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Introduction

Let X be a smooth projective variety over a field k. For each natural number p, denote by CH p (X) the Chow group of codimension p cycles on X modulo rational equivalence ( [START_REF] Fulton | Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]). When p ≥ 2, determining the structure of the group CH p (X), especially that of the torsion subgroup, is an interesting but often difficult problem in algebraic geometry. A closely related notion is the Grothendieck ring K 0 (X) of vector bundles on X. A consequence of the Grothendieck-Riemann-Roch theorem (cf. [START_REF] Fulton | Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]§ 15.2]) is that the Chern character gives an isomorphism K 0 (X) ⊗ Q ∼ = p≥0 CH p (X) ⊗ Q.

Consider the special case where X is a smooth projective quadric. Chow groups and K-theory of X were first studied by Swan in [START_REF] Swan | K-theory of quadric hypersurfaces[END_REF] and [START_REF] Swan | Zero cycles on quadric hypersurfaces[END_REF]). In the 1990's, Karpenko made a systematic study of the structure of CH p (X) for p ≤ 4 based on Swan's work ( [START_REF] Karpenko | Algebro-geometric invariants of quadratic forms[END_REF], [START_REF] Karpenko | Chow groups of quadrics and the stabilization conjecture[END_REF], [START_REF] Karpenko | Cycles of codimension 3 on a projective quadric[END_REF], [START_REF] Karpenko | Chow groups of quadrics and index reduction formula[END_REF], [START_REF] Karpenko | Order of torsion in CH 4 of quadrics[END_REF]; see also [START_REF] Karpenko | Chow groups of projective quadrics[END_REF]). While Swan's main theorem ([Swa85, Thm. 1]) on the K-theory of X is established in arbitrary characteristic, Karpenko's theorems are stated only in characteristic different from 2. Among others he proves the following results in codimensions 2 and 3 (in characteristic = 2):

1. ([Kar90, Thm. 6.1]) The torsion subgroup CH 2 (X) tors of CH 2 (X) is finite of order at most 2, and it is nontrivial if and only if the quadratic form defining X is an anisotropic 3-fold Pfister neighbor.

In particular, CH 2 (X) tors = 0 if dim X > 6.

2. The torsion subgroup CH 3 (X) tors of CH 3 (X) is finite of order at most 2 ( [START_REF] Karpenko | Cycles of codimension 3 on a projective quadric[END_REF]). It is trivial if dim X > 10 ([Kar95, Thm. 6.1]). The proof of the latter result depends on a theorem of Rost about 14-dimensional forms with trivial discriminant and trivial Clifford invariant ([Ros99], [START_REF] Rost | On the Galois cohomology of spin[END_REF]). Without using Rost's theorem, one can show CH 3 (X) tors = 0 when dim X > 14 ([Kar95, Thm. 7.1]).

Still in characteristic different from 2, Izhboldin has further developed Karpenko's methods and obtained more precise information about CH 3 (X) tors when 7 ≤ dim X ≤ 10 (cf. [Izh01, Thm. 0.5]).

As applications, Karpenko's results on Chow groups have been used by Kahn, Rost and Sujatha to compute the unramified cohomology groups up to degree 4 for projective quadrics ( [START_REF] Kahn | Lower H -cohomology of higher-dimensional quadrics[END_REF], [START_REF] Kahn | Unramified cohomology of quadrics[END_REF], [START_REF] Kahn | Motivic cohomology and unramified cohomology of quadrics[END_REF], [START_REF] Kahn | Unramified cohomology of quadrics[END_REF]). In turn, some of their computations make it possible to prove similar results for codimension 4 Chow groups ([Kar95, § 8], [START_REF] Karpenko | Order of torsion in CH 4 of quadrics[END_REF]) and some others play a key role in Izhboldin's construction of a field of u-invariant 9 in characteristic = 2 ([Izh01, Thm. 0.1]).

It is natural to expect the same results as above in characteristic 2. Basically, one can follow the same methods as in Karpenko's papers. But on the one hand, at some points the original proofs need appropriate modifications, where quite a few details are worth clarifying with special care. On the other hand, it does seem (at least to us) that some other arguments in Karpenko's work (for example, those in [Kar90, § 6] and [START_REF] Karpenko | Chow groups of quadrics and index reduction formula[END_REF] § 6]) rely on quadratic form techniques which are particular in characteristic different from 2. In their construction of a field with a special indecomposability phenomenon, Barry, Chapman and the second named author have used the vanishing of CH 2 (X) tors in characteristic 2 ([BCL20, Thm. A.1]). Their proof of this vanishing result provides an example of adapting Karpenko's arguments in characteristic 2.

In this paper, we make a further study of the Chow groups CH 2 (X) and CH 3 (X) in characteristic 2 and extend the other results of Karpenko mentioned above. In particular, we show that the group CH 3 (X) tors has at most two elements, as in the case of characteristic = 2. We also prove CH 3 (X) tors = 0 as soon as dim X > 10 (Theorem 7.11). Here we need to extend Rost's theorem to characteristic 2 (Theorem 7.10), which we do using a specialization argument, and which we believe has independent interest.

Karpenko's results for CH 4 (X) tors and some of Izhboldin's results for CH 3 (X) tors rely on the computation of degree 4 unramified cohomology groups established in [START_REF] Kahn | Unramified cohomology of quadrics[END_REF]. As we would like to leave out discussions on unramified cohomology in this paper, we will not investigate full generalizations of these results in characteristic 2. We only provide a few examples where CH 3 (X) tors = 0 for some quadrics in lower dimensions (see Prop. 7.12 and Remark 7.16). A study of CH 4 (X) tors is likely to be the theme of a further work.

