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INTRODUCTION

Let F be a field of characteristic 2. For any integer m ≥ 1, let Ω m F = ∧ m Ω 1 F denote the space of absolute m-differential forms (Ω 0 F = F ), where Ω 1 F is the F -vector space generated by the symbols dx, x ∈ F , subject to the relations: d(x + y) = dx + dy and d(xy) = xdy + ydx for x, y ∈ F . In particular, there is an F 2 -linear map F -→ Ω 1 F , given by: x → dx. This map extends to the differential operator d : Ω m F -→ Ω m+1 F given by: d(xdx

1 ∧• • •∧dx m ) = dx∧dx 1 ∧• • •∧dx m . The Artin-Schreier operator ℘ : Ω m F -→ Ω m F /dΩ m-1
F is defined by:

x dx 1 x 1 ∧ • • • ∧ dxm xm → (x 2 -x) dx 1 x 1 ∧ • • • ∧ dxm xm + dΩ m-1 F
, and the cokernel of this operator is denoted by H m+1 2 (F ).

For any field extension L/F , we have a group homomorphism H m+1 2 (F ) -→ H m+1 2 (L) induced by the inclusion F ⊂ L. An important problem consists in computing the kernel H m+1 2 (L/F ) of this homomorphism. The motivation of considering this problem is the computation of the (graded-)Witt kernel for the extension L/F which reduces to the computation of H m+1 2 (L/F ) by a celebrated result of Kato [START_REF] Kato | Symmetric bilinear forms, quadratic forms and Milnor K-theory in characteristic 2[END_REF]. Up to now, the kernel H m+1 2 (L/F ) is known in the following cases:

(a) L is the function field of a projective F -quadric given by a bilinear Pfister form of arbitrary dimension, or a quadratic Pfister form of dimension 2 k such that m ≤ k (b) L is a quadratic extension of F ( [START_REF] Aravire | Milnor's K-Theory and quadratic forms over fields of characteristic two[END_REF] and [START_REF] Aravire | The behavior of quadratic and differential forms under function field extensions in characteristic two[END_REF] for the separable and the inseparable case, respectively). (c) L is a separable biquadratic extension of F [START_REF] Aravire | The graded Witt group kernel of biquadratic extensions in characteristic two[END_REF]. This result has been recently extended to other quartic extensions in [START_REF] Aravire | Cohomology and graded Witt group kernels for extensions of degree four in characteristic two[END_REF]. (d) L is a multiquadratic extension of F of separability degree ≤ 2 [START_REF] Aravire | Some results on Witt kernels of quadratic forms for multiquadratic extensions[END_REF]. (e) L is the compositum of a multiquadratic extension of F of separability degree ≤ 2 with the function field of a bilinear Pfister form over F [START_REF] Aravire | Graded Witt kernels of the compositum of multiquadratic extensions with the function fields of Pfister forms[END_REF].

The main result of this paper is Theorem 4.1 giving a complete computation of H m+1 2 (L/F ) where L/F is an arbitrary purely inseparable extension of finite degree. This is a generalization of the kernel (d) above concerning purely inseparable multiquadratic extensions. We note that Theorem 4.1 has been independently proved by Sobiech [START_REF] Sobiech | The behavior of differential and quadratic forms under purely inseparable field extensions[END_REF] in the case of a modular purely inseparable extension, using a different approach.

The proof of Theorem 4.1 will be done in two steps. The first step is developed in Section 3 and is devoted to the case of a simple purely inseparable extension. This result can be viewed as a sort of generalization of Ahmad's result [START_REF] Ahmad | The Witt kernels of purely inseparable quartic extensions[END_REF]Theorem 3]. As mentioned before, the kernel of quadratic inseparable extensions is done in [START_REF] Aravire | The behavior of quadratic and differential forms under function field extensions in characteristic two[END_REF]. To see how our arguments work, we start with the details in the case of purely inseparable quartic extensions, and then we prove Theorem 3.1 concerning the kernel of simple purely inseparable extensions of arbitrary degree. After that, we give in Section 4 our proof of Theorem 4.1 using some arguments from the proof of Theorem 3.1, an induction on the exponents of the radicals composing the extension L/F and some preliminary facts that we give in Section 2. In Section 5 we complete Theorem 4.1 by giving the kernel H m+1 2 (L/F ) where L/F is a purely inseparable extension of infinite degree (Theorem 5.1). We finish with some computations of the kernel Ker(Ω m F -→ Ω m L ) and a couple of examples.

FORMULA FOR DIFFERENTIAL 2 k POWER AND OTHERS

Let B = {e i | i ∈ I} be a 2-basis of F . We take an ordering on I, and let us consider the set of multi-indices m,F := {σ : {1, . . . , m} -→ I | σ(i) < σ(j) whenever i < j}, which is equipped with the lexicographic ordering. Thus, the set

{ deσ eσ | σ ∈ m,F } is an F -basis of Ω m F , where deσ eσ = de σ(1) e σ(1) ∧ • • • ∧ de σ(m) e σ(m)
for each σ ∈ m,F .

Using the 2-basis B, we get the Artin-Schreier operator ℘ : Ω m F -→ Ω m F given by:

℘( finite c σ de σ e σ ) = finite (c 2 σ -c σ ) de σ e σ . ( 1 
)
This operator depends on the 2-basis B, but it is well-defined modulo dΩ m-1 F . In our proofs we will use the operator ℘ as defined in [START_REF] Ahmad | The Witt kernels of purely inseparable quartic extensions[END_REF], but not the one defined in the introduction modulo dΩ m-1 F . We will also take H m+1 2 (F ) as the quotient

Ω m F /(dΩ m-1 F + ℘(Ω m F )).
The square operator s : Ω m F -→ Ω m F is given by:

s( finite c σ de σ e σ ) = finite c 2 σ de σ e σ .
Since ℘(w) = s(w) + w for any w ∈ Ω m F , it follows that the operator s also depends on the choice of the 2-basis, and it is well-defined modulo dΩ m-1 F . We simply write w [2] instead of s(w) for any w ∈ Ω m F . Let c ∈ F \ F 2 and consider the inseparable quadratic extension M = F ( √ c). In this section we establish some facts needed in our computations. One of these facts concerns the computation of the group

(dΩ m-1 M ) [2 k ] , k ≥ 1 which is defined to be s k (dΩ m-1 M ) where s k = s • . . . • s (k factors).
The first fact is easy and well-known.

