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Let F be a field of characteristic 2. Our aim in this paper is to prove that the extension given by the function field of a singular conic is excellent for bilinear forms. We also give examples showing that in general this extension is not excellent for quadratic forms of arbitrary dimension.

INTRODUCTION

Throughout this paper F denotes a field of charactersitic 2. By considering some problems related to the behavior of F -quadratic forms under a field extension K/F , we are sometimes led to consider the difficult question of whether the extension K/F is excellent or not. Recall that K/F is excellent for quadratic (bilinear) forms if for any quadratic (bilinear) form φ over F , the anisotropic part (φ K ) an of the K-form φ K is defined over F , i.e., there exists a quadratic (bilinear) form ψ over F such that (φ K ) an is isometric to ψ K .

For example, the excellence property holds for totally singular quadratic forms and any field extension of F [5, Proposition 8.1(iii)]. Moreover, the following examples of extensions are excellent for quadratic and bilinear forms:

(1) A purely transcendental extension. This is because any anisotropic F -form stays anisotropic over a purely transcendental extension of F . (2) An algebraic extension of odd degree. This is a consequence of Springer's theorem [START_REF] Elman | The algebraic and geometric theory of quadratic forms[END_REF]Corollary 18.5]. (3) A quadratic extension. This is due to Hoffmann and Laghribi [START_REF] Hoffmann | Isotropy of quadratic forms over the function field of a quadric in characteristic 2[END_REF]Lemma 5.4]. (4) More generally, multiquadratic purely inseparable extensions. This is due to Hoffmann for quadratic and bilinear forms [START_REF] Hoffmann | Witt kernels of bilinear forms for algebraic extensions in characteristic 2[END_REF], [START_REF] Hoffmann | Witt kernels of quadratic forms for multiquadratic extensions in characteristic 2[END_REF]. Recently the authors studied the excellence of quartic extensions. Among others, they proved that a mixed biquadratic extension is excellent for quadratic forms [START_REF] Laghribi | On the excellence problem for quartic extensions[END_REF]. It is not difficult to see that this extension is also excellent for bilinear forms.

For extensions given by function fields of quadrics, the case of quadratic forms of dimension 2 is covered by quadratic extensions which are excellent. In this paper we discuss the excellence property for function fields of conics, i.e., functions fields F (Q) of projective quadrics given Fquadratic forms Q of dimension 3. Recall that such a field extension is excellent in characteristic not 2. This was first proved by Arason [2, Appendix II] and later by Rost who produced an elementary proof that presents the advantage of being extendable to characteristic 2 [START_REF] Rost | On quadratic forms isotropic over the function field of a conic[END_REF]. In characteristic 2, the form Q could be of type (1, 1) or (0, 3) (see below for the definition of the type of a quadratic form). When Q is of type (1, 1), the extension F (Q) is excellent for quadratic forms as well as bilinear forms. For quadratic forms, this is due to Hoffmann and Laghribi who easily adapted Rost's proof to characteristic 2 [6, Corollary 5.7], and for bilinear forms as a consequence of the result [START_REF] Laghribi | Certaines formes quadratiques de dimension au plus 6 et corps des fonctions en caractéristique 2[END_REF]Corollary 3.3] stating that an anisotropic totally singular form (and thus an anisotropic bilinear form) stays anisotropic over the function field of a form which is not totally singular. Now we address the situation when Q is of type (0, 3). Generally, in this case the extension F (Q) is not excellent for quadratic forms (see Corollaries 10 and 11). For bilinear forms we will prove that such an extension is excellent.

Theorem 1. Let B be an anisotropic bilinear form over F and Q an anisotropic F -quadratic form of type (0, 3). Then, there exists an F -bilinear form C such that (B F (Q) ) an ≃ C F (Q) . Hence, the extension F (Q)/F is excellent for bilinear forms.

This theorem played a crucial role for the descent of bilinear forms recently studied by the two authors [START_REF] Laghribi | On the descent for quadratic and bilinear forms[END_REF]. Our proof of this theorem is inspired from Rost's proof in characteristic not 2, but we will adapt many arguments to our situation. The complications come from the fact that we consider inseparable quadratic extensions in characteristic 2. More precisely, it is known in characteristic 2 that if an anisotropic F -bilinear form becomes isotropic over an inseparable quadratic extension F ( √ a), then B contains, up to a nonzero scalar, a subform isometric to ⟨1, a + x 2 ⟩ b for some x ∈ F [8, Lemma 3.4], but not the form ⟨1, a⟩ b in general (see the comments after Lemma 2). Moreover, some arguments given by Rost based on the trace map for quadratic extensions fail in characteristic 2 for quadratic inseparable extensions.