It is perhaps worth mentioning that to obtain the main result (Theorem 5.3) for CH 2 (X) tors , we give a proof that works uniformly for quadrics of all dimensions ≥ 3. Unlike the methods in [START_REF] Karpenko | Algebro-geometric invariants of quadratic forms[END_REF] and the appendix of [START_REF] Barry | The descent of biquaternion algebras in characteristic two[END_REF] (see Remark 5.4 and the appendix), this approach utilizes Kato-Milne cohomology (and also K-cohomology implicitly).

In [START_REF] Hu | Unramified cohomology of quadrics in characteristic two[END_REF], the results of this paper have been used to study unramified cohomology in degree ≤ 3 for quadrics in characteristic 2.

Notation. Throughout what follows, k denotes a field of characteristic 2, with a fixed separable closure k. Let ℘(k) be the image of the Artin-Schreier map

℘ : k → k ; x → x 2 -x.
For an algebraic k-variety Y , we write Y = Y × k k.

For an abelian group M , we denote by M tors its torsion subgroup.

2 Preliminaries on Chow groups of quadrics 

ϕ ∼ = [a 1 , b 1 ]⊥ • • • ⊥[a m , b m ] , if dim ϕ = 2m , ϕ ∼ = [a 1 , b 1 ]⊥ • • • ⊥[a m , b m ]⊥ c , if dim ϕ = 2m + 1 , where a i , b i ∈ k, c ∈ k * , and [a i , b i ] (resp. c
) denotes the quadratic form a i x 2 +xy +b i y 2 (resp. cx 2 ). In the even dimensional case, the Arf invariant (or discriminant) of ϕ is defined as the image of the element m i=1 a i b i in the quotient group k/℘(k). It is uniquely determined by ϕ and denoted by Arf(ϕ). The k-algebra k[T ]/(T 2 -T -α), where α ∈ k is a representative of the Arf invariant Arf(ϕ) ∈ k/℘(k), is uniquely determined. It will be called the discriminant algebra of ϕ.

Let W q (k) be the Witt group of even-dimensional nondegenerate quadratic forms over k. For any integer n ≥ 1, let I n q (k) be the subgroup of W q (k) generated by n-fold quadratic Pfister forms.

We will need the Arason-Pfister Hauptsatz, simply called the Hauptsatz, that asserts the following: If an anisotropic quadratic form ϕ belongs to I n q (k), then it has dimension ≥ 2 n ([EKM08, Thm. 23.7], [HL04, Thm. 4.2 (iv)]).

For two quadratic forms ϕ and ψ over k, we say ψ is a subform of ϕ if ψ ∼ = ϕ| W for some subspace W in the vector space V ϕ of ϕ. When this happens we write ψ ⊆ ϕ.

(2.2) Now we recall some known facts about Chow groups of projective quadrics (which are valid in arbitrary characteristic). More details can be found in [Kar90, § 2] and [EKM08, § 68].

Let ϕ be a nondegenerate quadratic form of dimension ≥ 3 over k, defined on a k-vector space V . Let X = X ϕ be the projective quadric defined by ϕ, which is a closed subvariety in the projective space P(V ). Let h ∈ CH 1 (X) be the pullback of the class of a hyperplane in P(V ). For each p ∈ N, the power h p generates a torsion free subgroup Z.h p in CH p (X), called the elementary part of CH p (X). We say CH p (X) is elementary if it is equal to its elementary part.

The following result is well known.

Proposition 2.3. Let ϕ be a nondegenerate quadratic form of dimension ≥ 3 over k, and let X ϕ be the projective quadric defined by ϕ. Assume that ϕ is anisotropic.

1. If dim ϕ = 2p + 2, then CH p (X ϕ ) is elementary if and and only if CH p (X ϕ ) is torsion free.

2. If dim ϕ = 2p + 2, then CH p (X ϕ ) is elementary if and and only if CH p (X ϕ ) is torsion free and Arf(ϕ) = 0.

We have some known examples of torsion free Chow groups.

Proposition 2.4. Let X be a smooth projective quadric of dimension d ≥ 1 over k.

1. The groups CH 0 (X), CH 1 (X) and CH d (X) are torsion free.

2. If X is isotropic, then CH 2 (X) is torsion free. 

Clifford algebra and splitting index

Throughout this section, let ϕ be a nondenegerate quadratic form of dimension ≥ 1 over k, and let C(ϕ) and C 0 (ϕ) be its Clifford algebra and even Clifford algebra respectively.

(3.1) In the sequel we will frequently use a simple k-algebra C 0 (ϕ) defined as follows:

If ϕ has even dimension and trivial Arf invariant, then C 0 (ϕ) ∼ = A × A for a unique (up to isomorphism) central simple k-algebra A and C(ϕ) ∼ = M 2 (A) (cf. [EKM08, Remark 13.9]). In this case we set C 0 (ϕ) = A. Otherwise (dim ϕ is odd, or dim ϕ is even but Arf(ϕ) = 0), we put C 0 (ϕ) = C 0 (ϕ).

In any case, we can write C 0 (ϕ) ∼ = M 2 s (D) for some s ∈ N and some division algebra D with the same center as C 0 (ϕ). We write s(ϕ) for the integer s here and define ind(ϕ) = ind(C 0 (ϕ)), the Schur index of C 0 (ϕ) over its center. Following [START_REF] Karpenko | Algebro-geometric invariants of quadratic forms[END_REF] and [START_REF] Izhboldin | Fields of u-invariant 9[END_REF], we call ind(ϕ) and s(ϕ) the index and the splitting index of ϕ respectively.

From the definitions we find easily the relation

(3.1.1) s(ϕ) + log 2 ind(ϕ) = dim ϕ -1 2 .
Also, it is easy to see

(3.1.2) i W (ϕ) ≤ s(ϕ) ≤ dim ϕ-1 2 if ϕ is not hyperbolic , s(ϕ) = i W (ϕ) -1 = dim ϕ-1 2 if ϕ is hyperbolic ,
where i W (ϕ) denotes the Witt index of ϕ.