Fact 2.1. For any integer m ≥ 1, we have:

Ω m M = Ω m F ⊕ √ c Ω m F ⊕ Ω m-1 F ∧ d √ c √ c ⊕ √ c Ω m-1 F ∧ d √ c √ c .
In particular, for any integer m ≥ 1, we deduce:

Ω m M ∧ d √ c = (Ω m F ⊕ √ c Ω m F ) ∧ d √ c (2) = Ω m F ∧ d √ c √ F and λ 2 , λ 3 ∈ Ω m-1 F . Then dλ = dλ 0 + √ c dλ 1 + √ cλ 1 ∧ d √ c √ c +dλ 2 ∧ d √ c √ c + √ cdλ 3 ∧ d √
(dλ) [2] = (dλ 0 ) [2] + c(dλ 1 ) [2] + cλ

[2] 1 ∧ d √ c √ c + (dλ 2 ) [2] ∧ d √ c √ c + c (dλ 3 ) [2] ∧ d √ c √ c .
Hence, for any integer k ≥ 1, we have:

(dλ) [2 k ] = (dλ 0 ) [2 k ] + c 2 k-1 (dλ 1 ) [2 k ] + c 2 k-1 λ [2 k ] 1 ∧ d √ c √ c + (3) (dλ 2 ) [2 k ] ∧ d √ c √ c + c 2 k-1 (dλ 3 ) [2 k ] ∧ d √ c √ c = (dλ 0 ) [2 k ] + c 2 k-1 (dλ 1 ) [2 k ] + c 2 k-1 λ [2 k ] 1 + (dλ 2 ) [2 k ] + c 2 k-1 (dλ 3 ) [2 k ] ∧ d √ c √ c .
A couple of identities we will use several times are the following:

Fact 2.2. Let u = α 0 + √ cα 1 + α 2 ∧ d √ c √ c + √ cα 3 ∧ d √ c √ c in Ω m M , with α 0 , α 1 ∈ Ω m F and α 2 , α 3 ∈ Ω m-1 F , and similarly let v = β 0 + √ cβ 1 + √ cβ 2 ∧ d √ c √ c + β 3 ∧ d √ c √ c in 3. THE KERNEL OF A SIMPLE EXTENSION L = F ( 2 n √ c).
Let us consider the simple purely inseparable extension L = F ( 2 n √ c) for c ∈ F and n a positive integer.

Our aim in this section is to compute H m+1 2 (L/F ). We already know it when n = 1 (and c ∈ F 2 ), see [START_REF] Aravire | The behavior of quadratic and differential forms under function field extensions in characteristic two[END_REF]. As a matter of fact (4)

H m+1 2 (F ( √ c)/F ) = Ω m-1 F ∧ dc + ℘(Ω m F ) + dΩ m-1 F .
Before stating the general result we will work with more detail in the 4-th degree extension L = F ( 4 √ c) of F in order to get a better idea of the following computations. We notice that the Witt kernel W q (F ( 4 √ c)/F ) was computed by Ahmad in [1, Theorem 3]. Our result takes care of the graded Witt group.

Now let w ∈ Ω m F be such that w ∈ H m+1 2 (F ( 4 √ c)/F ) and consider the intermedi- ate quadratic field M = F ( √ c). Then, it is clear that w M ∈ H m+1 2 (F ( 4 √ c)/M ).
We can express this last kernel using (4) above obtaining:

H m+1 2 (F ( 4 √ c)/M ) = Ω m-1 M ∧ d √ c + ℘(Ω m M ) + dΩ m-1 M .
Using relation [START_REF] Aravire | Milnor's K-Theory and quadratic forms over fields of characteristic two[END_REF], we get

Ω m-1 M ∧ d √ c = Ω m-1 F ∧ d √ c √ c ⊕ √ c Ω m-1 F ∧ d √ c √ c . Thus, w M ∈ Ω m-1 F ∧ d √ c √ c ⊕ √ c Ω m-1 F ∧ d √ c √ c + ℘(Ω m M ) + dΩ m-1 M . Hence, there are λ 0 , λ 1 ∈ Ω m-1 F , u ∈ Ω m M and v ∈ Ω m-1 M
such that:

w M = λ 0 ∧ d √ c √ c + √ cλ 1 ∧ d √ c √ c + ℘(u) + d(v).
Using the expressions for ℘(u) and d(v) from Fact 2.2 we can write:

w M = λ 0 ∧ d √ c √ c + √ cλ 1 ∧ d √ c √ c + ℘(u) + d(v) = λ 0 ∧ d √ c √ c + √ cλ 1 ∧ d √ c √ c + ℘(α 0 ) + cα [2] 1 + √ cα 1 + (℘(α 2 ) + cα [2] 3 )∧ d √ c √ c + √ cα 3 ∧ d √ c √ c + dβ 0 + √ c dβ 1 + dβ 3 ∧ d √ c √ c + √ c(β 1 + dβ 2 )∧ d √ c √ c .
Since w is defined over F, comparing coefficients we have:

(Integral part:) w M = cα [2] 1 + ℘(α 0 ) + dβ 0 (factor of √ c :) 0 = α 1 + dβ 1 (factor of d √ c :) 0 = λ 1 + α 3 + β 1 + dβ 2 (factor of d √ c/ √ c :) 0 = λ 0 + ℘(α 2 ) + cα [2] 3 + dβ 3 .
Replacing α 1 by dβ 1 in the first equation, we get: w M = c(dβ 1 ) [2] + ℘(α 0 ) + dβ 0 .

Here we should notice that solving for β 1 from the third equation does not add any more useful information and also that the terms involved in the last equation don't show up in the first two. Now w, α 0 , β 0 and β 1 are defined over F , then we have w = c(dβ 1 ) [2] + ℘(α 0 ) + dβ 0 + γ∧ dc, where γ ∈ Ω m-1

F

, showing that the kernel

H m+1 2 (F ( 4 √ c)/F ) is contained in c (dΩ m-1 F
) [2] + Ω m-1

F ∧ dc + ℘(Ω m F ) + dΩ m-1 F . Conversely, it is clear that Ω m-1 F ∧ dc+℘(Ω m F )+dΩ m-1 F is contained in H m+1 2 (F ( 4 √ c)/F ) as c is a square in F ( 4 √ c).
Moreover, working over the field L = F ( 4 √ c) and using fact 2.3, we deduce

c (dΩ m-1 F ) [2] ≡ √ c dΩ m-1 F (mod ℘(Ω m L ) + dΩ m-1 L ) ≡ ( 4 √ c) 2 (dΩ m-1 F ) (mod ℘(Ω m L ) + dΩ m-1 L ) ≡ 0 (mod ℘(Ω m L ) + dΩ m-1 L ),
and thus c (dΩ m-1 F

) [2] + ℘(Ω m F ) + dΩ m-1 F is also contained in H m+1 2 (F ( 4 √ c)/F
). Hence, we get:

H m+1 2 (F ( 4 √ c)/F ) = c (dΩ m-1 F ) [2] + Ω m-1 F ∧ dc + ℘(Ω m F ) + dΩ m-1 F .
For the general case of a purely inseparable simple extension we have the following:

Theorem 3.1. Let c ∈ F and L = F ( 2 n √ c) for n ≥ 2. Then H m+1 2 (L/F ) = ( n-1 k=1 2 k-1 j=1 c 2j-1 (dΩ m-1 F ) [2 k ] ) + Ω m-1 F ∧ dc + ℘(Ω m F ) + dΩ m-1 F .
In this theorem we do not suppose that [L : F ] = 2 n . In fact, we will be confronted by this kind of extension in the proof of Theorem 4.1. So we start by giving a lemma that helps to clarify the situation.

