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THE EXCELLENCE OF FUNCTION FIELDS OF CONICS

AHMED LAGHRIBI1 AND DIKSHA MUKHIJA2

ABSTRACT. Let F be a field of characteristic 2. Our aim in this paper is to prove that the
extension given by the function field of a singular conic is excellent for bilinear forms. We
also give examples showing that in general this extension is not excellent for quadratic forms of
arbitrary dimension.

1. INTRODUCTION

Throughout this paper F denotes a field of charactersitic 2. By considering some problems
related to the behavior of F -quadratic forms under a field extension K/F , we are sometimes
led to consider the difficult question of whether the extension K/F is excellent or not. Recall
that K/F is excellent for quadratic (bilinear) forms if for any quadratic (bilinear) form φ over
F , the anisotropic part (φK)an of the K-form φK is defined over F , i.e., there exists a quadratic
(bilinear) form ψ over F such that (φK)an is isometric to ψK .

For example, the excellence property holds for totally singular quadratic forms and any field
extension of F [5, Proposition 8.1(iii)]. Moreover, the following examples of extensions are
excellent for quadratic and bilinear forms:

(1) A purely transcendental extension. This is because any anisotropic F -form stays
anisotropic over a purely transcendental extension of F .

(2) An algebraic extension of odd degree. This is a consequence of Springer’s theorem [1,
Corollary 18.5].

(3) A quadratic extension. This is due to Hoffmann and Laghribi [6, Lemma 5.4].
(4) More generally, multiquadratic purely inseparable extensions. This is due to Hoffmann

for quadratic and bilinear forms [3], [4].
Recently the authors studied the excellence of quartic extensions. Among others, they proved

that a mixed biquadratic extension is excellent for quadratic forms [12]. It is not difficult to see
that this extension is also excellent for bilinear forms.

For extensions given by function fields of quadrics, the case of quadratic forms of dimension
2 is covered by quadratic extensions which are excellent. In this paper we discuss the excellence
property for function fields of conics, i.e., functions fields F (Q) of projective quadrics given F -
quadratic formsQ of dimension 3. Recall that such a field extension is excellent in characteristic
not 2. This was first proved by Arason [2, Appendix II] and later by Rost who produced an
elementary proof that presents the advantage of being extendable to characteristic 2 [13]. In
characteristic 2, the form Q could be of type (1, 1) or (0, 3) (see below for the definition of
the type of a quadratic form). When Q is of type (1, 1), the extension F (Q) is excellent for
quadratic forms as well as bilinear forms. For quadratic forms, this is due to Hoffmann and
Laghribi who easily adapted Rost’s proof to characteristic 2 [6, Corollary 5.7], and for bilinear
forms as a consequence of the result [7, Corollary 3.3] stating that an anisotropic totally singular
form (and thus an anisotropic bilinear form) stays anisotropic over the function field of a form
which is not totally singular. Now we address the situation when Q is of type (0, 3). Generally,
in this case the extension F (Q) is not excellent for quadratic forms (see Corollaries 10 and 11).
For bilinear forms we will prove that such an extension is excellent.
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Theorem 1. Let B be an anisotropic bilinear form over F and Q an anisotropic F -quadratic
form of type (0, 3). Then, there exists an F -bilinear form C such that (BF (Q))an ≃ CF (Q).
Hence, the extension F (Q)/F is excellent for bilinear forms.

This theorem played a crucial role for the descent of bilinear forms recently studied by the
two authors [11]. Our proof of this theorem is inspired from Rost’s proof in characteristic not 2,
but we will adapt many arguments to our situation. The complications come from the fact that
we consider inseparable quadratic extensions in characteristic 2. More precisely, it is known
in characteristic 2 that if an anisotropic F -bilinear form becomes isotropic over an inseparable
quadratic extension F (

√
a), then B contains, up to a nonzero scalar, a subform isometric to

⟨1, a+ x2⟩b for some x ∈ F [8, Lemma 3.4], but not the form ⟨1, a⟩b in general (see the
comments after Lemma 2). Moreover, some arguments given by Rost based on the trace map
for quadratic extensions fail in characteristic 2 for quadratic inseparable extensions.