BACKGROUND ON QUADRATIC AND BILINEAR FORMS

Recall that any quadratic form φ over F can be written up to isometry as follows:

(1) φ ≃ [a 1 , b 1 ] ⊥ [a 2 , b 2 ] ⊥ . . . ⊥ [a r , b r ] ⊥ ⟨c 1 , . . . , c s ⟩,
where ⊥ denotes the orthogonal sum of quadratic forms, and

[a i , b i ] (resp. ⟨c 1 , . . . , c s ⟩) denotes the quadratic form a i x 2 + xy + b i y 2 (resp. s i=1 c i x 2 i ).
In this case, we say that φ is of type (r, s). As in equation ( 1), the form φ is called:

• nonsingular (resp. singular) if s = 0 (resp. s > 0),

• totally singular if r = 0, A quadratic form φ of underlying vector space V is called isotropic if there exists a nonzero vector v ∈ V such that φ(v) = 0, otherwise φ is called anisotropic. Note that φ is isotropic iff φ contains the form [0, 0] or ⟨0⟩ as a subform. A scalar α ∈ F is represented by φ if there exists v ∈ V such that φ(v) = α. We denote by D F (φ) the set of scalars in F * := F \ {0} represented by φ.

Any quadratic form φ uniquely decomposes as follows:

φ ≃ i × [0, 0] ⊥ j × ⟨0⟩ ⊥ φ an ,
for some integers i and j, where φ an is anisotropic that we call the anisotropic part of φ.

All bilinear forms considered in this paper are supposed to be symmetric, regular and of finite dimension. The regularity means that the radical of the bilinear form is trivial. Such a bilinear form of dimension n is isometric to the diagonal bilinear form:

((x 1 , • • • , x n ), (y 1 , • • • , y n )) → n i=1 a i x i y i for some a 1 , • • • , a n ∈ F * . This diagonal bilinear form is denoted by ⟨a 1 , • • • , a n ⟩ b .
To any bilinear form B of underlying F -vector space V , we attach a totally singular quadratic form B defined on V by: B(v) = B(v, v) for all v ∈ V . This quadratic form depends only on the isometry class of B. A scalar is said to be represented by B when it is represented by B. We say that B is isotropic when B is isotropic, otherwise B is called anisotropic. Note that B is isotropic iff B contains as a subform a metabolic plane M(a) := a 1 1 0 for some a ∈ F .

As for quadratic forms, any bilinear form B uniquely decomposes as follows:

B ≃ M(a 1 ) ⊥ • • • ⊥ M(a n ) ⊥ B an , for suitable a 1 , • • • , a n ∈ F
, where B an is an anisotropic bilinear form that we call the anisotropic part of B.

Any quadratic form φ of underlying F -vector space V and type (r, s) can be viewed as a homogeneous polynomial P φ of degree 2 after choosing an F -basis of V . This polynomial is reducible if (r = 1 and dim φ an = 0) or (r = 0 and dim φ an = 1) [START_REF] Hoffmann | Quadratic forms and Pfister neighbors in characteristic 2[END_REF]. If P φ is irreducible, we denote by F (φ) the function field of the projective quadric given by φ, otherwise we take

F (φ) = F .
The function field of a bilinear form B is defined to be the function field of the quadratic form B.