Lemma 3.2. Let n ≥ 2 be an integer, α ∈ F and c = α 2 . Then, modulo the group

dΩ m-1 F + ℘(Ω m F ), the group G 1 = n-1 k=1 2 k-1 j=1 c 2j-1 (dΩ m-1 F ) [2 k ] + Ω m-1 F ∧ dc
coincides with the group

G 2 = n-2 k=1 2 k-1 j=1 α 2j-1 (dΩ m-1 F ) [2 k ] + Ω m-1 F ∧ dα. Proof. (a) Let A ∈ G 1 . Note that Ω m-1 F ∧ dc = 0 as c is a square in F . Let us write A = n-1 k=1 2 k-1 j=1 c 2j-1 (dλ k,j ) [2 k ] for λ k,j ∈ Ω m-1 F . Then, modulo dΩ m-1 F + ℘(Ω m F ), A = n-1 k=1 2 k-1 j=1 α 2j-1 (dλ k,j ) [2 k-1 ] . Hence, modulo dΩ m-1 F + ℘(Ω m F ), we get: A = n-2 k=0 2 k j=1 α 2j-1 (dλ k+1,j ) [2 k ] = n-2 k=1 2 k-1 j=1 α 2j-1 (dλ k+1,j ) [2 k ] A 1 + α ∧ dλ 1,1 A 2 + n-2 k=1 2 k j=2 k-1 +1 α 2j-1 (dλ k+1,j ) [2 k ] A 3 . The element A 1 is in the group G 2 . Modulo the group dΩ m-1 F , the element A 2 is equal to λ 1,1 ∧ dα ∈ G 2 . Finally, each element α 2j-1 (dλ k+1,j ) [2 k ] of A 3 can be written as α 2 k +(2t-1) (dλ k+1,j ) [2 k ] for 1 ≤ t ≤ 2 k-1 , and thus it is equal to the element α 2t-1 (λ k+1,j dα) [2 k ] + α 2t-1 (d(αλ k+1,j )) [2 k ] , which belongs to 2 k-1 j=1 α 2j-1 (dΩ m-1 F ) [2 k ] + Ω m-1 F ∧ dα ⊂ G 2 . (b) Conversely, one can prove by similar arguments that G 2 ⊂ G 1 .
Proof of Theorem 3.1. We proceed by induction on n.

Suppose that n = 2. There is nothing to prove if c ∈ F 4 . If c ∈ F 2 , then the theorem was proved at the beginning of this section. If c ∈ F 2 \ F 4 , then we combine the quadratic case with Lemma 3.2. Now suppose n > 2 and the result is valid for all fields k (of characteristic 2) and extensions

K = k( 2 l √ c) with c ∈ k and l < n. Let L = F ( 2 n √ c) for c ∈ F . If c ∈ F 2
, say c = α 2 for α ∈ F , then the theorem follows from Lemma 3.2 and induction hypothesis applied to the field

L = F ( 2 n-1 √ α). So suppose that c ∈ F 2 .
As we did before, define M = F ( √ c) so that L/M is a simple purely inseparable extension of degree 2 n-1 . Thus, by induction hypothesis,

H m+1 2 (L/M ) = n-2 k=1 2 k-1 j=1 ( √ c) 2j-1 (dΩ m-1 M ) [2 k ] +Ω m-1 M ∧ d √ c+℘(Ω m M )+ dΩ m-1 M . Consider w ∈ Ω m F such that w ∈ H m+1 2 (L/F ). Then, w M ∈ H m+1 2 
(L/M ) and so for every k there are

(dΛ j ) [2 k ] ∈ (dΩ m-1 M ) [2 k ] and α ∈ Ω m M , β ∈ Ω m-1 M , γ ∈ Ω m-1 M such that w M = n-2 k=1 2 k-1 j=1 ( √ c) 2j-1 (dΛ j ) [2 k ] + γ∧ d √ c + ℘(α) + dβ = √ c n-2 k=1 2 k-1 j=1 c j-1 (dΛ j ) [2 k ] + γ∧ d √ c + ℘(α) + dβ.
Using relation [START_REF] Aravire | The behavior of quadratic and differential forms under function field extensions in characteristic two[END_REF] for each j we can write

(dΛ j ) [2 k ] = (dλ 0j ) [2 k ] + c 2 k-1 (dλ 1j ) [2 k ] + c 2 k-1 λ [2 k ] 1j + (dλ 2j ) [2 k ] + c 2 k-1 (dλ 3j ) [2 k ] ∧ d √ c √ c
Inserting this into the expression for w M , and using fact 2.2, we get:

w M = √ c n-2 k=1 2 k-1 j=1 c j-1 (dλ 0j ) [2 k ] + c 2 k-1 (dλ 1j ) [2 k ] + √ c   n-2 k=1 2 k-1 j=1 c j-1 c 2 k-1 λ [2 k ] 1j + (dλ 2j ) [2 k ] + c 2 k-1 (dλ 3j ) [2 k ]   ∧ d √ c √ c + γ 0 ∧ d √ c + γ 1 ∧ d √ c √ c + ℘(α 0 ) + cα [2] 1 + √ cα 1 + (℘(α 2 ) + cα [2] 3 )∧ d √ c √ c + √ cα 3 ∧ d √ c √ c + dβ 0 + √ c dβ 1 + dβ 3 ∧ d √ c √ c + √ c(β 1 + dβ 2 )∧ d √ c √ c .
As in the quartic case, comparing factors we get:

(Integral part:)

w M = cα [2] 1 + ℘(α 0 ) + dβ 0 (factor of √ c :) 0 = α 1 + n-2 k=1 2 k-1 j=1 c j-1 (dλ 0j ) [2 k ] + c 2 k-1 (dλ 1j ) [2 k ] + dβ 1 (factor of d √ c :) 0 = n-2 k=1 2 k-1 j=1 c j-1 c 2 k-1 λ [2 k ] 1j + (dλ 2j ) [2 k ] + c 2 k-1 (dλ 3j ) [2 k ] + γ 0 + α 3 + β 1 + dβ 2 (factor of d √ c/ √ c :) 0 = γ 1 + ℘(α 2 ) + cα [2]
3 + dβ 3 . Replacing the value of α 1 from the second equation into the first one, we obtain in Ω m M :

w M = (c n-2 k=1 2 k-1 j=1 c 2j-2 (dλ 0j ) [2 k+1 ] + c 2 k (dλ 1j ) [2 k+1 ] ) + c(dβ 1 ) [2] + ℘(α 0 ) + dβ 0 = n-1 k=2 2 k-1 j=1 c 2j-1 (dµ kj ) [2 k ] + c(dβ 1 ) [2] + ℘(α 0 ) + dβ 0 = n-1 k=1 2 k-1 j=1 c 2j-1 (dµ kj ) [2 k ] + ℘(α 0 ) + dβ 0 .
Now as w is defined over F , we have

w = n-1 k=1 2 k-1 j=1 c 2j-1 (dµ kj ) [2 k ] + γ∧ dc + ℘(α 0 ) + dβ 0 , for a suitable γ ∈ Ω m-1 F . Therefore the kernel H m+1 2 (L/F ) is contained in n-1 k=1 2 k-1 j=1 c 2j-1 (dΩ m-1 F ) [2 k ] + Ω m-1 F ∧ dc + ℘(Ω m F ) + d(Ω m-1 F ),
and since every term in the summation is in the kernel we have the equality.

GENERAL CASE

The aim of this section is to extend the previous Theorem 3.1 by giving a description of the kernel

H m+1 2 (L/F ) where L = F ( 2 n 1 √ c 1 , . . . , 2 ns √ c s ) for s > 1 and c 1 , . . . , c s ∈ F .
Before giving an exact description of the kernel we consider some of the ingredients that appear in it.