2. BACKGROUND ON QUADRATIC AND BILINEAR FORMS

Recall that any quadratic form φ over F can be written up to isometry as follows:

(1) φ ≃ [a1, b1] ⊥ [a2, b2] ⊥ . . . ⊥ [ar, br] ⊥ ⟨c1, . . . , cs⟩,
where ⊥ denotes the orthogonal sum of quadratic forms, and [ai, bi] (resp. ⟨c1, . . . , cs⟩) denotes
the quadratic form aix

2 + xy + biy
2 (resp.

∑s
i=1 cix

2
i ). In this case, we say that φ is of type

(r, s). As in equation (1), the form φ is called:
• nonsingular (resp. singular) if s = 0 (resp. s > 0),
• totally singular if r = 0,

A quadratic form φ of underlying vector space V is called isotropic if there exists a nonzero
vector v ∈ V such that φ(v) = 0, otherwise φ is called anisotropic. Note that φ is isotropic
iff φ contains the form [0, 0] or ⟨0⟩ as a subform. A scalar α ∈ F is represented by φ if there
exists v ∈ V such that φ(v) = α. We denote by DF (φ) the set of scalars in F ∗ := F \ {0}
represented by φ.

Any quadratic form φ uniquely decomposes as follows:

φ ≃ i× [0, 0] ⊥ j × ⟨0⟩ ⊥ φan,

for some integers i and j, where φan is anisotropic that we call the anisotropic part of φ.
All bilinear forms considered in this paper are supposed to be symmetric, regular and of finite

dimension. The regularity means that the radical of the bilinear form is trivial. Such a bilinear
form of dimension n is isometric to the diagonal bilinear form:

((x1, · · · , xn), (y1, · · · , yn)) 7→
n∑

i=1

aixiyi

for some a1, · · · , an ∈ F ∗. This diagonal bilinear form is denoted by ⟨a1, · · · , an⟩b.
To any bilinear formB of underlying F -vector space V , we attach a totally singular quadratic

form B̃ defined on V by: B̃(v) = B(v, v) for all v ∈ V . This quadratic form depends only on
the isometry class of B. A scalar is said to be represented by B when it is represented by B̃.
We say that B is isotropic when B̃ is isotropic, otherwise B is called anisotropic. Note that B

is isotropic iff B contains as a subform a metabolic plane M(a) :=

(
a 1
1 0

)
for some a ∈ F .

As for quadratic forms, any bilinear form B uniquely decomposes as follows:

B ≃ M(a1) ⊥ · · · ⊥ M(an) ⊥ Ban,

for suitable a1, · · · , an ∈ F , where Ban is an anisotropic bilinear form that we call the
anisotropic part of B.
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Any quadratic form φ of underlying F -vector space V and type (r, s) can be viewed as a
homogeneous polynomial Pφ of degree 2 after choosing an F -basis of V . This polynomial is
reducible if (r = 1 and dimφan = 0) or (r = 0 and dimφan = 1) [5]. If Pφ is irreducible,
we denote by F (φ) the function field of the projective quadric given by φ, otherwise we take
F (φ) = F .

The function field of a bilinear form B is defined to be the function field of the quadratic
form B̃.

3. PROOF OF THEOREM 1

We fix Q = ⟨1, a, b⟩ an anisotropic totally singular quadratic form over F . We take for F (Q)
the function field of the projective conic given by Q. Then, F (Q) is isomorphic to the quotient
field of the ring R = F [x, y]/(y2 + ax2 + b). Note that R = F [x] ⊕ yF [x] as F -vector space.
Define d : R → N ∪ {−∞} by:

d(P + yQ) = max{degP, 1 + degQ} for all P,Q ∈ F [x]

(here deg 0 = −∞). Moreover, let Rn = {r ∈ R | d(r) ≤ n}. Clearly, Rn is an F -vector
subspace of R and we have R0 = F and Rn.Rm ⊂ Rn+m.