PROOF OF THEOREM 1

We fix Q = ⟨1, a, b⟩ an anisotropic totally singular quadratic form over F . We take for F (Q) the function field of the projective conic given by Q. Then,

F (Q) is isomorphic to the quotient field of the ring R = F [x, y]/(y 2 + ax 2 + b). Note that R = F [x] ⊕ yF [x]
as F -vector space. Define d : R → N ∪ {-∞} by:

d(P + yQ) = max{deg P, 1 + deg Q} for all P, Q ∈ F [x] (here deg 0 = -∞). Moreover, let R n = {r ∈ R | d(r) ≤ n}. Clearly, R n is an F -vector subspace of R and we have R 0 = F and R n .R m ⊂ R n+m .
Let B be an anisotropic F -bilinear form of underlying vector space V . The key result for the proof of Theorem 1 is the following lemma which extends [START_REF] Rost | On quadratic forms isotropic over the function field of a conic[END_REF]Lemma] to the case of bilinear forms in characteristic 2: Lemma 2. Suppose that for some n ≥ 1 there exists

v ∈ (V ⊗ F R n ) \ (V ⊗ F R n-1 )
such that B(v) = 0 ∈ R. Then, there exists a subspace W ⊂ V of dimension 2 such that:

(1) B| W ≃ c ⟨1, a + ϵ 2 ⟩ b for some c ∈ F * and ϵ ∈ F .

(2) there exist a nonzero

v ′ ∈ V ⊗ F R n-1 and b ′ ∈ D F (Q) such that B ′ (v ′ ) = 0, where B ′ = b ′ (B| W ) ⊥ (B| W ⊥ ).
Before proving this lemma, let us mention two crucial changes comparing to the original version [START_REF] Rost | On quadratic forms isotropic over the function field of a conic[END_REF]Lemma] due to Rost: In statement (1), we take the 2-dimensional bilinear forms ⟨1, a + ϵ 2 ⟩ b for ϵ ∈ F instead of the form ⟨1, a⟩ b , and in statement (2) we consider the form b

′ (B| W ) for b ′ ∈ D F (Q) instead of b(B| W ).
Proof of Lemma 2. We write

v = v 0 + n i=1 (v i yx i-1 + w i x i ); v i , w i ∈ V. Since B(v) = 0 ∈ R, we get 0 = B(v n )y 2 x 2(n-1) + B(w n )x 2n (mod R 2n-1 ) = ( B(v n )a + B(w n ))x 2n (mod R 2n-1 ). Thus, B(v n )a = B(w n ) (i.e., B is isotropic over F ( √ a)). Note that v n , w n ̸ = 0 since B is anisotropic and v / ∈ V ⊗ F R n-1 .
Moreover, since a ̸ ∈ F 2 , the vectors v n and w n are linearly independent.

Let c = B(v n ), α = √ a and W the 2-dimensional vector subspace of V generated by the vectors v n , w n . Since B| W ≃ c ⟨1, a⟩, it follows from [10, Lemma 3.7] that B| W ≃ c ⟨1, a + ϵ 2 ⟩ b for a suitable ϵ ∈ F .

Identifying W with F (α) = F ⊕ F α (by 1 → v n and α → w n ), we get B(w) = cw 2 for all w ∈ W . Now we write v = p + q with p ∈ W ⊗ F R and q ∈ W ⊥ ⊗ F R. We can express

p = (y + xα)x n-1 + (y + xα)µx n-2 + λx n-1 + p for some λ, µ ∈ W such that p ∈ W ⊗ F R n-2 and q ∈ W ⊥ ⊗ F R n-1 (if n = 1, we have µ = p = 0). Let b ′ = λ 2 + b ∈ F and put v ′ = (b ′ ) -1 (λ + y + xα)p + q. Then, b ′ ∈ D F (Q) and v ′ is a zero of the form B ′ = b ′ (B| W ) ⊥ (B| W ⊥ ) because: B ′ (v ′ ) = b ′ B((b ′ ) -1 (λ + y + xα)p) + B(q) = b ′ c(b ′ ) -2 (λ + y + xα) 2 p 2 + B(q) = c(b ′ ) -1 (λ 2 + y 2 + x 2 a)p 2 + B(q) = c(b ′ ) -1 (λ 2 + b)p 2 + B(q) = B(p) + B(q) = B(v) = 0. Now to show that v ′ ∈ V ⊗ F R n-1 , we just need to verify that (b ′ ) -1 (λ + y + xα)p ∈ W ⊗ F R n-1 . We can express (b ′ ) -1 (λ + y + xα)p as: (b ′ ) -1 (λ + y + xα)p = (b ′ ) -1 (λ + y + xα) (λ + y + xα)x n-1 + (λ + y + xα)µx n-2 + λµx n-2 + p = (b ′ ) -1 (λ 2 + y 2 + x 2 a)x n-1 + (b ′ ) -1 (λ 2 + y 2 + x 2 a)µx n-2 +(b ′ ) -1 (λ + y + xα)(λµx n-2 + p) = x n-1 + µx n-2 + (b ′ ) -1 (λ + y + xα)(λµx n-2 + p). Therefore, (b ′ ) -1 (λ + y + xα)p ∈ W ⊗ F R n-1 and thus (b ′ ) -1 (λ + y + xα)p + q = v ′ ∈ V ⊗ F R n-1 .
□