Since F ⊆ F ( 2 n i √ c i ) ⊆ L we see that every kernel H m+1 2 (F ( 2 n i √ c i )/F ) must be contained in H m+1 2 (L/F ). More generally every intermediate field K, F ⊆ K ⊆ L must contribute to this kernel.
The description of intermediate fields of a purely inseparable extension started with the paper [START_REF] Jacobson | Galois theory of purely inseparable fields of exponent one[END_REF] of Jacobson where a Galois theory for purely inseparable extensions of exponent 1 was introduced. Later the case of extensions of finite exponent > 1 was treated in [START_REF] Gerstenhaber | On the Galois theory of purely inseparable field extensions[END_REF] by Gerstenhaber and Zaromp. The main tool is the use of (higher) derivations. The easiest intermediate fields one can think of are subextensions generated by a single element of the type 2 n 1 c e 1 1 • • • 2 ns √ c es s ∈ L, and keeping in mind the expression for the kernel from Theorem 3.1 we will have in the kernel elements of the kind

c l 1 1 • • • c ls s (dΩ m-1 F
) [2 k ] for some exponents l 1 , . . . , l s and some k. More precisely, the description of the kernel of H m+1 2 (L/F ) is as follows:

Theorem 4.1. Let c 1 . . . , c s ∈ F and L be the finitely generated purely inseparable extension

L = F ( 2 n 1 √ c 1 , . . . , 2 ns √ c s ) of F. If r = max{n 1 , . . . , n s } then H m+1 2 (L/F ) = s i=1 H m+1 2 (F ( 2 n i √ c i )/F ) + r-1 k=1 l i 2 n i -k-1 ∈N 0≤l i ≤2 k -1 c l 1 1 • • • c ls s (dΩ m-1 F ) [2 k ] + ℘(Ω m F ) + dΩ m-1 F . ( 5 
)
Remark 4.2. It is known that in general it is impossible to express a finite purely inseparable extension L of F as [8, page 198]. In order to deal with this behavior, we don't exclude in Theorem 4.1 the case where some scalars among c 1 , . . . , c s are squares as we assumed in Theorem 3.1. To treat this case we need the following lemma whose proof proceeds as for that of Lemma 3.2 using successive equivalences modulo the group

L = F ( 2 n 1 √ c 1 , . . . , 2 ns √ c s ), c 1 , . . . , c s ∈ F with degree [L : F ] = 2 n 1 +•••+ns , see for instance
℘(Ω m F ) + dΩ m-1 F . Lemma 4.3. Let n 1 , • • • , n s be positive integers, and c i = α 2 i where α i ∈ F for 1 ≤ i ≤ s. Let r = max{n 1 , . . . , n s }. Then, modulo dΩ m-1 F + ℘(Ω m F ), the group r-1 k=1 l i 2 n i -k-1 ∈N 0≤l i ≤2 k -1 c l 1 1 • • • c ls s (dΩ m-1 F ) [2 k ]
coincides with the group

r-2 k=1 l i 2 n i -k-2 ∈N 0≤l i ≤2 k -1 α l 1 1 • • • α ls s (dΩ m-1 F ) [2 k ] .
Proof of Theorem 4.1. Without loss of generality, by the results of the previous section we assume s ≥ 2.

First, we claim that every term on right hand side of the above formula (5) belongs to the kernel

H m+1 2 (L/F ). Since F ( 2 n i √ c i ) ⊆ L we have H m+1 2 (F ( 2 n i √ c i )/F ) ⊆ H m+1 2 (L/F ) for all i ≥ 1. Now consider Γ = c l 1 1 • • • c ls s (dλ) [2 k ] ∈ Ω m F , for 1 ≤ k ≤ r -1 where r = max{n 1 , n 2 , . . . , n s } and 0 ≤ l i ≤ 2 k -1 satisfying l i 2 n i -k-1 ∈ N, 1 ≤ i ≤ s.
For each i, there is

q i ∈ N such that l i 2 n i = 2 k+1 q i . Let ζ i = 2 n i √ c i ∈ L then c l i i = ζ l i 2 n i i .
Hence considering Γ over L we have

Γ L = ζ l 1 2 n 1 1 • • • ζ ls2 ns s (dλ) [2 k ] = ζ q 1 2 k+1 1 • • • ζ qs2 k+1 s (dλ) [2 k ] (6) = (ζ q 1 1 • • • ζ qs s ) 2 k+1 (dλ) [2 k ] ≡ (ζ q 1 1 • • • ζ qs s ) 2 dλ mod ℘(Ω m L ) + dΩ m-1 L . Note that (ζ q 1 1 • • • ζ qs s ) 2 dλ = d((ζ q 1 1 • • • ζ qs s ) 2 λ) ∈ dΩ m-1 L . Therefore, Γ+℘(Ω m F )+ dΩ m-1 F ⊂ H m+1 2 (L/F
). This proves our claim.

For the reverse inclusion we proceed by induction on

s i=1 n i . The case n 1 = n 2 = • • • = n s = 1 is just [6, Prop. 2]
. So without loss of generality, we may suppose that n 1 ≥ 2.

If c 1 , • • • , c s ∈ F 2 , then clearly L = F ( 2 n 1 -1 √ α 1 , • • • , 2 ns-1 √ α s )
, where α 2 i = c i for 1 ≤ i ≤ s, and the theorem follows by combining the induction hypothesis with Lemma 4.3. Without loss of generality, we may suppose that c 1 ∈ F 2 . Consider the intermediate extension M = F ( √ c 1 ). It is clear that

L = M ( 2 n 1 -1 √ c 1 , 2 n 2 √ c 2 , . . . , 2 ns √ c s ),
and it follows from induction hypothesis that

H m+1 2 (L/M ) = H m+1 2 (M ( 2 n 1 -1 √ c 1 )/M ) + s i=2 H m+1 2 (M ( 2 n i √ c i )/M ) + r -1 k=1 ,0≤l 1 ≤2 k -1 l 1 2 n 1 -k-2 ∈N ( √ c 1 ) l 1 c (k) (dΩ m-1 M ) [2 k ] + ℘(Ω m M ) + d(Ω m-1 M ), (7) 
where r = max{n 1 -1, n 2 , . . . , n s } and c

(k) = c l 2 2 • • • c ls s , for 0 ≤ l i ≤ 2 k -1 such that l i 2 n i -k-1 ∈ N. Let w ∈ Ω m F be such that w ∈ H m+1 2 (L/F ). Since w M ∈ H m+1 2 
(L/M ), it follows from ( 7) that w M can be expressed as:

w M = ∆ 1 + s i=2 ∆ i + r -1 k=1 ,0≤l 1 ≤2 k -1 l 1 2 n 1 -k-2 ∈N ( √ c 1 ) l 1 c (k) (dΛ j ) [2 k ] + (8) +℘(α) + dβ, where ∆ 1 ∈ H m+1 2 (M ( 2 n 1 -1 √ c 1 )/M ), ∆ i ∈ H m+1 2 (M ( 2 n i √ c i )/M ), 2 ≤ i ≤ s, dΛ [2 k ] j ∈ (dΩ m-1 M ) [2 k ] and α ∈ Ω m M , β ∈ Ω m-1 M .
Now we analyze each term of (8) separately, showing that each part belongs to either some of the kernels

H m+1 2 (F ( 2 n i √ c i )/F ) or to r-1 k=1 l i 2 n i -k-1 ∈N 0≤l i ≤2 k -1 c l 1 1 • • • c ls s (dΩ m-1 F ) [2 k ] .
I) By Theorem 3.1 we see that ∆ 1 can be expressed as:

∆ 1 = n 1 -2 k=1 2 k-1 j=1 ( √ c 1 ) 2j-1 (dΛ j ) [2 k ] + γ∧ d √ c 1 .
Since we will get, in the final expression, many elements of the shape ℘(α) + d(β) with α ∈ Ω m M and β ∈ Ω m-1 M , we omit them at this stage and add them at the final step in (15).