Let B be an anisotropic F -bilinear form of underlying vector space V . The key result for the
proof of Theorem 1 is the following lemma which extends [13, Lemma] to the case of bilinear
forms in characteristic 2:

Lemma 2. Suppose that for some n ≥ 1 there exists

v ∈ (V ⊗F Rn) \ (V ⊗F Rn−1)

such that B̃(v) = 0 ∈ R. Then, there exists a subspace W ⊂ V of dimension 2 such that:
(1) B|W≃ c ⟨1, a+ ϵ2⟩b for some c ∈ F ∗ and ϵ ∈ F .
(2) there exist a nonzero v′ ∈ V ⊗F Rn−1 and b′ ∈ DF (Q) such that B̃′(v′) = 0, where

B′ = b′(B|W ) ⊥ (B|W⊥).

Before proving this lemma, let us mention two crucial changes comparing to the original
version [13, Lemma] due to Rost: In statement (1), we take the 2-dimensional bilinear forms
⟨1, a+ ϵ2⟩b for ϵ ∈ F instead of the form ⟨1, a⟩b, and in statement (2) we consider the form
b′(B|W ) for b′ ∈ DF (Q) instead of b(B|W ).

Proof of Lemma 2. We write

v = v0 +
n∑

i=1

(viyx
i−1 + wix

i); vi, wi ∈ V.

Since B̃(v) = 0 ∈ R, we get

0 = B̃(vn)y
2x2(n−1) + B̃(wn)x

2n (mod R2n−1)

= (B̃(vn)a+ B̃(wn))x
2n (mod R2n−1).

Thus, B̃(vn)a = B̃(wn) (i.e., B̃ is isotropic over F (
√
a)). Note that vn, wn ̸= 0 since B is

anisotropic and v /∈ V ⊗F Rn−1. Moreover, since a ̸∈ F 2, the vectors vn and wn are linearly
independent.

Let c = B̃(vn), α =
√
a and W the 2-dimensional vector subspace of V generated by the

vectors vn, wn. Since B̃|W≃ c ⟨1, a⟩, it follows from [10, Lemma 3.7] that B|W≃ c ⟨1, a+ ϵ2⟩b
for a suitable ϵ ∈ F .
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Identifying W with F (α) = F ⊕ Fα (by 1 7→ vn and α 7→ wn), we get B̃(w) = cw2 for all
w ∈ W .

Now we write v = p+ q with p ∈ W ⊗F R and q ∈ W⊥ ⊗F R. We can express

p = (y + xα)xn−1 + (y + xα)µxn−2 + λxn−1 + p

for some λ, µ ∈ W such that p ∈ W ⊗F Rn−2 and q ∈ W⊥ ⊗F Rn−1 (if n = 1, we have
µ = p = 0).

Let b′ = λ2 + b ∈ F and put v′ = (b′)−1(λ + y + xα)p + q. Then, b′ ∈ DF (Q) and v′ is a
zero of the form B′ = b′(B|W ) ⊥ (B|W⊥) because:

B̃′(v′) = b′B̃((b′)−1(λ+ y + xα)p) + B̃(q)

= b′c(b′)−2(λ+ y + xα)2p2 + B̃(q)

= c(b′)−1(λ2 + y2 + x2a)p2 + B̃(q)

= c(b′)−1(λ2 + b)p2 + B̃(q)

= B̃(p) + B̃(q)

= B̃(v)

= 0.

Now to show that v′ ∈ V ⊗F Rn−1, we just need to verify that (b′)−1(λ + y + xα)p ∈
W ⊗F Rn−1. We can express (b′)−1(λ+ y + xα)p as:

(b′)−1(λ+ y + xα)p = (b′)−1(λ+ y + xα)
(
(λ+ y + xα)xn−1 + (λ+ y + xα)µxn−2 + λµxn−2 + p

)
= (b′)−1(λ2 + y2 + x2a)xn−1 + (b

′
)−1(λ2 + y2 + x2a)µxn−2

+(b′)−1(λ+ y + xα)(λµxn−2 + p)

= xn−1 + µxn−2 + (b′)−1(λ+ y + xα)(λµxn−2 + p).

