2)

t2y(t)− 2

∫ (3)

ty(t) +

∫ (3)

t2F (t) + α

∫ (3)

t2u(t) (34)

R∗
2(t) =

∫ (1)

t2y(t) + 4

∫ (2)

ty(t) + 2

∫ (3)

y(t) + α

∫ (2)

t2u(t)

− 2α

∫ (3)

tu(t)− 2

∫ (3)

tF (t)−
∫ (2)

t2F (t) (35)

As illustration of the aforementioned algebraic technique, assume that for each node i = [1, 2, 3],
the delay values are θi(t) = [0.25, 0.75, 1] days. Their estimations are represented in Fig. 7. It is
worth noting that the parameter estimation process is fast, resulting in the rapid determination
of the exact values of θi.

Figure 7: Estimation of delay θ

5.3 Inventory control of semiconductors manufacturing supply chain

The objective of the decision policies is to keep the inventory level yi(t), i = [1, 2, 3] of the supply
chain depicted in Figure 2, at its desired value yd,i(t), while the customer demand (the sum of
forecasted and unforecasted, Eq. (2)) must be satisfied and the physical constraints defined in
(6), respected.

The control law in each node i of three-echelon semiconductors manufacturing supply chain
described by system (4) is given by:

ui(t) =
1

αi

(
−F̂i(t+ θi) + ẏd,i(t+ θi)−KPi ê(t+ θi)

)
(36)

5.4 Forecasting customer demand

The proposed approach to predict the customer demand is based on algebraic technique describe
in the section 4.2. Forecasting the future demand di(t+ θi) (considered as a disturbance) allows
to dictate to shipment flow. Therefore, the algorithm for delay compensation described in section
4.2 is applied and leads:

d̂i(t+ θi) =
2
[∫ t
to

(2t− 3τ) di(τ)dτ
]

t2
(37)
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6 Simulation results and comparative studies

The application of adaptive model-free control approach is made using the system of semicon-
ductors manufacturing borrowed from [(Schwartz et al., 2006)]. Figure 8, depicts the profil of
the considered customer demand d(t).

Figure 8: Customer demand d(t)

Two regions can be identified. The first one corresponds to the known demand. Indeed, at
t = 65 days, a customer demand step change from 0 to 100 MT/day is introduced (forecasted
demand dF (t) known θF = 5 days ahead of time). At t = 100 days, the demand becomes
stochastic. This second region describes the unforecasted demand dU (t). Notice that the orders of
products propagate upstream from right to left (the final customer to initial supplier: information
flow), and products are shipped downstream in the opposite direction (initial supplier to the final
customer: material flow) as illustrated in Figure 9 (See also Figure 3).

Figure 9: Block diagram of the installation-stock policy

The numerical values of the different parameters are summarized in Table 2.
In addition, the initial values are yi,0 = 0 in Mega Tonnes (Mt), and θdi = 0 in days. ui,max

and ui,min are in MT/days. In the way that, each echelon may obtain enough goods (yi equal
to the desired value yd,i) to supply the orders of its immediate customer (di(t)), the information
flow must be satisfied and synchronized to production rate ui(t). Let us emphasize that the
AMFC approach is compared to Internal Model Control (IMC) in [(Schwartz et al., 2006)] (See
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Table 2: Numerical values

Nodes yd,i ui,max ui,min θFi θi ζi

node 1 1000 200 0 7 1 0.99

node 2 900 200 0 6 2 0.98

node 3 800 200 0 5 3 0.95

also [(Salcedo et al., 2013)]) 4 with the following model parameters, λR = 40, λC1
= 10, λC2

= 2,
λC3 = 2, λI = 0.1 and λB = 5. The dynamic analyzes are carried out in comparison with the
ideal case named Base 0. Four cases studies are conducted as summarized in Table 3. In addition,

Table 3: Different control policies

Policies Control laws

Base 0 Ideal case (yi(t) = yd,i(t) and ui(t) = di(t))

Case 1 Adaptive MFC without Forecasting demand

Case 2 Adaptive MFC with Forecasting demand

Case 3 2DoF IMC without Forecasting demand

Case 4 3DoF IMC with Forecasting demand

two types of analyzes are carried out. The first one concerns the qualitative analysis will the
second deals with quantitative analysis.