We have some auxiliary results where the splitting index is used to detect the structure of quadratic forms in low dimensions. Lemma 3.2. Suppose dim ϕ = 5 (so that 0 ≤ s(ϕ) ≤ 2 by (3.1.2)).

1. s(ϕ) = 2 ⇐⇒ i W (ϕ) = 2.
2. Assume that ϕ is anisotropic. Then the following conditions are equivalent:

(a) s(ϕ) = 1.
(b) For some quadratic separable extension K/k, the form ϕ K splits completely, i.e., i W (ϕ K ) = 2.

(c) ϕ is similar to ψ⊥ c for some c ∈ k * and some 2-fold Pfister form ψ.

(d) ϕ is a Pfister neighbor.

Proof. Let us write ϕ = ψ⊥ c with c ∈ k * . Then we have C(-cψ) = C(cψ) ∼ = C 0 (ϕ) (noticing that char(k) = 2) and hence ind(ϕ) = ind(C(cψ)). From (3.1.1) we see

s(ϕ) = 0 ⇐⇒ C(cψ) is a central division k-algebra of degree 4 , s(ϕ) = 1 ⇐⇒ C(cψ) ∼ = M 2 (Q) for some quaternion division k-algebra Q , s(ϕ) = 2 ⇐⇒ C(cψ) ∼ = M 4 (k) = C(2H) .
If i W (ϕ) = 2, then clearly (3.1.2) yields s(ϕ) = 2. Conversely, if s(ϕ) = 2, then we have C 0 (cψ) ∼ = C 0 (2H). Hence, by [Knu88, § 9, Thm. 7], cψ is similar to 2H, i.e., ψ is hyperbolic, giving i W (ϕ) = 2. This proves (1).

To prove (2), let us consider the Albert form γ := ψ ⊥ c [1, r], where r is a representative of the Arf invariant of ψ. By Jacobson's theorem [START_REF] Mammone | The Albert quadratic form for an algebra of degree four[END_REF] one has s(ϕ) = 1 if and only if γ is isotropic. Moreover, if γ is isotropic, then γ ∼ = τ ⊥ H for some form τ similar to a 2-fold Pfister form. Adding the form c in both sides yields τ ⊥ c ⊥ H ∼ = ψ ⊥ c ⊥ H. Cancelling the hyperbolic plane, we get ϕ ∼ = τ ⊥ c , this proves (a)⇒(c). The implication (c)⇒(a) is clear from the definition of s(ϕ). The equivalence (c)⇔(d) is stated in [START_REF] Laghribi | Certaines formes quadratiques de dimension au plus 6 et corps des fonctions en caractéristique 2[END_REF]Prop. 3.2 (3)]. Since any 2-fold Pfister form is split by a separable quadratic extension, the implication (c)⇒(b) is immediate. For the implication (b)⇒(c) we use the fact that if an anisotropic quadratic form becomes isotropic over a separable quadratic extension

K = F [X]/(X 2 -X -a), then the form contains a subform similar to [1, a] ([EKM08, Prop. 34.8]). Lemma 3.3. Suppose dim ϕ = 6. (Thus 0 ≤ s(ϕ) ≤ 2 by (3.1.2).) 1. Assume that ϕ is an Albert form, i.e., Arf(ϕ) = 0. Then s(ϕ) = 0 ⇐⇒ ind(C(ϕ)) = 4 ⇐⇒ i W (ϕ) = 0 , s(ϕ) = 1 ⇐⇒ ind(C(ϕ)) = 2 ⇐⇒ i W (ϕ) = 1 , s(ϕ) = 2 ⇐⇒ ind(C(ϕ)) = 1 ⇐⇒ i W (ϕ) = 3 .
2. Assume that Arf(ϕ) = 0, so that the discriminant algebra of ϕ is a separable quadratic field extension K of k.

Then (c) ϕ is a Pfister neighbor.

s(ϕ) = 0 ⇐⇒ ind(C 0 (ϕ)) = 4 ⇐⇒ i W (ϕ K ) = 0 , s(ϕ) = 1 ⇐⇒ ind(C 0 (ϕ)) = 2 ⇐⇒ i W (ϕ K ) = 1 , s(ϕ) = 2 ⇐⇒ ind(C 0 (ϕ)) = 1 ⇐⇒ i W (ϕ K ) = 3 .
(d) ϕ K is hyperbolic for some quadratic separable extension K/k.

(e) ϕ is not an Albert form and s(ϕ) = 2.

Note that when the above conditions hold, K/k must be the discriminant algebra of ϕ and ϕ has a decomposition ϕ = ψ⊥θ, where ψ = a , b bil ⊗ N K/k is similar to a 2-fold Pfister form.

2. Suppose Arf(ϕ) = 0. Then the following are equivalent:

(a) s(ϕ) = 1 (i.e., C 0 (ϕ) ∼ = M 2 (Q) for some quaternion division Z-algebra Q). (b) i W (ϕ Z ) = 1.
(c) ϕ ∼ = c.N Z/k ⊥ψ, where c ∈ k * , ψ is similar to a 2-fold Pfister form and ψ Z is anisotropic.

3. Suppose Arf(ϕ) = 0. Then the following are equivalent:

(a) s(ϕ) = 0 (i.e., C 0 (ϕ) is a central division algebra of degree 4 over Z). (b) ϕ Z is anisotropic, i.e., i W (ϕ Z ) = 0.
(c) ϕ cannot be written as ψ⊥θ, where ψ is similar to a 2-fold Pfister form.