As in the proof of Theorem 3.1 we use identity (3) to get:

∆ 1 = √ c 1 n 1 -2 k=1 2 k-1 j=1 c j-1 1 (dλ 0j ) [2 k ] + c 2 k-1 1 (dλ 1j ) [2 k ] + (9) √ c 1   n 1 -2 k=1 2 k-1 j=1 c j-1 1 c 2 k-1 1 λ [2 k ] 1j + (dλ 2j ) [2 k ] + c 2 k-1 1 (dλ 3j ) [2 k ]   ∧ d √ c 1 √ c 1 + γ 10 ∧ d √ c 1 + γ 11 ∧ d √ c 1 √ c 1 ,
where dλ rj ∈ dΩ m-1

F for 0 ≤ r ≤ 1, dλ sj ∈ dΩ m-2 F for 2 ≤ s ≤ 3 and γ 10 , γ 11 ∈ Ω m-1 F .
II) Similarly we can write every ∆ i for i > 1 as

∆ i = n i -1 k=1 2 k-1 j=1 c 2j-1 i (dδ i0,j ) [2 k ] + c 2 k-1 1 (dδ i1,j ) [2 k ] + (10) + [c 2 k-1 1 δ [2 k ] i1,j + (dδ i2,j ) [2 k ] + c 2 k-1 1 (dδ i3,j ) [2 k ] ]∧ d √ c 1 √ c 1 + +γ i0 ∧ dc i + √ c 1 γ i1 ∧ dc i + +γ i2 ∧ dc i ∧ d √ c 1 √ c 1 + √ c 1 γ i3 ∧ dc i ∧ d √ c 1 √ c 1 for suitable δ il,j ∈ Ω m-1 F (for l = 0, 1), δ il,j ∈ Ω m-2 F (for l = 2, 3), and γ i0 , γ i1 ∈ Ω m-1 F and γ i2 , γ i3 ∈ Ω m-2 F
. From each ∆ i , for i > 1, we consider two parts:

(11) ∆ i1 = n i -1 k=1 2 k-1 j=1 c 2j-1 i (dδ i0,j ) [2 k ] ,
and

∆ i2 = n i -1 k=1 2 k-1 j=1 c 2j-1 i c 2 k-1 1 (dδ i1,j ) [2 k ] . (12) 
Arguing as in the beginning of the proof, it is easy to see that

∆ i1 ∈ H m+1 2 (F ( 2 n i √ c i )/F ) and ∆ i2 ∈ H m+1 2 (L/F ).
Notice that ∆ i2 is included in the mixed terms of Theorem 4.1.

III)

The third term of [START_REF] Deveney | Higher derivation Galois theory of inseparable field extensions[END_REF], that is r -1

k=1 ,0≤l 1 ≤2 k -1 l 1 2 n 1 -k-2 ∈N ( √ c 1 ) l 1 c (k) (dΛ j ) [2 k ] , can be split as: r -1 k=1 ,0≤l 1 ≤2 k -1 l 1 2 n 1 -k-2 ∈N ( √ c 1 ) l 1 c (k) (dΛ j ) [2 k ] = (13) r -1 k=1 ,0≤l 1 ≤2 k -1 l 1 2 n 1 -k-2 ∈N l 1 even c l 1 /2 1 c (k) (dΛ j ) [2 k ] + √ c 1 r -1 k=1 ,0≤l 1 ≤2 k -1 l 1 2 n 1 -k-2 ∈N l 1 odd c (l 1 -1)/2 1 c (k) (dΛ j ) [2 k ]
Now we use the expressions for (dΛ j ) [2 k ] from (3) getting:

r -1 k=1 ,0≤l 1 ≤2 k -1 l 1 2 n 1 -k-2 ∈N ( √ c 1 ) l 1 c (k) (dΛ j ) [2 k ] = (14) r -1 k=1 ,0≤l 1 ≤2 k -1 l 1 2 n 1 -k-2 ∈N l 1 even c l 1 /2 1 c (k) (d 0j ) [2 k ] + c 2 k-1 1 (d 1j ) [2 k ] + √ c 1 r -1 k=1 ,0≤l 1 ≤2 k -1 l 1 2 n 1 -k-2 ∈N l 1 odd c (l 1 -1)/2 1 c (k) (d 0j ) [2 k ] + c 2 k-1 1 (d 1j ) [2 k ] + A∧d √ c 1 + B∧ d √ c 1 √ c 1 ,
for some A and B in Ω m-1 F .

As we did before we compare factors as w is defined over F. We only record the integral part of the equations and the √ c 1 parts of equations as they are the only ones involved in the computation of w.

For ℘(α) and dβ we have the exact same expressions as in the proof of Theorem 3.1:

℘(α 0 ) + c 1 α [2] 1 + √ c 1 α 1 + (℘(α 2 ) + c 1 α [2] 3 )∧ d √ c 1 √ c 1 + √ c 1 α 3 ∧ d √ c 1 √ c 1 and dβ 0 + √ c 1 dβ 1 + dβ 3 ∧ d √ c 1 √ c 1 + √ c 1 (β 1 + dβ 2 ) d √ c 1 √ c 1 .
Collecting terms we have:

For the integral part, we have terms from equations ( 11), ( 12), ( 14) and ℘(α) and dβ:

w M = s i=2 (∆ i1 + γ i0 ∧dc i ) + s i=2 ∆ i2 + (15) r -1 k=1 ,0≤l 1 ≤2 k -1 l 1 2 n 1 -k-2 ∈N l 1 even c l 1 /2 1 c (k) (d 0j ) [2 k ] + c 2 k-1 1 (d 1j ) [2 k ] + c 1 α [2] 1 + ℘(α 0 ) + dβ 0 .
For the √ c 1 part, we have terms from equations ( 9), ( 10), ( 14) and ℘(α) and dβ:

0 = n 1 -2 k=1 2 k-1 j=1 c j-1 1 (dλ 0j ) [2 k ] + c 2 k-1 1 (dλ 1j ) [2 k ] + (16) r -1 k=1 ,0≤l 1 ≤2 k -1 l 1 2 n 1 -k-2 ∈N l 1 odd c (l 1 -1)/2 1 c (k) (d 0j ) [2 k ] + c 2 k-1 1 (d 1j ) [2 k ] + s i=2 γ i1 ∧dc i + α 1 + dβ 1 .
As we did before, we compute c 1 α

[2]
1 using the expression of α 1 from the above equation.