6.1 Qualitative analysis

The proposed qualitative analysis is conducted in order to study the dynamic response of the
three nodes semiconductors manufacturing supply chain subject to the various control laws. The
following performances are analyzed:

1. Rise Time (RT): time interval corresponding to the growth from 10% to 90% of its total
variation.

2. The maximum value of the production rate |Umax|. This information will be required for
the sizing of flow capacities.

3. Settling time (ST): is the time required for the system to settle within a certain percentage
(2% in our case) of the input amplitude.

4. Overshoot (OV): this criterion shows the maximum overshoot on the output signals.

5. Mean Tracking Error (MTE) with N = Ts ∗ Tf ; Ts is the sampling time.

MTE =
1

N

N∑
i=1

|yd,i − yi|

4Future works will provide a deep comparative study with Model Predictive Control (MPC).
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Figure 10, shows the evolution of the three levels of the studied systems both for the AMFC
approach and for the IMC with two degree of freedom (2DoF) without any customer demand
forecasting (case 1 and case 3).

Figure 10: Net stock yi(t) in the three nodes without demand forecasting with AMFC and IMC

Both of the two controllers converge towards the desired values yd,i (MT) in each node.
Consider, for example the level y3(t) and calculate Id = y3(t)−yd,3(t). The first plot of Figure 10,
shows that around the interval t = [65 − 100] days, the inventory level presents a negative deficit
about of Id = 375 MT for the AMFC approach while the 2DoF IMC one presents a deficit of
Id = 414.3 MT. The AMFC strategy anticipates the customer demand change at the day t = 65
and promptly adjusts the factory starts accordingly. Contrary to the 2DoF IMC approach which
reacts to the customer demand change once it occurs. The same results are observed in the
others nodes 1 and 2 (See e.g. the MTE criteria in Table 4, for case 1 and Table 5, for case 3).
Given θi days of the throughput time in each node this results in a need for high levels of safety
stock. In practice this means that the AMFC strategy is less likely to reach a critical inventory
level.

Figure 11, shows the corresponding time evolution of the factory starts ui(t). Notice the
violation of physical constraints in the case of the IMC approach for u1(t) and u2(t). Contrary,
the introduction of the compensation in the AMFC (case 1) allows to the inventory targets to be
lowered substantially and the starts evolution in response to demand changes to be less abrupt
than in the case 3. The noticeable over and undershoots means that orders are not bring satisfied
on time.

The amplitude of oscillation observed in Figure 10 and Figure 11 are increased when they
move from node 3 to node 1. It shows that 2DoF IMC is not able to cancel or to attenuated
the amplification problem. The AMFC shows the same problem but in a lower magnitude then
reduces arrival of misleading signals to the fabrication node (node 1). This is a clear illustration
of so-called bullwhip effect phenomenon.
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Table 4: Performances of Adaptive Model-Free Control (AMFC)

Policies Case 1 Case 2

Nodes Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

RT (day) 9.67 13.76 7.13 6.67 6.67 6.67

ST (day) 189.81 191.10 191.68 17.64 24.64 34.64

OV 0 4.78 4.59 0 0 0

|Umax| 200 200 192.8 193.34 174.04 159.59

MTE 20.81 72.04 16.28 11.7692 4.16 2.91

Table 5: Performances of Internal Model Control (IMC)

Policies Case 3 Case 4

Nodes Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

RT (day) 6.62 6.74 6.84 6.62 6.74 6.84

ST (day) 171.38 167.86 187.18 171.38 167.85 187.2

OV 25.84 20.98 5.04 4.88 12.64 5.04

|Umax| 216.53 179.27 155.28 195.17 169.35 155.28

MTE 90.04 63.09 31.37 15.55 22.79 11.17

Figure 11: Factory starts ui(t) and demand di(t) in 3 nodes with AMFC and IMC approaches

In order to mitigate the bullwhip effect, forecasting methods, as described before (See e.g.,
Section 5.4) play an important role in the frame of supply chain management. Using the AMFC
policy with this forecasting method (case 2 in Table 3), Figure 12 shows the amelioration of this
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strategy compared to the case 1. A significant reduction of the net stock yi(t) and the maximal
value of factory starts ui(t) (Figure 13) can be observed compared to the case 1 (without customer
demand forecasting) while respecting the physical constraints umin = 0 ≤ u(t) ≤ umax =
200MT/days .