The first assertion in the lemma below is a characteristic 2 analogue of [Kar91b, (3. 2. s(ϕ) = 3 if and only if ϕ is similar to a 3-fold Pfister form.

Some K-theory of quadrics

We briefly review some useful results from the K-theory of smooth projective quadrics, which hold in arbitrary characteristic.

Throughout this section, let ϕ be a nondegenerate quadratic form of dimension ≥ 3 over the field k and let X = X ϕ be the smooth projective quadric defined by ϕ.

(4.1) Let K 0 (X) be the Grothendieck group of isomorphism classes of coherent sheaves on X modulo an equivalence relation defined via short exact sequences. The natural topological filtration on K 0 (X) will be denoted by K 0 (X) (p) , p ∈ N. For each i ∈ N, we put

K 0 (X) (i/i+1) := K 0 (X) (i) K 0 (X) (i+1)
.

By [START_REF] Berthelot | Théorie des intersections et théorème de Riemann-Roch[END_REF] (see also [START_REF] Fulton | Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]§ 15.1]), there is a natural surjection

ρ i : CH i (X) -→ K 0 (X) (i/i+1) ; [Z] -→ [O Z ] ,
and the kernel of ρ i is torsion. In fact, ρ i is an isomorphism for i ∈ {0, 1, 2, 3, dim X} ([Kar90, (3.1)]). For the injectivity of ρ 3 , we can use the Brown-Gersten-Quillen spectral sequence in higher K-theory (cf. [START_REF] Quillen | Higher algebraic K-theory. I[END_REF]) and follow the ideas in the proof of [Kar90, (4.5)]. It is sufficient to notice that for any field extension E/k, the natural map

H 1 (X, K 2 ) → H 1 (X E , K 2 ) is injective by [Mer95a, Prop. 1.5].
By abuse of notation, let h also denote the class of the structural sheaf of a hyperplane section in X. For each i ∈ N, we say that K 0 (X) (i/i+1) is elementary if it is generated by the image of h i .

As already observed in [BCL20, Appendix], we have the following variant of [Kar95, (4.5)]: Proposition 4.2. Suppose that ϕ can be written as ϕ := a[1, d]⊥ρ, where a ∈ k * and d ∈ k represents Arf(ρ). Let ψ = a ⊥ρ.

For any p ∈ N, if the groups K 0 (X ϕ ) (i/i+1) are elementary for all i ≤ p, then the groups K 0 (X ψ ) (i/i+1) are also elementary for all i ≤ p.

We also need the characteristic 2 version of [Kar95, (4.7)].

Proposition 4.3. Suppose ϕ = ρ⊥a. [1, b], where a ∈ k * and ρ is an even-dimensional form. Let ψ = ρ⊥ a . Assume that the discriminant algebra of ϕ is a quadratic field extension

K/k such that ind C 0 (ψ) K = ind C 0 (ψ) .
If for some p ∈ N the groups K 0 (X ψ ) (i/i+1) are elementary for all i ≤ p -1, then the groups K 0 (X ϕ ) (i/i+1) are elementary for all i ≤ p.

Codimension two cycles on projective quadrics

In this section we prove our main results about codimension two Chow groups.

As in the previous section, let X = X ϕ be a smooth projective quadric of dimension d ≥ 1, defined by a nondegenerate quadratic form ϕ over k. We will write

CH * (X) := i≥0 CH i (X) and GrK 0 (X) := i≥0 K 0 (X) (i/i+1) . By [EKM08, Cor. 70.4], we have CH d (X) = Z.[x],
where x ∈ X is a closed point of minimal degree. (In characteristic = 2 this fact was proved independently in [START_REF] Swan | Zero cycles on quadric hypersurfaces[END_REF] and [Kar90, Prop. 2.6].) To study the Chow group CH 2 (X) we need only to consider the case d = dim X ≥ 3.

First we observe that the cases with dim X = 3 or 4 can be treated in the same way as in [START_REF] Karpenko | Algebro-geometric invariants of quadratic forms[END_REF], using the isomorphism CH * (X) ∼ = GrK 0 (X) (cf. (4.1)).

Theorem 5.1 ([Kar90, (5.3)]). Assume that ϕ is an anisotropic form of dimension 5.

Then CH 2 (X) tors ∼ = (Z/2) s(ϕ) and s(ϕ) = 0 or 1. Moreover, s(ϕ) = 1 if and only if ϕ contains a scalar multiple of a 2-fold Pfister form, if and only if ϕ is a Pfister neighbor (cf. Lemma 3.2).

Theorem 5.2 ([Kar90, (5.5)]). Assume that ϕ is an anisotropic form of dimension 6.

1. If ϕ is an Albert form, i.e., Arf(ϕ) = 0, then the group CH * (X) = i≥0 CH i (X)
is torsion free and CH 2 (X) can be identified with the subgroup

Z.h 2 ⊕ Z.4 2 of CH 2 (X) = Z.h 2 ⊕ Z. 2 .
(Here 2 denotes the class of a 2-dimensional linear space.)

2. Assume that Arf(ϕ) = 0.

(a) If ϕ is a Pfister neighbor, i.e., s(ϕ) = 2 (cf. Lemma 3.4 (1)), then CH 3 (X) tors and CH 2 (X) tors are both isomorphic to Z/2. (c) If s(ϕ) = 0 (cf. Lemma 3.4 (3)), then CH(X) is torsion free.

Our goal now is to prove the following:

Theorem 5.3 (See [Kar90, (6.1)] in characteristic = 2). Let X = X ϕ be the projective quadric defined by a nondegenerate quadratic form ϕ of dimension ≥ 5 over k.

Then CH 2 (X) tors is either 0 or isomorphic to Z/2Z. Moreover, CH 2 (X) tors ∼ = Z/2 if and only if ϕ is an anisotropic 3-fold Pfister neighbor.