Therefore, (b′)−1(λ + y + xα)p ∈ W ⊗F Rn−1 and thus (b′)−1(λ + y + xα)p + q = v′ ∈
V ⊗F Rn−1. □

Here we would like to stress that although the main idea of the proof is heavily inspired
from [13], certain changes were required for our setting. The important one is the choice of the
vector v′, we correct it by the factor λ, this is very helpful to show that v′ ∈ V ⊗F Rn−1 and
then avoid the use of trace form that does not apply in our case. A consequence of this change
is the appearance of the scalar b′ ∈ DF (Q).

A consequence of the previous lemma is the following proposition which is the analogue of
[13, Proposition]. Its proof is the same as that done by Rost.

Proposition 3. Let B be a bilinear form over F . Then, there exist an integer p ≥ 0, bilinear
forms Bi, Ci for 0 ≤ i ≤ p and elements ci ∈ F ∗, ϵi ∈ F for 0 ≤ i ≤ p− 1 such that B = B0

and
(1) Bi ≃ ci ⟨1, a+ ϵ2i ⟩b ⊥ Ci for 0 ≤ i ≤ p− 1.
(2) Bi+1 ≃ cibi ⟨1, a+ ϵ2i ⟩b ⊥ Ci and bi ∈ DF (Q) for 0 ≤ i ≤ p− 1.
(3) ((Bp)F (Q))an ≃ ((Bp)an)F (Q).

Proof. We use induction on the dimension of Ban. Thus, we assume that B is anisotropic and
BF (Q) is isotropic. Then, there exist n ≥ 0 and a nonzero v ∈ V ⊗F Rn such that B̃(v) = 0.
We proceed by induction on n.

If n = 0, then v ∈ V and B would be isotropic over F . Hence, n ≥ 1. We may also assume
v /∈ V ⊗F Rn−1 and take B1 = B

′ , where B′ is the bilinear form defined in the Lemma 2. If
B

′ is anisotropic, we apply induction hypothesis for n − 1 and if B′ is isotropic we apply the
4



induction hypothesis for dimB
′
an < dimB. In any case we find forms B′

= B
′
0, . . . , B

′
p as in

the proposition and B = B0, Bi = B
′
i−1(i = 1, . . . , p+ 1) is the required sequence. □

Now we are able to give the proof of Theorem 1 including some explanations proper to our
setting.

Proof of Theorem 1. LetB be an anisotropic bilinear form over F . We keep the same notations
as in Proposition 3. All the bilinear forms Bi, for 0 ≤ i ≤ p, are isometric over F (Q) because
b ∈ DF (Q)(⟨1, a⟩) implies bi ∈ DF (Q)(⟨1, a⟩) = DF (Q)(⟨1, a+ ϵ2i ⟩) for any bi ∈ DF (Q) and
ϵi ∈ F , meaning that (bi ⟨1, a+ ϵ2i ⟩b)F (Q) ≃ (⟨1, a+ ϵ2i ⟩b)F (Q) by the roundness of a bilinear
Pfister form. In particular, (Bi)F (Q) ≃ (Bi+1)F (Q). Now the bilinear form C needed in the
theorem is (Bp)an. □

4. NON-EXCELLENCE OF FUNCTION FIELDS OF SINGULAR CONICS FOR QUADRATIC
FORMS

We finish this paper by some examples (Corollaries 10 and 11) showing the non-excellence
of function fields of singular conics for quadratic forms. To this end we recall some definitions
and facts on quadratic forms.

For a bilinear form B defined on an F -vector space V , and a quadratic form φ defined on an
F -vector space W , we associate a quadratic form B ⊗ φ defined on V ⊗F W by:

(2) B ⊗ φ(v ⊗ w) = B̃(v)φ(w) for any (v, w) ∈ V ×W

and whose polar form isB⊗Bφ, whereBφ is the polar form of φ. Note thatB⊗φ is nonsingular
when φ is nonsingular.