Figure 12: Net stock yi,p(t) evolution for case 2 (red) and case (yi,wp(t)) (blue) using Adaptive
Model-Free Control

All of the qualitative analyzes reported in the Tables 4 and 5 confirm the superiority of the
proposed AMFC strategy with the customer demand forecasting. Notice that the performance
with the 2DoF IMC approach (case 3) which does not take advantage of a demand forecasting
is lower than the performance considers the fully functional, three degree-of-freedom (3DoF)
combined feedback-feedforward control system (case 4) (See e.g. Figure 14).

Examining Figure 14 shows that the AMFC has advantages over IMC to improve performance
(see case 2 in table 4 and case 4 in table 5), in addition the corresponding control policy ui(t)
represented by Figure 15, are smoother and respect physical limitations than ones generated by
2DoF IMC.

More comprehensive and systematic comparison of the robustness and the bullwhip effect
attenuation performances is achieved over the fourth cases. The measurement of the bullwhip
effect is usually performed using the expression (38) (See e.g. [(Fu et al., 2014)]).

Bullwhip =
σs/µs
σc/µc

(38)

where s, c refer to the orders placed on a supplier and customer demands respectively σ and µ
denote the variance and the mean value of the variables.

The obtained results are summarized in Table 6. They demonstrate the flexibility through
AMFC to put different emphasizes on bullwhip reduction in different nodes.
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Figure 13: Starts ui(t) with/without demand forecasted with Adaptive Model-Free Control

Table 6: Bullwhip effect with AMFC and IMC

Bullwhip Effect (AMFC) Bullwhip Effect (IMC)

Nodes without forecasting with forecasting without forecasting with forecasting

Node 1 1.1572 0.8396 1.0825 1.3241

Node 2 0.9219 0.8329 1.1287 1.0622

Node 3 0.9847 0.9154 0.9727 0.9020

6.2 Quantitative analysis

Quantitative analyses are conducted in term of the profit, the total cost, the customer satisfaction,
and the total shipment rate defined below.

1. Profit is determined according to the objective function Pmax for a planification time Tf
(Tf is time considered for the evaluation):

Pmax = R− PC − IC −BC (39)

The objective function shown in (39) comprehensively accounts for the production cost,
inventory holding cost, back-order penalty, and revenue generation via the parameters σR,
λC , λI and λB respectively.

• Revenue (R) is the product of the price of an item λR by the demand of the final
customer d(t) (demand at the end of the supply chain.)

R =

Tf∑
t=0

λRd(t) (40)
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Figure 14: Inventories levels yi(t) in the three nodes with AMFC with forecasting demand and
3DoF IMC

• The cost of production (PC) is the sum of the cost of producing an item λC by the
demand di(t) (request at each node i (i = 1, ..., n).

PC =

Tf∑
t=0

n∑
J=1

λCjdj(t) (41)

• The inventory storage cost (IC) is the sum of the storage cost per item λI (considering
that we stock the same product) by the number of items present in available stock
yi(t) (inventory level at each node i (i = 1, ..., n).

IC =

Tf∑
t=0

n∑
J=1

λIyj(t) (42)

• Backorder cost (BC) is the sum of the return cost per item λB (if considering the
same product) by the number of items returned by the customer b(t).