Squaring the first term of ( 16) and multiplying by c 1 , we get:

n 1 -2 k=1 2 k-1 j=1 c 2j-1 1 (dλ 0j ) [2 k+1 ] + c 2 k 1 (dλ 1j ) [2 k+1 ] = n 1 -1 k=2 2 k-1 j=1 c 2j-1 1 (dµ jk ) [2 k ] ,
for some µ jk . We notice that this term is contained in

H m+1 2 (F ( 2 n 1 √ c 1 )/F ).
Squaring the second term of ( 16) and multiplying by c 1 , we get:

r -1 k=1 ,0≤l 1 ≤2 k -1 l 1 2 n 1 -k-2 ∈N l 1 odd c l 1 1 c 2 (k) (d 0j ) [2 k+1 ] + c 2 k 1 (d 1j ) [2 k+1 ] = (17) r -1 k=1 ,0≤l 1 ≤2 k -1 l 1 2 n 1 -k-2 ∈N l 1 odd (c l 1 1 c 2 (k) (d 0j ) [2 k+1 ] + c l 1 +2 k 1 c 2 (k) (d 1j ) [2 k+1 ] ).
Squaring the third term of (16) and multiplying by c 1 , we get: [2] + c 1 (dβ 1 ) [2] .

s i=2 c 1 (γ i1 ∧dc i )
Note that for each i, 2 ≤ i ≤ s, the term c 1 (γ i1 ∧dc i ) [2] = c 1 c 2 i (γ i1 ) [2] 

∧ dc i ∈ Ω m-1 F ∧ dc i is included in H m+1 2 (F ( 2 n i √ c i )/F
). This observation also applies to the other term.

(d) From type (c) we know that

l 1 2 n 1 ∈ 2 k 0 +1 N, therefore (l 1 + 2 k 0 -1 )2 n 1 ∈ 2 k 0 +1 N because n 1 ≥ 2.
As in (c) we see that also satisfies conditions of level k 0 . As in case (b)

l 1 + 2 k 0 -1 ≤ 2 k 0 -1. Hence this type of elements are in M k 0 .
This completes the proof of the theorem.

INFINITE DIMENSIONAL EXTENSIONS

5.1. Reduction to finite purely inseparable extensions. We now consider the case of purely inseparable extensions of F of infinite degree. Our main result in this case is the following theorem:

Theorem 5.1. Let L be an algebraic purely inseparable extension of F . Then

H m+1 2 (L/F ) = F ⊆K⊆L K/F finite H m+1 2 (K/F ).
Clearly, Theorem 4.1 combined with Theorem 5.1 gives a complete computation of the kernel H m+1 2 (L/F ), where L/F is a purely inseparable extension of infinite degree. The proof of Theorem 5.1 is based on the kernel Ker(Ω m F -→ Ω m L ) which we describe in the following proposition: Proposition 5.2. Let L be a purely inseparable algebraic extension of F (of any degree). Then for any integer m ≥ 1

Ker(Ω m F → Ω m L ) = F ⊆K⊆L K/F finite Ker(Ω m F → Ω m K )
Proof. It is clear that the RHS is contained in the LHS.

For the reverse inclusion, consider w ∈ Ω m F such that w becomes 0 as an element in Ω m L . Let's write w K when we consider w ∈ Ω m K , for K a field containing F. Thus we have w L = 0.

Let's write

(18) w = f inite a α db α(1) ∧ • • • ∧ db α(m)
where a α ∈ F and B = ∪ α {b α(1) , . . . , b α(m) } is a finite 2-independent set over F. Since w L = 0, the set B can not be 2-independent over L. Thus, there are scalars λ j ∈ L, j ∈ J, for J finite such that at least one of the b α(j) can be expressed as a 2-combination in L of the others. Assume without loss of generality that b α 1 (1) is a 2-combination of the others.

Let's define F 1 = F (λ j , j ∈ J) Since L is algebraic over F we conclude that F 1 is of finite degree over F . Now consider w as an element of F 1 . Replace b α 1 [START_REF] Ahmad | The Witt kernels of purely inseparable quartic extensions[END_REF] in each of terms of w in (18) to get a similar expression for w F 1 that does not involve b α 1 [START_REF] Ahmad | The Witt kernels of purely inseparable quartic extensions[END_REF] . Since w

F 1 ∈ Ker(Ω m F 1 → Ω m L )
. Now arguing as before using F 1 instead of F we see that we can eliminate another one of the b's, say b α 2 [START_REF] Ahmad | The Witt kernels of purely inseparable quartic extensions[END_REF] , and build a finite extension F 2 of F, and as before w F 2 can be expressed a sum like in (18) that does not contain neither b α 1 (1) nor b α 2 [START_REF] Ahmad | The Witt kernels of purely inseparable quartic extensions[END_REF] .

Given that B is a finite set, this process stops after a finite number of steps, where we have constructed K ⊆ L a finite extension of F so that w K = 0, that is

w ∈ Ker(Ω m F → Ω m K ).
Proof of Theorem 5.1. We keep the same notations as in Theorem 5.1. Clearly

F ⊆K⊆L K/F finite H m+1 2 (K/F ) ⊂ H m+1 2 (L/F ).
For the reverse inclusion, consider

w ∈ Ω m F such that w ∈ H m+1 2 (L/F ). Then there exist u ∈ Ω m L and v ∈ Ω m-1 L such that w = ℘(u) + d(v) in Ω m L .
Since L is an algebraic extension of F , we can find a finite extension of F, say K, where u and v of the above identity are defined, that is u ∈ Ω m K and v ∈ Ω m-1 K . This means that δ :

= w K + ℘(u) + d(v) ∈ Ker(Ω m K → Ω m L )
. By Proposition 5.2 there exists a finite extension M/K such that M ⊂ L and δ M = 0. Hence, w ∈ H m+1 2 (M/F ), and thus we are done since the extension M/F is finite.

Some computations of the kernel Ker(Ω m

F -→ Ω m L ). We compute the kernel Ker(Ω m F -→ Ω m L ), in two cases: L/F is a modular purely inseparable extension, i.e., L = F (

2 n 1 √ c 1 , • • • , 2 ns √ c s ) such that [L : F ] = 2 n 1 +•••+ns and for L = F ( 2 n 1 √ c 1 , • • • , 2 n s-1 √ c s-1 )( 2 ns √ c s ) with [L : F ] < 2 n 1 +•••+ns and [F ( 2 n 1 √ c 1 , • • • , 2 n s-1 √ c s-1 ) : F ] = 2 n 1 +•••+n s-1 .
Proposition 5.3. Let c 1 . . . , c s ∈ F and L be the finitely generated purely inseparable extension

L = F ( 2 n 1 √ c 1 , . . . , 2 ns √ c s ) of F such that [L : F ] = 2 n 1 +•••+ns . Then Ker(Ω m F -→ Ω m L ) = s i=1 Ω m-1 F ∧ dc i . Proof. Clearly s i=1 Ω m-1 F ∧ dc i is contained in Ker(Ω m F -→ Ω m L ) as c 1 , • • • , c s are squares in L.
For the reverse inclusion we proceed by induction on s. The case s = 1 can be done as in [START_REF] Aravire | The behavior of quadratic and differential forms under function field extensions in characteristic two[END_REF]Lemma 2.4]. Suppose s > 1 and the result is true for any modular purely inseparable extension L of F generated by less than s radicals. Let