Remark 5.4. If char(k) = 2, Karpenko's proof of Theorem 5.3 is based on the following observation (cf. [Kar90, (6.2)-(6.3)]):

Assume ϕ is nondegenerate of dimension ≥ 7. Then there exists a purely transcendental extension L/k and a nondegenerate 6-dimensional quadratic form ψ over L such that the following properties hold:

1. The transcendence degree trdeg(L/k) is equal to dim ϕ -6.

2. If ϕ is anisotropic over k, then ψ is anisotropic over L.

3. Letting X ϕ /k and X ψ /L be the projective quadrics defined by ϕ and ψ respectively, we have

CH 2 (X ϕ ) tors ∼ = CH 2 (X ψ ) tors .
4. If ϕ is anisotropic, then ψ is a 3-fold Pfister neighbor if and only if ϕ is a 3-fold Pfister neighbor.

Here properties (1) and (2) are clear from the construction. Karpenko verified property (3) by using excision and fibration arguments, and he proved property (4) with the help of some algebraic theory of quadratic forms in characteristic = 2. In [BCL20, Appendix], Barry, Chapman and Laghribi have shown that Karpenko's method can be adapted to deal with the case dim ϕ > 8 in characteristic 2. In their construction a form ψ of dimension 9 (instead of 6) is used, and hence there is no need to check a condition similar to property (4) above.

When dim ϕ is 7 or 8, we still have an adapted version of Karpenko's arguments in characteristic 2, thus obtaining a proof of Theorem 5. If dim ϕ = 8, i.e., ϕ 0 = [a 0 , a 1 ] for some a 0 , a 1 ∈ k, then similar to Claim 2 of Case 1 in [BCL20, Appendix, p.318], we have CH 2 (X ϕ ) tors ∼ = CH 2 (X ϕ ) tors , where ϕ is the quadratic form a 0 t 2 + t + a 1 ⊥[b, c]⊥τ defined over k(t). This allows us to reduce the 8-dimensional case to the 7-dimensional one. Now let us assume dim ϕ = 7. Then ϕ = a ⊥[b, c]⊥τ for some a ∈ k * . Replacing c by a + c if necessary, we may assume c = 0. Let U ⊆ A 6 be the affine quadric defined by a + bx 2 + xy + cy 2 + τ = 0 and consider the projection onto the x-coordinate π : U → A 1 . The generic fiber U of π is the affine quadratic defined by f + y + cy 2 + τ = 0 over the rational function field L := k(x), where f := (a + bx 2 )x -2 ∈ L = k(x). Using excision sequences we see that CH 2 (U ) ∼ = CH 2 (X ϕ ) tors and CH 2 (U ) ∼ = CH 2 (X ψ ) tors . To show the desired isomorphism CH 2 (X ϕ ) tors ∼ = CH 2 (X ψ ) tors , it suffices to prove that for every closed point P ∈ A 1 , the fiber U P of π over P satisfies CH 1 (U P ) = 0. If x(P ) = 0, this follows from Claim 1 of Case 2 in [BCL20, Appendix, p.318]. If x(P ) = 0, we can use Lemma 6.3.

We have thus constructed the form ψ = [f, c]⊥τ such that properties (1), ( 2) and (3) hold. We prove property (4) in the appendix.

Our goal now is to give a proof of Theorem 5.3 which works in a uniform way for all nondegenerate forms of dimension ≥ 5 (and actually in arbitrary characteristic). It relies on Lemma 5.5 below. Here we have to use the Kato-Milne cohomology group

H 3 (F ) := H 3 (F , Z/2(2))
for any field F of characteristic 2. For basic facts about Kato-Milne cohomology, the readers are referred to [START_REF] Kato | Galois cohomology of complete discrete valuation fields[END_REF] or [GMS03, Appendix].

Lemma 5.5 (See [KRS98, (5.1)] in characteristic = 2). When dim ϕ ≥ 5 there is a natural isomorphism

θ : Ker H 3 (k) -→ H 3 (k(X) ∼ -→ CH 2 (X) tors .
Proof. To see that such an isomorphism exists one can simply apply [Kah96, Cor. 7.1]. For a more explicit construction, one can also proceed as in the proof of [Mer95b, § 2, Prop. 1].

We need the following result, which is a characteristic 2 analogue of [Ara75, Satz 5.6].

Theorem 5.6. Let ϕ be a nondegenerate quadratic form of dimension ≥ 3 over k and X = X ϕ its projective quadric. Then, for every α ∈ H Since ϕ is isotropic over k(ψ), the field extension k(ψ)(ϕ)/k(ψ) is purely transcendental. Hence

3 (k(X)/k) := Ker(H 3 (k) → H 3 (k(X))), if α = 0,
H 3 k(ψ)(ϕ)/k(ψ) := Ker H 3 (k(ψ)) -→ H 3 k(ψ)(ϕ) = 0 . Therefore, H 3 (k(ϕ)/k) ⊆ H 3 (k(ψ)/k).
From [AJ09, Thm. 3.6] we know that

H 3 (k(ψ)/k) = k * ∪ (b) ∪ (c].
In particular, every element α ∈ H 3 (k(ϕ)/k) can be written as α = (a) ∪ (b) ∪ (c] for some a ∈ k * . Let π = a, b ; c ]] be the Pfister form corresponding to α ∈ H 3 (F ). We assume α = 0, so that π is anisotropic over k.

The assumption α k(ϕ) = 0 implies that π k(ϕ) ∈ I 4 q (k(ϕ)) by [START_REF] Kato | Symmetric bilinear forms, quadratic forms and Milnor K-theory in characteristic two[END_REF]. Using the Hauptsatz, we conclude that π k(ϕ) is hyperbolic. Then, it follows from [HL04, Thm. 4.2 (i)] that ϕ is similar to a subform of the 3-fold Pfister form π.