BC =

Tf∑
t=0

λBb(t) (43)

2. Total Cost (TC): this index measures the average operational cost of the supply chain.
This index considers storage and manufacturing costs only. Regarding the inventory costs,
each product has a specific storage cost at each node in the distribution channels. The
cost function is evaluated as the average cost in the entire period of analysis. Its value
is calculated as the mean value of the instantaneous cost function using the mean value
theorem

TC =

Tf∑
t=0

n∑
J=1

λIyj(t) +

Tf∑
t=0

n∑
J=1

λCjdj(t) (44)
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Figure 15: Factory starts ui(t) in the three nodes with AMFC with forecasting demand and
3DoF IMC

3. Customer Satisfaction Level (CS): this index provides information on the ability of the
system to deliver orders on time. The customer satisfaction level is evaluated by comparing
the rate of arrival of orders from the customers with the rate of deliveries to them. The
difference between these quantities is the amount of orders not satisfied on time. This error
is reported as a percentage of the total orders received. This index is evaluated as follows:

CS =

1−
Tf∑
t=0

(
di(t)− ui(t)

di(t)

)× 100 (45)

where, di(t) (i = 1, ..., n) is the ordering rate to node i from one its customers and di−1(t)
is the material delivery rate from node i to its downstream product node.

4. Total shipping rate: this equation is used because qualitatively it reproduce the amplifica-
tion problem observed in supply chain, or the “bullwhip effect” as reported by companies.
This demand amplification has been observed in real systems because in common oper-
ations, retailers tend to over order products to ensure a high customer satisfaction level
and to satisfy their forecasts of sales. By doing so, retailers “amplify” the original signal
of orders coming from the customers and send this “amplified signal” (orders) to the next
distribution level. As a result, the amount of orders that arrives to the next level is ampli-
fied and the next level receives more orders than the actual orders placed to the system.
In turn, a small fluctuation in the demand reflects a small fluctuation in the inventory
of the retailer but creates a much larger fluctuation in the inventory levels of the upper
distribution nodes.

TSR =
Dout

Din
(46)

Where Dout ans Din are the variance of demand generated by this node and the variance
of demand received during a time interval respectively.

The obtained performances measurements for all the policies are reported in Tables 7-9. Table
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7, resumes the customers satisfaction with AMFC and IMC in comparison of their ideal cases
(case 0).

Table 7: Customer satisfaction with AMFC and IMC
Node 1 Node 2 Node 3

Policies Cust. Sat. 1 (%) Cust. Sat. 2 (%) Cust. Sat. 3 (%)

Base 0 100 u2 = d2 100 u3 = d2 100 d3

Case 1 104.75 +4 103.46 +3.46 107.369 +7.3.7

Case 2 97.3671 -2.63 98.21 -1.79 103.1283 +3.13

Case 3 85.59 -14.40 93.78 -6.22 107.23 +7.23

Case 4 85.143 -14.85 95.03 -4.9715 106.192 +6.2

The customer satisfaction is calculated using (45). Table 7, provides information on the
ability of the system to deliver orders on time. Therefore, the customer satisfaction level is the
percentage of orders delivered on time.

• Comparison between the ideal case (base 0) and the first case (AMFC without forecasting)
shows that the the system is not able to attenuate completely the bullwhip effect in different
nodes (see Figure. 15 and table 6). The customer satisfaction levels exceed on average to
100%. Therefore, there is a surplus of materials on average in node of about 5%. When
the forecasting of demand is used, corresponding to the case 2, the system achieves the
highest bullwhip effect reduction then the customer satisfaction level drops up on average
in the three nodes to 99.568% in comparison to case 1. Compared to base 0, the customer
satisfaction in nodes 1 and 2 is less than 100% created a surplus of +3.13% in node 3.

• Using either case 3 or 4, the customer satisfaction is reduced at least by 14.4 − 4.9% in
nodes 1 and 2 compared to base 0. This reduction is the consequences of presence of
bullwhip effect (see Fig. 11 and Fig. 15 and table 6) and the fact that design of IMC do
not respect physical limitations. In node 3 for case 4 (with forecasting) compared to base
0, the customer satisfaction is more than 100% created a surplus of +6.13%.
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Table 8: Cost value against the demand foresting and control AMFC

Total Storage Production

Policies Cost (106$) Cost (106$) Cost (106$)