M = F ( 2 n 1 √ c 1 ) and r = 2 n 1 √ c 1 . Let w ∈ Ker(Ω m F -→ Ω m L ). Then, w M ∈ Ker(Ω m M -→ Ω m L ).
Since L/M is modular, we deduce by induction hypothesis that

(19) w M = s i=2 λ i ∧ dc i ,
where are free from dc 1 . Note that w M = (w 1 ) M . Similarly, we may write each λ i , 2 ≤ i ≤ s, as follows:

λ i ∈ Ω m-1 M for 2 ≤ i ≤ s. As c 1 ∈ F 2 , there exists {e i | i ∈ I} ∪ {c 1 } a 2-
(20)

λ i = ( 2 n 1 -1 j=0 r j λ 1 i,j ) + ( 2 n 1 -1 j=0 r j λ 2 i,j ) ∧ dr,
where

λ 1 i,j ∈ Ω m-1 F and λ 2 i,j ∈ Ω m-2 F
. Now substituting (20) in ( 19) and taking the form that belongs to Ω m F (i.e., the integral part), we get

w M = (w 1 ) M = s i=2 λ 1 i,0 ∧ dc i . Using the kernel Ker(Ω m F -→ Ω m M ) = Ω m-1 F ∧ dc 1 , we conclude that w = δ ∧ dc 1 + s i=2 λ 1 i,0 ∧ dc i for a suitable δ ∈ Ω m-1 F .
Now we consider the case of a non modular extension. Let L = F ( 2 n 1 √ c 1 , . . . , 2 ns √ c s ) be such that c s is not 2-independent of {c 1 , . . . , c s-1 } over the base field F , and {c 1 , . . . , c s-1 } is a 2-independent set over F. (This implies c i / ∈ F 2 for 1 ≤ i ≤ s -1). We also assume c s / ∈ F 2 .

Let ρ i = 2 n i √ c i , 1 ≤ i ≤ s. So we have a chain of fields

F ⊂ F 1 = F (ρ 1 ) ⊂ F 2 = F 1 (ρ 2 ) ⊂ • • • ⊂ F s = F s-1 (ρ s ) = L.
Since L/F is non modular and F s-1 /F is modular, we get [L :

F s-1 ] > 1. Put 2 k = [L : F s-1 ].
Our objective is to build a 2-basis of L = F s that allows us to compute the desired kernel.

Since {c 1 , . . . , c s-1 } is 2-independent we extend this set to a 2-basis of

F : B = {c 1 , . . . , c s-1 , b 1 , b 2 , . . .}. Then a 2-basis of F s-1 = F (ρ 1 , . . . , ρ s-1 ) is given by B s-1 = {ρ 1 , . . . , ρ s-1 , b 1 , b 2 , . . .}. We know that c s = a 2 c , where a ∈ F , c = c 1 1 • • • c s-1
s-1 and is the multindex = ( 1 , . . . , s-1 ) with j ∈ {0, 1} and since

c i = ρ 2 n i i for 1 ≤ i ≤ s -1, we have c s =
a 2 ρ where is as above and ρ = ρ

2 n 1 1 • • • ρ 2 n s-1 s-1 .
We can re-write the last expression as:

c s = a 2 ρ = a ρ 2 ,
where is as above and ρ = ρ

2 n 1 -1 1 • • • ρ 2 n s-1 -1 s-1
. By the way this implies that in order for F s to be a proper extension of F s-1 we must have n s > 1.

Now that we know a 2-basis of F s we can compute the kernel

W = Ker(Ω m F → Ω m Fs ) Let w ∈ W, then w = ω 1 ∧ dc 1 + • • • + ω s-1 ∧ dc s-1 + σ∈Σ m,F β σ db σ with ω i ∈ Ω m-1 F , β σ ∈ F.
Since c 1 , . . . c s-1 are squares in F s-1 ⊂ F s , we may assume w = σ∈Σ m,F β σ db σ (here Σ m,F is the set of multi-indices as defined at the beginning of section 2).

In Case I. We know that {b 1 , . . .} is part of a 2-basis of F s . Then {db σ , . . .} is part of a basis of Ω m Fs therefore w = 0 in Ω m Fs implies β σ = 0 all σ, hence w = 0 in Ω m F , and thus

W = Ω m-1 F ∧ dc 1 + • • • + Ω m-1 F ∧ dc s-1 .
In Case II. Here we can write

ρ 2 k s = g = µ 2 λ 2 µ 2 b µ 2 , with λ µ 2 ∈ F s-1 . Differentiating g we obtain the following relation in F s-1 : dg = J D b j (g)db , with D b j 0 (g) = 0.
where D b i denotes the partial derivative with respect to b i .

Since g is a power of 2 in F s we have

(22) J D b j (g)db j = 0, in Ω Fs . Let w ∈ Ω m-1 F ∧ (db j 0 + γ j 1 db j 1 + • • • + γ jt db jt ) be such that γ j i ∈ F satisfies D b j i (g) = γ j i D b j 0 (g) for all 1 ≤ i ≤ t.
Then, w ∈ W . To this end, it suffices to prove that w 0 := db j 0 + γ j 1 db j

1 + • • • + γ jt db jt = 0 ∈ Ω 1
Fs . In fact, we have

w 0 = db j 0 + γ j 1 db j 1 + • • • + γ jt db jt = db 1 + D b 2 (g) D b 1 (g) db 2 + • • • + D b j t (g) D b 1 (g) db jt = D b 1 (g)db 1 + D b 2 (g)db 2 + • • • + D b j t (g)db jt /D b 1 (g) = 0 in Ω Fs
Conversely, assume that 0 = w ∈ W . As before it is enough to consider w = σ∈Σ m,F β σ db σ . Since each b j , b j = b j 0 is part of a 2-basis of F s , in the above expression for w we must have some σ for which j 0 ∈ Im(σ) (here Im(σ) denotes the image of the multi-index σ).

Using (22) we see that D b j 0 (g) = 0 and so we can write

db j 0 = j =j 0 D b j (g)/D b j 0 (g) db j 20
Inserting this into w we have: 

0 = w = σ∈Σ m,F β σ db σ = σ∈Σ m,F j 0 ∈Im(σ) β σ db σ + σ∈Σ m,F j 0 ∈Im(σ) β σ db σ = τ ∈Σ m-1,F j 0 ∈Im(τ )
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 3 , [7, See after Question 8.1].