Remark 5.7. In Theorem 5.6 we can weaken the nondegeneracy assumption on ϕ to the following: ϕ is regular and not totally singular (in the sense as defined in [EKM08, § 7, p.42]). Indeed, this weakened assumption still ensures that ϕ contains a 3-dimensional nondegenerate subform ψ, the field extension k(ψ)(ϕ)/k(ψ) is still purely transcendental (cf. [EKM08, Prop. 22.9]), and [HL04, Thm. 4.2 (i)] is still valid.

Proof of Theorem 5.3. By Lemma 5.5, CH 2 (X) tors is isomorphic to the kernel of the natural map η : H 3 (k) → H 3 (k(X)). If ϕ is isotropic, then Ker(η) = 0. If ϕ is anisotropic, then by Thm. 5.6, Ker(η) consists of symbols whose corresponding 3-fold Pfister form contains ϕ up to a scalar multiple. Since dim ϕ ≥ 5, such a symbol is unique if it exists. Thus, if η is not injective, we have Ker(η) ∼ = Z/2, and this case happens if and only if ϕ is an anisotropic neighbor of a 3-fold Pfister form. The theorem is thus proved.

Chow groups of affine quadrics

To prepare the proofs of our results about codimension three Chow groups, we need some analysis on affine quadrics.

We begin with a characteristic 2 variant of [START_REF] Karpenko | Chow groups of quadrics and index reduction formula[END_REF](5.3)]. Lemma 6.1. Let ρ be a nondegenerate quadratic form of dimension n ≥ 2 over k, and suppose that ρ is not a hyperbolic plane. Let a ∈ k and ψ = a ⊥ρ. Let U ⊆ A n k be the affine quadric defined by a + ρ = 0.

Then CH p (U ) = 0 in the each of the following cases:

1. The form ψ is nondegenerate (i.e. a = 0 and dim ρ is even) and CH p (X ψ ) is elementary.

2. a = 0 and CH p (X ρ ) is elementary.

Proof. The proof in [START_REF] Karpenko | Chow groups of quadrics and index reduction formula[END_REF](5.3)] works verbatim as soon as we notice that when a = 0, CH p (X ψ ) ∼ = CH p (X ρ ) and the pushforward map CH p-1 (X ρ ) → CH p (X ψ ) may be identified with the multiplication by h ∈ CH 1 (X ρ ) ([EKM08, Lemma 70.2]).

The following is easily deduced from Lemma 6.1, Theorem 5.3 and Prop. 2.3.

Corollary 6.2 (Compare [Kar95, (5.4)]). Let ρ be an anisotropic (hence non-hyperbolic) nondegenerate quadratic form of dimension n ≥ 2 over k. Let a ∈ k and let U ⊆ A n k be the affine quadric defined by a + ρ = 0.

1. Suppose a = 0. Then CH 2 (U ) = 0 in the following cases:

(a) dim ρ > 8.

(b) dim ρ ∈ {5, 7, 8}, and ρ is not a Pfister neighbor (e.g. ρ is a 7 or 8 dimensional form containing an Albert form).

(c) dim ρ = 6, and ρ is neither an Albert form nor a Pfister neighbor.

2. Suppose a = 0. Then CH 2 (U ) = 0 in the following cases:

(a) dim ρ is even and ≥ 8. 

+ ρ(x 1 , • • • , x n ) = 0. If CH p (X ϕ ) is elementary, then CH p (U ) = 0.
Proof. Let ψ = b ⊥ρ (which can be degenerate). Note that [ac -2 , b] is isomorphic to the binary form ax 2 + cxy + by 2 . So we have the exact excision sequence

CH p-1 (X ψ ) i * -→ CH p (X ϕ ) -→ CH p (U ) -→ 0
where the map i * is surjective when CH p (X ϕ ) is elementary. Corollary 6.4. With notation and hypotheses as in Lemma 6.3, we have CH 2 (U ) = 0 in the following cases:

1. dim ρ > 6.

2. 5 ≤ dim ρ ≤ 6 and ρ is not a Pfister neighbor.

Proof. In the two cases above CH 2 (X ϕ ) is elementary by Thm. 5.3 and Prop. 2.3. Then apply Lemma 6.3.

Codimension three cycles on projective quadrics

In this section we prove our results about codimension three Chow groups.

For a nondegenerate quadratic form ϕ over k, we write ϕ ∈ I 2 q (k) if dim ϕ is even and Arf(ϕ) = 0. If ϕ ∈ I 2 q (k) and ϕ has trivial Clifford invariant, we write ϕ ∈ I 3 q (k).

Lemma 7.1 (See [Lam05, XII.2.8] in characteristic = 2). Let ϕ be a nondenegenerate quadratic form of dimension 10 over k. If ϕ ∈ I 3 q (k), then ϕ is isotropic.

Proof. We can write ϕ = τ ⊥ψ with ψ nondegenerate of dimension 6. As ϕ has trivial Clifford invariant, the Brauer classes [C(ψ)] and [C(τ )] coincide. If Arf(ψ) = 0, then Arf(τ ) = 0 and hence the 4-dimensional form τ is similar to a 2-fold Pfister form. It follows that the Brauer class [C(ψ)] = [C(τ )] has index ≤ 2. This implies that the Albert form ψ is isotropic, and we are done. Now we can assume Arf(ψ) = 0 and ψ is anisotropic. Let K/k be the separable quadratic extension representing Arf(ψ). Then the above argument shows that ψ K is isotropic. By [EKM08, Prop. 34.8], there is a decomposition ψ = a.N K/k ⊥τ for some a ∈ k * and some 4-dimensional form τ . Since Arf(ψ) = Arf(aN K/k ), Arf(τ ) = 0 Setting ψ = τ ⊥a.N K/k , we are back to the situation ϕ = τ ⊥ψ with ψ an Albert form. The argument in the previous paragraph shows that ψ is isotropic. The lemma is thus proved.