Base 0 36.509 4.9313 31.577

Case 1 39.115 4.7631 34.352

(%) +12.03% −3.4099% +8.7876%

Profit1 = R− TC = 14.4565

with CSmoy = 105.1960%

Base 0 34.915 4.9313 29.984

Case 2 36.508 4.9393 31.569

(%) +4.5619% +0.163% +5.2854%

Profit2 = 17.173

with CSmoy = 99.568%

Table 9: Cost value against the demand foresting and IMC

Total Storage Production

Policies Cost (106$) Cost (106$) Cost (106$)

Base 0 35.890 4.9313 30.959

Case 3 37.445 4.7804 32.664

(%) +4.3328% −3.0584% +5.5101%

Profit3 = 16.236

with CSmoy = 95.5352%

Base 0 35.902 4.9313 30.971

Case 4 35.794 4.8989 30.895

(%) −0.3001% −0.6563% −0.2434%

Profit4 = 17.7887

with CSmoy = 95.4544%

Comparing the results in the tables 8 and 9, one can see the effect of the control policies
and the forecasting demand over the total costs, storage cost and production cost of the system.
An important finding is that the selection of control policies affects the decisions made by the
production and storage facility.

• In case 1 (Adaptive Model-Free Control without the forecasting demand), the total cost
production (regarding inventory cost and storage cost at each node) increases by +12.03%,
whereas in case 2 (Adaptive Model-Free Control with the forecasting demand), the increase
goes up by +4.5619% compared to the ideal case. This extra cost is due to extra production
costs. The extra total cost of case 1 implies less profit Profit1 = R− TC = 14.4565× 106$
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and high customer satisfaction CSmoy = 105.1960% (See also, node 3 in table 7) compared
to case 2 with higher profit Profit2 = 17.173 × 106$ with customer satisfaction CSmoy =
99.568%. This results obtained by the AMFC policy show that the model is able to
reproduce what real systems experience: stability and high customer satisfaction represent
an extra cost.

• Something similar happens in the total cost in case 3 or 2 degree-of freedom feedback-
only Internal Model Control increase by +4.3328% compared to base 0 implies high profit
Profit3 = 16.236 × 106$ but less the mean of customer satisfaction in nodes CSmoy =
95.5352%. In case 4 (three degree-of-freedom combined feedback-feedforward Internal
Model Control), the mean of customer satisfaction in nodes CSmoy = 95.4544% but profit
Profit4 = 17.7887×106$ is higher than in case 3 because the total cost is reduced−0.03001%
compared to base 0.

7 Conclusion

The works presented in this paper demonstrate how to deal with complex supply chain con-
trol without going through the tedious modeling stage. Indeed, through an easy and efficient
framework, the report introduces an adaptive model-free control strategy to the inventory con-
trol problem in the case of three semiconductors’ manufacturing supply chain echelons. Here is
shown that:

• Each supply chain model (usually approximated by a delay differential equation) can easily
replace by an “ultra-local model” continuously updated.

• Instead of using any model-based compensation tool, a forecasting method of algebraic
favors can advantageously allow for a delay compensation as well as customer demand
prediction.

• The simulation results compared with the 2DoF IMC and 3DoF IMC policies demonstrate
the proposed approach’s ability to deal with the most intriguing bullwhip effect.

• Quantitative analysis shows the relevance of the adaptive model-free control in profit, total
cost, customer satisfaction, and total shipment rate.

Constraints are an essential feature of most real-life control problems, and the ability to
address these explicitly in the controller formulation is part of the significant appeal of AMFC.
It also provided the foundation for current and future efforts. At the same time, the authors
have highlighted controllers’ vital role in achieving acceptable performance in the supply chain.

From the managerial viewpoint, let us emphasize that from the analysis of the input and
output behavior of a studied system, the supply chain manager can gain visibility of the chain’s
capacity, productivity and delays, as well as their impact on the overall operation of the chain.
The company’s decision-makers should then adjust their objectives online according to the poli-
cies of the companies that make up the supply chain, enabling them to operate efficiently and
achieve the desired performance.

A natural extension of this work is to apply AMFC with the demand forecast using an
algebraic approach in controlling multi-products, multi-echelon supply systems with perishable
goods and considering the environmental aspect.

22



References
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