An n-fold bilinear Pfister form is a bilinear form of type ⟨1, a1⟩b ⊗ · · · ⊗ ⟨1, an⟩b for some
ai ∈ F ∗. An (n+1)-fold quadratic Pfister form is a nonsingular quadratic form of type ⟨1, a1⟩b⊗
· · · ⊗ ⟨1, an⟩b ⊗ [1, b] for some ai ∈ F ∗, b ∈ F . The set of forms isometric (resp. similar) to
n-fold quadratic Pfister forms will be denoted by PnF (resp. GPnF ). Recall that a quadratic
Pfister form is isotropic iff it is hyperbolic. The same result is true for bilinear Pfister forms
using the metabolicity, but we will not use this property.

Let IF be the fundamental ideal of the Witt ring W (F ) of F -bilinear forms. For any integer
n ≥ 1, let InF (resp. Inq F ) be the n-th power of IF (resp. the subgroup In−1F ⊗Wq(F ) of the
Witt group of nonsingular forms Wq(F )), we take I0F = W (F ).

We denote by ℘(F ) = {α2 + α | α ∈ F}. The Arf invariant ∆(φ) of a nonsingular form
φ ≃ [a1, b1] ⊥ [a2, b2] ⊥ . . . ⊥ [ar, br] is defined to be

∑r
i=1 aibi + ℘(F ) in F/℘(F ). Recall

that a nonsingular quadratic form φ belongs to I2qF iff ∆(φ) = 0.

Since we are in characteristic 2, we need to consider a refinement of the definition of excel-
lence in the case of quadratic forms. More precisely, an extensionK/F is called (r, s)-excellent
if for any F -quadratic form φ of type (r, s), the K-form (φK)an is defined over F . Obviously,
an extension which is excellent is necessarily (r, s)-excellent for any pair of positive integers r
and s.

Proposition 4. Any field extension of F is (r, s)-excellent for r ≤ 1.

Proof. (1) As we mentioned in the introduction, the excellence property holds for totally singu-
lar quadratic forms, meaning that any field extension of F is (0, s)-excellent.

(2) Let K/F be a field extension and φ an F -quadratic form of type (1, s). Let us write φ =
[a, b] ⊥ ⟨c1, · · · , cs⟩. There exists a totally singular form ψ over F such that (⟨c1, · · · , cs⟩K)an ≃
ψK . Moreover, the anisotropic part of φK is isometric to ([a, b] ⊥ ψ)K or ψK according as
[a, b] ⊥ ψ is anisotropic over K or not. □
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Concerning the (r, s)-excellence property for r > 1, we restrict ourselves to the extensions
given by function fields of singular conics.

Proposition 5. The function fields of singular conics are (2, 0)-excellent.

Proof. Let Q be an anisotropic totally singular F -quadratic form of dimension 3, and let φ be
an anisotropic F -quadratic form of type (2, 0). Let K = F (Q).

– If ∆(φ) = 0, then φ ∈ GP2F . Hence, φK is anisotropic or hyperbolic.
– If ∆(φ) ̸= 0, then φK is anisotropic [7, Th. 1.3].

This proves that (φK)an is defined over F . □

Proposition 6. In general, the function field of a singular conic is not (3, 0)-excellent.

Proof. We produce an example showing the non-excellence of function fields of singular conics
for forms of type (3, 0).

Let F2 be the finite field with two elements. Let γ = [t1, t2] ⊥ [t3, t4] ⊥ [1, t1t2 + t3t4] be
an Albert quadratic form over the rational function field k := F2(t1, t2, t3, t4) in the variables
t1, t2, t3, t4 over F2. Let Q be the totally singular quadratic form ⟨1, t1, t3⟩.