Here we would like to stress that although the main idea of the proof is heavily inspired from [START_REF] Rost | On quadratic forms isotropic over the function field of a conic[END_REF], certain changes were required for our setting. The important one is the choice of the vector v ′ , we correct it by the factor λ, this is very helpful to show that v ′ ∈ V ⊗ F R n-1 and then avoid the use of trace form that does not apply in our case. A consequence of this change is the appearance of the scalar b ′ ∈ D F (Q).

A consequence of the previous lemma is the following proposition which is the analogue of [START_REF] Rost | On quadratic forms isotropic over the function field of a conic[END_REF]Proposition]. Its proof is the same as that done by Rost.

Proposition 3. Let B be a bilinear form over F . Then, there exist an integer p ≥ 0, bilinear forms

B i , C i for 0 ≤ i ≤ p and elements c i ∈ F * , ϵ i ∈ F for 0 ≤ i ≤ p -1 such that B = B 0 and (1) B i ≃ c i ⟨1, a + ϵ 2 i ⟩ b ⊥ C i for 0 ≤ i ≤ p -1. (2) B i+1 ≃ c i b i ⟨1, a + ϵ 2 i ⟩ b ⊥ C i and b i ∈ D F (Q) for 0 ≤ i ≤ p -1. (3) ((B p ) F (Q) ) an ≃ ((B p ) an ) F (Q) .
Proof. We use induction on the dimension of B an . Thus, we assume that B is anisotropic and B F (Q) is isotropic. Then, there exist n ≥ 0 and a nonzero v ∈ V ⊗ F R n such that B(v) = 0. We proceed by induction on n.

If n = 0, then v ∈ V and B would be isotropic over F . Hence, n ≥ 1. We may also assume v / ∈ V ⊗ F R n-1 and take B 1 = B ′ , where B ′ is the bilinear form defined in the Lemma 2. If B ′ is anisotropic, we apply induction hypothesis for n -1 and if B ′ is isotropic we apply the Now we are able to give the proof of Theorem 1 including some explanations proper to our setting. Proof of Theorem 1. Let B be an anisotropic bilinear form over F . We keep the same notations as in Proposition 3. All the bilinear forms B i , for 0 ≤ i ≤ p, are isometric over

F (Q) because b ∈ D F (Q) (⟨1, a⟩) implies b i ∈ D F (Q) (⟨1, a⟩) = D F (Q) (⟨1, a + ϵ 2 i ⟩) for any b i ∈ D F (Q) and ϵ i ∈ F , meaning that (b i ⟨1, a + ϵ 2 i ⟩ b ) F (Q) ≃ (⟨1, a + ϵ 2 i ⟩ b ) F (Q)
by the roundness of a bilinear Pfister form. In particular, (B i ) F (Q) ≃ (B i+1 ) F (Q) . Now the bilinear form C needed in the theorem is (B p ) an . □

NON-EXCELLENCE OF FUNCTION FIELDS OF SINGULAR CONICS FOR QUADRATIC

FORMS

We finish this paper by some examples (Corollaries 10 and 11) showing the non-excellence of function fields of singular conics for quadratic forms. To this end we recall some definitions and facts on quadratic forms.

For a bilinear form B defined on an F -vector space V , and a quadratic form φ defined on an F -vector space W , we associate a quadratic form B ⊗ φ defined on V ⊗ F W by:

(2)

B ⊗ φ(v ⊗ w) = B(v)φ(w) for any (v, w) ∈ V × W
and whose polar form is B⊗B φ , where B φ is the polar form of φ. Note that B⊗φ is nonsingular when φ is nonsingular.