1 F

 1 basis of F , and thus {e i | i ∈ I} ∪ {r} is a 2-basis of M . Now we may write w = w 1 + w 2 ∧ dc 1 , where w 1 ∈ Ω m F and w 2 ∈ Ω m-

β j =j 0 D=τ db j 0 + j =j 0 Ddb j 0 + j =j 0 D. 5 . 3 .Example 5 . 6 . 1 F∧ dx + Ω m- 1 FF 2 (ρ 3 ). In L we have ρ 8 3 = xyz 2 = ρ 2 1 ρ 4 2 z 2 . 1 F ∧ dx Proof. We just compute W 1 . 2 1 and ρ 4 2 = g 2 = y 2 + ρ 4 1 z 2 .Example 5 . 8 . 1 F∧ 1 F

 0005356112321122225811 τ db τ ∧ db j 0 + σ∈Σ m,F j 0 ∈Im(σ)β σ db σ (23) = τ ∈Σ m-1,F j 0 ∈Im(τ ) β τ db τ ∧   j =j 0 D b j (g)/D b j 0 (g)db j   + σ∈Σ m,F j 0 ∈Im(σ) β σ db σ = τ ∈Σ m-1,F j 0 ∈Im(τ ) , j =j 0 β τ D b j (g)/D b j 0 (g)db τ ∧ db j + σ∈Σ m,F j 0 ∈Im(σ) β σ db σ Using that db σ ∈ Ω mFs , j 0 ∈ Im(σ), are linearly independent we conclude that:β τ D b j (g) = β σ D b j 0 (g), σ = τ ∪ {j}, j = j 0 and j 0 ∈ Im(τ ).Using the expression of w from the third line in (23), we getw = τ ∈Σ m-1,F j 0 ∈Im(τ ) β τ db τ ∧ db j 0 + σ∈Σ m,F j 0 ∈Im(σ) β σ db σ = τ ∈Σ m-1,F j 0 ∈Im(τ ) β τ db τ ∧ db j 0 + τ ∈Σ m-1,F j 0 ∈Im(τ ), j =j 0 β τ D b j (g)/D b j 0 (g)db τ ∧ db j = τ ∈Σ m-1,F j 0 ∈Im(τ ) β τ db τ ∧ db j 0 + τ ∈Σ m-1,F j 0 ∈Im(τ ) β τ db τ ∧  b j (g)/D b j 0 (g)db j   ∈Σ m-1,F j 0 ∈Im(τ ) β τ db τ ∧  b j (g)/D b j 0 (g)db j Thus we have proved, Theorem 5.5. Let L = F s be a purely inseparable extension of F as above and g defined by equation (21). Then using the 2-basis defined in Lemma 5.4, the kernel W is given by: b j (g)/D b j 0 (g)db j   Some examples. We finish our paper with some examples illustrating the computations done in the previous subsection.Let K be a field of characteristic 2 with U = {u 1 , . . .} a 2-basis. Consider x, y, z indeterminates over K and the field F = K(x, y, z) of rational functions over K. A 2-basis of F is given by B = {x, y, z} ∪ U.For the various cases of kernels we have the following examples:Consider L = F ( √ x, 4 √ y, 8 xyz 2 ), then W 1 = Ker(Ω F → Ω L ) = F dx + F dy and Ker(Ω m F → Ω m L ) = Ω m-∧ dyProof. We just compute W 1 , the general case follows easily.Letρ 1 = √ x, ρ 2 = 4 √ y and ρ 3 = 8 xyz 2 , also F 1 = F (ρ 1 ), F 2 = F 1 (ρ 2 ), L = If g = ρ 1 ρ 2 2 z ∈ F 2 \ F 2 2 then ρ 4 3 = g and [L : F ] = 32. A 2-basis of F 3 is given by B 3 = {ρ 3 , ρ 2 , z} ∪ U. Therefore W 1 = Ker(Ω F → Ω L ) = F dx + F dy. Example 5.7. Let L = F ( 4 √ x, 4 y 2 + xz 2 ), then W 1 = Ker(Ω F → Ω L ) = F dx and Ker(Ω m F → Ω m L ) = Ω m-As before, define ρ 1 = 4 √ x, ρ 2 = 4 y 2 + xz 2 , F 1 = F (ρ 1 ), and L = F 1 (ρ 2 ). If g = y + ρ 2 1 z ∈ F 1 , then g / ∈ F Thus ρ 2 2 = g = y + ρ 2 1 z, hence [L : F ] = 8.Over L we have 0 = dρ 2 2 = dg = dy + ρ 2 1 dz = D y (g)dy + D z (g)dz Since D z (g)/D y (g) = √ x / ∈ F, the result follows. Now consider L = F ( 4 √ x, 8 x(y 2 + z 2 )), then W 1 = Ker(Ω F → Ω L ) = F dx + F d(y + z), and Ker(Ω m F → Ω m L ) = Ω m-dx + Ω m-∧ d(y + z).
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So, from the expression for c 1 α [START_REF] Aravire | Milnor's K-Theory and quadratic forms over fields of characteristic two[END_REF] 1 we only need to consider the terms from equation (17).

For k a non-negative integer, let us define:

With this notation we see that the last term of kernel in Theorem 4.1 can be written as

Elements of the shape of those from M k belong to the kernel H m+1

2

(L/F ) as we explained in [START_REF] Aravire | Some results on Witt kernels of quadratic forms for multiquadratic extensions[END_REF]. Now it remains to check that each element from the third term of the RHS of (15), and (17) belongs to some M k .

Let us fix k

From the third term of the RHS of (15), we have two kinds of elements of the type

for some , where l 1 2 n 1 -k 0 -2 ∈ N, l 1 is even and satisfies the conditions for k 0 . (b) c

for some , where l 1 2 n 1 -k 0 -2 ∈ N, l 1 is even and satisfies the conditions for k 0 .

From equation (17) we have another two kinds of elements:

for some τ , where l 1 2 n 1 -k 0 -1 ∈ N, l 1 is odd and satisfies the conditions for k 0 -1.

for some τ , where l 1 2 n 1 -k 0 -1 ∈ N, l 1 is odd and satisfies the conditions for k 0 -1.

Let's check that each type belongs to

We notice that ρ 2 ns-1 s = a ρ . But this expression could be a square in F s-1 or even a higher power of 2. Say that:

Therefore 2 k = 2 ns-r-1 , k > 0 and so ρ 2 k s = g ∈ F s-1 . Writing g in terms of the 2-basis B s-1 this can be expressed as:

with µ i,j ∈ {0, 1} and almost all µ 2,j = 0. Therefore in order to get a 2-basis of F s we choose one element of D \ {ρ s } and replace ρ s in B s . Here we have two choices: pick a ρ j or a b i .

We consider the two cases separately:

Case I There is µ 1 = (0, . . . , 0).

In this case there is ρ j , 1 ≤ j ≤ s -1 in relation ( 21) and thus we clearly see that

Case II All µ 1 = (0, . . . , 0). Since g is not a square in F s-1 at least one µ 2 must be non zero. Let b j 0 be the element with nonzero exponent in relation (21), whose subindex j 0 is the smallest. Then

Thus we have proved the following

be the finitely generated purely inseparable extension such that

Given the 2-basis B s-1 = {ρ 1 , . . . , ρ s-1 , b 1 , . . .} of F s-1 where b i ∈ F , then a 2 basis of F s is given by:

(1) B s = {ρ 1 , . . . , ρ j-1 , ρ s , ρ j+1 , . . . , ρ s-1 , b 1 , . . .}, in case I.

(

Proof. We just compute W 1 , since rest is straight forward.

We set ρ 1 = 4 √ x, ρ 2 = 8 x(y 2 + z 2 ), and so ρ

Computing over L we see that 0 = d(y + z) since it is a quotient of two squares. Therefore d(y + z) ∈ W 1 .

We note that in this case D z (g)/D y (g) = 1 ∈ F, also notice that the class w ∧ d(y + z) in H m+1 2 (F ) of w ∧ d(y + z) ∈ Ω m F , an element that is in H m+1 2 (L/F ) and somehow hidden in the mixed term r-1

of Theorem 4.1. To see this, take k = 1, c 1 = x, c 2 = x(y 2 + z 2 ) and use the reduction (fact 2.3).