(1) The form γk(Q) is isotropic because Q is dominated by γ. Then, there exists τ ∈
GP2(k(Q)) such that γk(Q) ∼ τ .

(2) Suppose that τ is defined over k and let δ be a k-quadratic form of dimension 4 such that
γk(Q) ∼ δk(Q). Note that δ ∈ GP2(k) because if c ∈ k satisfies △(δ) = c+℘(k) ∈ k/℘(k), then
[1, c]k(Q) ∼ 0 because △(δ)k(Q) = ∆(τ) = 0. But then [7, Proposition 1.1] implies [1, c] ∼ 0,
that is, △(δ) = 0 ∈ k/℘(k).

Now the form γ ⊥ δ belongs to I2q k and becomes hyperbolic over k(Q). Hence, we get
γ ⊥ δ ∈ I3q k [9, Corollary 4.11]. Passing to k(δ), we get γk(δ) ∈ I3q k(δ). By the Hauptsatz,
γk(δ) ∼ 0. Using [8, Theorem 1.2], we get that dim γan is divisible by 4, and thus γ is isotropic,
a contradiction. □

Using the same arguments as in the proof of Proposition 6, we get:

Proposition 7. In general, the function field of a singular conic is not (2, 1)-excellent.

Proof. Let F2 be the finite field with two elements. Let γ = [t1, t2] ⊥ [t3, t4] ⊥ ⟨1⟩ be a form of
type (2, 1) over the rational function field k := F2(t1, t2, t3, t4) in the variables t1, t2, t3, t4 over
F2. Let Q be the totally singular quadratic form ⟨1, t1, t3⟩.

(1) The form γk(Q) is isotropic because Q is dominated by γ. Then, there exists γ′ an F (Q)-
quadratic form of type (1, 1) such that γk(Q) ∼ γ′.

(2) Suppose that γ′ is defined over k and let δ be a k-quadratic form of type (1, 1) such that
γk(Q) ∼ δk(Q). We write δ = a[1, b] ⊥ ⟨1⟩ for a, b ∈ k and a ̸= 0. Using the completion lemma
[5, Lem. 3.9], we get

([t1, t2] ⊥ [t3, t4] ⊥ [1, t1t2 + t3t4])k(Q) ∼ (a[1, b] ⊥ [1, b])k(Q).

Now we conclude as in the proof of Proposition 6 that the Albert form [t1, t2] ⊥ [t3, t4] ⊥
[1, t1t2 + t3t4] is isotropic over k, a contradiction. □

To reach the non-excellence of function fields of singular conics for forms of type (3 + r, s)
with r, s ≥ 0, and for forms of type (2, s + 1) for s ≥ 0, we use a generic argument based on
the following two lemmas.

Lemma 8. Let L/F be a field extension, t a variable over L and φ an anisotropic F -quadratic
form such that φL is isotropic and (φL)an is not defined over F . Then, the F (t)-quadratic form
ψ := φ ⊥ ⟨t⟩ is isotropic over L(t) but (ψL(t))an is not defined over F (t).
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Proof. Let φ1 = (φL)an and suppose that φ1 is not defined over F . We have φL ≃ i× [0, 0] ⊥
j × ⟨0⟩ ⊥ φ1 with i+ j > 0. Hence, (φ ⊥ ⟨t⟩)L(t) ≃ i×H ⊥ j × ⟨0⟩ ⊥ (φ1 ⊥ ⟨t⟩)L(t). Since
φ1 is anisotropic over L, then φ1 ⊥ ⟨t⟩ is anisotropic over L(t). Hence, ((φ ⊥ ⟨t⟩)L(t))an ≃
(φ1 ⊥ ⟨t⟩)L(t).