An n-fold bilinear Pfister form is a bilinear form of type ⟨1,

a 1 ⟩ b ⊗ • • • ⊗ ⟨1, a n ⟩ b for some a i ∈ F * . An (n+1)-fold quadratic Pfister form is a nonsingular quadratic form of type ⟨1, a 1 ⟩ b ⊗ • • • ⊗ ⟨1, a n ⟩ b ⊗ [1, b] for some a i ∈ F * , b ∈ F .
The set of forms isometric (resp. similar) to n-fold quadratic Pfister forms will be denoted by P n F (resp. GP n F ). Recall that a quadratic Pfister form is isotropic iff it is hyperbolic. The same result is true for bilinear Pfister forms using the metabolicity, but we will not use this property.

Let IF be the fundamental ideal of the Witt ring W (F ) of F -bilinear forms. For any integer n ≥ 1, let I n F (resp. I n q F ) be the n-th power of IF (resp. the subgroup I n-1 F ⊗ W q (F ) of the Witt group of nonsingular forms W q (F )), we take I 0 F = W (F ).

We denote by ℘

(F ) = {α 2 + α | α ∈ F }. The Arf invariant ∆(φ) of a nonsingular form φ ≃ [a 1 , b 1 ] ⊥ [a 2 , b 2 ] ⊥ . . . ⊥ [a r , b r ] is defined to be r i=1 a i b i + ℘(F ) in F/℘(F ).
Recall that a nonsingular quadratic form φ belongs to I 2 q F iff ∆(φ) = 0. Since we are in characteristic 2, we need to consider a refinement of the definition of excellence in the case of quadratic forms. More precisely, an extension K/F is called (r, s)-excellent if for any F -quadratic form φ of type (r, s), the K-form (φ K ) an is defined over F . Obviously, an extension which is excellent is necessarily (r, s)-excellent for any pair of positive integers r and s. Proposition 4. Any field extension of F is (r, s)-excellent for r ≤ 1.

Proof. (1) As we mentioned in the introduction, the excellence property holds for totally singular quadratic forms, meaning that any field extension of F is (0, s)-excellent.

(2) Let K/F be a field extension and φ an F -quadratic form of type (1, s). Let us write φ = [a, b] ⊥ ⟨c 1 , • • • , c s ⟩. There exists a totally singular form ψ over F such that (⟨c 1 , • • • , c s ⟩ K ) an ≃ ψ K . Moreover, the anisotropic part of φ K is isometric to ([a, b] ⊥ ψ) K or ψ K according as [a, b] ⊥ ψ is anisotropic over K or not. □ k ′′ := k ′ (x 1 , y 1 , . . . , x r , y r ) such that φ ′′ becomes isotropic over k ′′ (Q) but the anisotropic part (φ ′′ k ′′ (Q) ) an is not defined over k ′′ . □ Corollary 11. For any s ≥ 0, there exists a function field of a singular conic which is not (2, s + 1)-excellent.

Proof. We reproduce the same arguments as in the proof of Corollary 10 by combining Proposition 7 with Lemmas 8 and 9. □

  induction hypothesis for dim B ′ an < dim B. In any case we find forms B ′ = B ′ 0 , . . . , B ′ p as in the proposition and B = B 0 , B i = B ′ i-1 (i = 1, . . . , p + 1) is the required sequence. □
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Concerning the (r, s)-excellence property for r > 1, we restrict ourselves to the extensions given by function fields of singular conics.

Proposition 5. The function fields of singular conics are (2, 0)-excellent.

Proof. Let Q be an anisotropic totally singular F -quadratic form of dimension 3, and let φ be an anisotropic F -quadratic form of type [START_REF] Elman | Amenable fields and Plaster extensions, Conference on quadratic forms 1976. Queen's pap[END_REF]0). Let K = F (Q).

-If ∆(φ) = 0, then φ ∈ GP 2 F . Hence, φ K is anisotropic or hyperbolic.

-If ∆(φ) ̸ = 0, then φ K is anisotropic [START_REF] Laghribi | Certaines formes quadratiques de dimension au plus 6 et corps des fonctions en caractéristique 2[END_REF]Th. 1.3]. This proves that (φ K ) an is defined over F . □ Proposition 6. In general, the function field of a singular conic is not (3, 0)-excellent.

Proof. We produce an example showing the non-excellence of function fields of singular conics for forms of type (3, 0). Let F 2 be the finite field with two elements.