Lemma 7.2. Let ϕ be a nondegenerate quadratic form of dimension 10 over k. Suppose that ϕ ∈ I 2 q (k) \ I 3 q (k). Then there exists an odd degree extension K/k and a separable extension L/K with [L : K] = 2 5-s such that ϕ L is hyperbolic, where s = s(ϕ) is the splitting index of ϕ.

Proof. By (3.1.1), the assumption ϕ / ∈ I 3 q (k) means that C(ϕ) does not split, whence s(ϕ) ≤ 3.

First assume s(ϕ) = 3. Let F/k be a separable quadratic extension such that some binary nondegenerate subform of ϕ becomes isotropic over F . Then ϕ F = H⊥ρ F for some 8-dimensional form ρ F ∈ I 2 q (F ). Then s(ρ F ) = s(ϕ F ) -1 ≥ s(ϕ) -1 = 2. By Lemma 3.5 (1), we can find a quadratic separable extension L/F such that ρ L is hyperbolic. Now [L : k] = 4 = 2 5-s and we can take K = k. Now let us assume s = s(ϕ) ≤ 2. By [Pie82, § 15.2, Lemma], there exists an odd degree extension K/k and a separable extension F/K of degree 2 3-s such that ind(C(ϕ) F ) = 2. Then s(ϕ F ) = 3. So by the previous case we can find a separable extension L/F of degree 4 such that ϕ L is hyperbolic. Now [L : K] = 2 3-s • 4 = 2 5-s . The lemma is thus proved.

Theorem 7.3. Let X = X ϕ be the projective quadric defined by a nondegenerate quadric form ϕ over k.

Then CH 3 (X) tors ≤ 2.

Proof. If ϕ is isotropic, then CH 3 (X) tors ∼ = CH 2 (Y ) tors for a lower dimensional smooth quadric Y . In this case the theorem follows from the results for Chow groups of codimension 2 (Theorem 5.3). Now we can assume ϕ is anisotropic. Note that CH 3 (X) ∼ = K 0 (X) (3/4) (cf. (4.1)). If ϕ / ∈ I 2 q (k), we can just apply [START_REF] Karpenko | Algebro-geometric invariants of quadratic forms[END_REF](3.8)]. So we assume ϕ ∈ I 2 q (k). In particular dim ϕ is even.

If dim ϕ ≤ 8, i.e., m := dim X 2 ≤ 3, then 2m -3 ≤ m. With notation as in [Kar90, (3.10)], in the torsion subgroup of the second kind the dimension 2m -3 component T II 2m-3 is 0 and hence

CH 3 (X) tors ∼ = K 0 (X) (3/4) tors = T I 2m-3 ∼ = Z/2 or 0 .
It remains to consider the case where ϕ ∈ I 2 q (k), dim ϕ ≥ 10 and ϕ is anisotropic. Now K 0 (X) (i/i+1) ∼ = CH i (X) is torsion free for i ≤ 2. (For i = 2 we use Thm. 5.3.) By the last assertion in [Kar96, (3.9)], (T I ) (3) = 0 and hence CH 3 (X) tors ∼ = K 0 (X) (3/4) tors = (T II ) (3) is a cyclic group.

It is now sufficient to show that CH 3 (X) tors is killed by 2.

If dim ϕ > 10, then we can write ϕ = ρ⊥τ with dim τ = 2 and dim ρ > 8. Choosing L/k to be a quadratic separable extension with τ L ∼ = H, we get CH 3 (X L ) tors ∼ = CH 2 (Y L ) tors , where Y is the quadric defined by ρ. Here CH 2 (Y L ) tors = 0 by Thm. 5.3. So the standard restriction-corestriction argument shows that 2 • CH 3 (X) tors = 0.

So now we assume dim ϕ = 10 (and ϕ is anisotropic, belonging to I 2 q (k)). Since ϕ is anisotropic, Lemma 7.1 implies ϕ / ∈ I 3 q (k). Let s = s(ϕ). By Lemma 7.2, we can find an odd degree extension K/k and a separable extension L/K of degree 2 5-s such that ϕ L is hyperbolic. Note that the splitting index does not change after an odd degree base extension. So s(ϕ K ) = s(ϕ) = s. Now, by the estimate of |T II | in [Kar96, (3.9)] we have

CH 3 (X) tors ≤ CH 3 (X K ) tors = T II (3) ≤ |T II | ≤ 2 s+(5-s)-4 = 2 .
The theorem is thus proved.

Remark 7.4. Our proof of Theorem 7.3 is slightly different from Karpenko's arguments ([Kar91b, § 3] or [Kar96, § 5]). His approach relied on the following result (which is part of the second assertion in Theorem 5.3):

For a 8-dimensional form ρ, CH 2 (X ρ ) tors = 0 if and only if ρ is similar to a 3-fold Pfister form.

Our proof here does not need any characterization of 8-dimensional forms with nontrivial torsion in the codimension 2 Chow group. We have only used the first assertion of Theorem 5.3 and the vanishing of CH 2 (X ϕ ) tors for ϕ of dimension > 10. These two results can be proved without using Lemma 5.5 (cf. Remark 5.4).

We now prove [START_REF] Karpenko | Chow groups of quadrics and index reduction formula[END_REF](6.2)] in characteristic 2. Lemma 7.5. Let p, n ∈ N with n > 2p + 2. Let P(p, n) be the following statement: For every extension field F of k and every nondegenerate quadratic form ψ of dimension n over F , the group CH p (X ψ ) is elementary.

Then P(p, n) implies P(p, n + 1).