Suppose that (φ1 ⊥ ⟨t⟩)L(t) is defined over F (t). Hence, there exists an F (t)-quadratic form
θ such that

(φ1 ⊥ ⟨t⟩)L(t) ≃ θL(t)

We extend scalars to the field of Laurent series L((t)), we get

(3) (φ1 ⊥ ⟨t⟩)L((t)) ≃ θL((t))

Note that the form (φ1 ⊥ ⟨t⟩)L((t)) remains anisotropic. Let θ′ be the first residue form of
θ with respect to the t-adic valuation of F ((t)). We take the first residue form in equation (3)
with respect to the t-adic valuation of L((t)) to get φ1 ≃ θ

′
L, that is, φ1 is defined over F which

is contrary to our assumption. □

Lemma 9. Let L/F be a field extension and φ an anisotropic F -quadratic form such that φL

is isotropic and (φL)an is not defined over F . Let x1, y1 be variables over L and ψ := φ ⊥
x1[1, y

−1
1 ] over F1 := F (x1, y1). Then, ψ is isotropic over L1 := L(x1, y1) and (ψL1)an is not

defined over F1.

Proof. The form ψ = φ ⊥ x1[1, y
−1
1 ] is anisotropic over F1 := F (x1, y1). Let φ1 = (φL)an

and suppose that φ1 is not defined over F . We have φL ≃ i × [0, 0] ⊥ j × ⟨0⟩ ⊥ φ1 such
that i + j > 0. Hence, (φ ⊥ x1[1, y

−1
1 ])L1 ≃ i × [0, 0] ⊥ j × ⟨0⟩ ⊥ (φ1 ⊥ x1[1, y

−1
1 ])L1 .

Since φ1 is anisotropic over L, the form φ1 ⊥ x1[1, y
−1
1 ] is also anisotropic over L1. Hence,

((φ ⊥ x1[1, y
−1
1 ])L1)an ≃ (φ1 ⊥ x1[1, y

−1
1 ])L1 .

Suppose that ((φ ⊥ x1[1, y
−1
1 ])L1)an is defined over F1. Hence, there exists an F1-quadratic

form θ such that
(φ1 ⊥ x1[1, y

−1
1 ])L1 ≃ θL1 .

We extend scalars to the field of iterated Laurent series L̃1 = L((x1))((y1)), we get:

(4) (φ1 ⊥ x1[1, y
−1
1 ])L̃1

≃ θL̃1
.

Note that the form (φ1 ⊥ x1[1, y
−1
1 ])L̃1

is anisotropic. Let θ′ be the first residue form of θ
with respect to the y1-adic valuation of F̃1 := F ((x1))((y1)). Taking the first residue form in
equation (4) with respect to the y1-adic valuation of L̃1, we get:

(φ1 ⊥ ⟨x1⟩)L((x1)) ≃ θ′L((x1))
.

We reproduce the same arguments as in the proof of Lemma 8 to conclude that φ1 is defined
over F , which is contrary to our assumption. □

We get the following corollaries that prove the non-excellence of function fields of conics for
quadratic forms of arbitrary dimension.

Corollary 10. For any m, s ≥ 0, there exists a function field of a singular conic which is not
(3 +m, s)-excellent.

Proof. It follows from Proposition 6 that there exists a field k of characteristic 2, a nonsingular
k-quadratic form φ of dimension 6, and a totally singular k-quadratic Q of dimension 3 such
that φk(Q) is isotropic but (φk(Q))an is not defined over k. Now we start with φ and k(Q) and
iterate s times Lemma 8 to get a form φ′ of type (3, s) over k′ := k(t1, . . . , ts) such that φ′

becomes isotropic over k′(Q) but the anisotropic part (φ′
k′(Q))an is not defined over k′. Now

we take φ′ and k′(Q), and we iterate r times Lemma 9 to get a form φ′′ of type (3 + r, s) over
7



k′′ := k′(x1, y1, . . . , xr, yr) such that φ′′ becomes isotropic over k′′(Q) but the anisotropic part
(φ′′

k′′(Q))an is not defined over k′′. □

Corollary 11. For any s ≥ 0, there exists a function field of a singular conic which is not
(2, s+ 1)-excellent.

Proof. We reproduce the same arguments as in the proof of Corollary 10 by combining Propo-
sition 7 with Lemmas 8 and 9. □
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