] be an Albert quadratic form over the rational function field k := F 2 (t 1 , t 2 , t 3 , t 4 ) in the variables t 1 , t 2 , t 3 , t 4 over F 2 . Let Q be the totally singular quadratic form ⟨1, t 1 , t 3 ⟩.

(

(2) Suppose that τ is defined over k and let δ be a k-quadratic form of dimension 4 such that

Now the form γ ⊥ δ belongs to I 2 q k and becomes hyperbolic over k(Q). Hence, we get γ ⊥ δ ∈ I 3 q k [9, Corollary 4.11]. Passing to k(δ), we get γ k(δ) ∈ I 3 q k(δ). By the Hauptsatz, γ k(δ) ∼ 0. Using [8, Theorem 1.2], we get that dim γ an is divisible by 4, and thus γ is isotropic, a contradiction. □

Using the same arguments as in the proof of Proposition 6, we get:

In general, the function field of a singular conic is not (2, 1)-excellent.

Proof. Let F 2 be the finite field with two elements.

(2) Suppose that γ ′ is defined over k and let δ be a k-quadratic form of type (1, 1) such that

Using the completion lemma [5, Lem. 3.9], we get

Now we conclude as in the proof of Proposition 6 that the Albert form

To reach the non-excellence of function fields of singular conics for forms of type (3 + r, s) with r, s ≥ 0, and for forms of type (2, s + 1) for s ≥ 0, we use a generic argument based on the following two lemmas. Lemma 8. Let L/F be a field extension, t a variable over L and φ an anisotropic F -quadratic form such that φ L is isotropic and (φ L ) an is not defined over F . Then, the F (t)-quadratic form ψ := φ ⊥ ⟨t⟩ is isotropic over L(t) but (ψ L(t) ) an is not defined over F (t).

Proof. Let φ 1 = (φ L ) an and suppose that φ 1 is not defined over F . We have φ

Suppose that (φ 1 ⊥ ⟨t⟩) L(t) is defined over F (t). Hence, there exists an F (t)-quadratic form θ such that (φ 1 ⊥ ⟨t⟩) L(t) ≃ θ L(t) We extend scalars to the field of Laurent series L((t)), we get

Note that the form (φ 1 ⊥ ⟨t⟩) L((t)) remains anisotropic. Let θ ′ be the first residue form of θ with respect to the t-adic valuation of F ((t)). We take the first residue form in equation ( 3) with respect to the t-adic valuation of L((t)) to get φ 1 ≃ θ ′ L , that is, φ 1 is defined over F which is contrary to our assumption. □ Lemma 9. Let L/F be a field extension and φ an anisotropic F -quadratic form such that φ L is isotropic and (φ L ) an is not defined over F . Let x 1 , y 1 be variables over L and ψ :

an is defined over F 1 . Hence, there exists an F 1 -quadratic form θ such that

We extend scalars to the field of iterated Laurent series L 1 = L((x 1 ))((y 1 )), we get:

) L 1 is anisotropic. Let θ ′ be the first residue form of θ with respect to the y 1 -adic valuation of F 1 := F ((x 1 ))((y 1 )). Taking the first residue form in equation ( 4) with respect to the y 1 -adic valuation of L 1 , we get:

) . We reproduce the same arguments as in the proof of Lemma 8 to conclude that φ 1 is defined over F , which is contrary to our assumption. □

We get the following corollaries that prove the non-excellence of function fields of conics for quadratic forms of arbitrary dimension.

Corollary 10. For any m, s ≥ 0, there exists a function field of a singular conic which is not (3 + m, s)-excellent.

Proof. It follows from Proposition 6 that there exists a field k of characteristic 2, a nonsingular k-quadratic form φ of dimension 6, and a totally singular k-quadratic Q of dimension 3 such that φ k(Q) is isotropic but (φ k(Q) ) an is not defined over k. Now we start with φ and k(Q) and iterate s times Lemma 8 to get a form φ ′ of type (3, s) over k ′ := k(t 1 , . . . , t s ) such that φ ′ becomes isotropic over k ′ (Q) but the anisotropic part (φ ′ k ′ (Q) ) an is not defined over k ′ . Now we take φ ′ and k ′ (Q), and we iterate r times Lemma 9 to get a form φ ′′ of type (3 + r, s) over