Proof. It is clear that P(0, n) holds for all n > 2. We may thus assume p ≥ 1.

Let F be a field extension of k and let ρ be a nondegenerate quadratic form of dimension n -2 over F . Then ψ = ρ⊥H has dimension n and CH p (X ψ ) ∼ = CH p-1 (X ρ ). So P(p, n) implies P(p -1, n -2), and by induction on p we find that P(p, n) implies P(p -1, N ) for all N ≥ n -2. Now suppose P(p, n) holds and consider a nondegenerate quadratic form ϕ of dimension n + 1 over F . We distinguish two cases to show CH p (X ϕ ) is elementary.

Case 1. n + 1 is even. Now letting x 2 , y 2 denote the variables corresponding to the binary form [a 2 , b 2 ], consider the projection π : U 1 → A 1 k 1 onto the x 2 -coordinate. Then the generic fiber of π is the affine quadric U over F = k 1 (x 2 ) = k(y 1 , x 2 ) in the statement of the lemma. By the fibration method, to show CH 3 (U 1 ) ∼ = CH 3 (U ), it is sufficient to prove that for every closed point P ∈ A 1 k 1 , the closed fiber (U 1 ) P of π over P satisfies CH 2 ((U 1 ) P ) = 0. Let us fix a closed point P ∈ A 1 k 1 and put V = (U 1 ) P . Writing α = a 1 +cy 1 +b 1 y 2 1 ∈ k 1 , V is the affine quadric over K := k 1 (P ) defined by the equation (α + a 2 x 2 (P ) 2 ) + x 2 (P )Y 2 + b 2 Y 2 2 + τ = 0 . If x 2 (P ) = 0, we can deduce from Cor. 6.4 that CH 2 (V ) = 0. If x 2 (P ) = 0, then V is defined by α + b 2 ⊥τ = 0. In this case, we have a fibration exact sequence

Q∈A 1 K CH 1 (V Q ) -→ CH 2 (V ) -→ CH 2 (V η ) -→ 0 ,
where the generic fiber V η is the affine quadric defined by (α + b 2 y 2 2 ) + τ = 0 over the rational function field K(y 2 ). By Cor. 6.2 (2), we have CH 2 (V η ) = 0. For each closed point Q ∈ A 1 K , Lemma 6.1 shows that CH 1 (V Q ) = 0. So we get CH 2 (V ) = 0 as desired. The lemma is thus proved.

Lemma 7.8. Let ϕ be a nondegenerate 14-dimensional quadratic form over k. Suppose that ϕ contains an Albert form as a subform.

Then CH 3 (X ϕ ) is elementary.

Proof. We may assume ϕ is anisotropic and write 

ϕ = [a 1 , b 1 ]⊥ • • • ⊥[a 4 , b 4 ]⊥ρ,
(a i x 2 i + x i y i + b i y 2 i ) .
By using the standard excision sequence, a repeated application of Lemma 7.7 shows CH 3 (X ϕ )/Z.h 3 ∼ = CH 3 (U ). By Lemma 6.3, it suffices to show CH 3 (X θ ) is elementary, where θ is the form [αx -2 4 + a 4 , b 4 ]⊥ρ over F .

Put ψ = b 4 ⊥ρ. Then ψ is anisotropic since ϕ is, and it is not a Pfister neighbor since the Albert form ρ is not a Pfister neighbor. Therefore, CH 2 (X ψ ) is elementary by Thm. 5.3. Now the groups K 0 (X ψ ) (i/i+1) ∼ = CH i (X ψ ), i ≤ 2 are elementary. Therefore, using Prop. 4.3 we reduce the problem to proving the following assertion: the discriminant algebra K of the form θ over F is a field such that ind(C 0 (ψ) K ) = ind(C 0 (ψ)).

In fact, K is the function field k(τ ) of the quadratic form τ over k given by

τ = b 4 ([a 1 , b 1 ]⊥[a 2 , b 2 ]⊥[a 3 , b 3 ])⊥[1, a 4 b 4 ] .
Note that C 0 (ψ) is not a division algebra since the Albert form ρ is a subform of ψ. So the division algebra Brauer equivalent to C 0 (ψ) has dimension < dim C 0 (ψ) = 2 6 . Since dim τ = 8 ≥ 6 + 1, it follows from Merkurjev's index reduction theorem ([EKM08, Cor. 30.9]) that ind(C 0 (ψ) K ) = ind(C 0 (ψ) k(τ ) ) = ind(C 0 (ψ)). This completes the proof of the lemma.

(7.9) We recall some facts on residue forms in the case of valued fields. Let A be a ring endowed with a rank 1 discrete Henselian valuation ν. Let K and A × be its field of fractions and the group of units, respectively. Let π be a uniformizing parameter and k = A/πA the residue field. Let ϕ be an anisotropic quadratic form over a K-vector space V . Since ϕ is anisotropic and ν is Henselian, we have the following inequality:

(7.9.1)

ν(B ϕ (x, y) 2 ) ≥ ν(ϕ(x)) + ν(ϕ(y)) for all x, y ∈ V ([Tie74, Lemma 2.2]). For i ∈ Z, let V i = {x ∈ V | ϕ(x) ∈ π i A}.
Using the inequality (7.9.1), we prove that V i is an A-module. The form ϕ induces two quadratic forms ϕ 0 and ϕ 1 , called the first and the second residue forms, on the k-vector space V i /V i+1 as follows:

ϕ i : V i /V i+1 -→ k x + V i+1 → π -i ϕ(x)
Obviously, the quadratic forms ϕ 0 and ϕ 1 are anisotropic. When ϕ is nonsingular, we have by [MMW91, Theorem 1]:

(7.9.2) dim ϕ = dim ϕ 0 + dim ϕ 1 .
The following result is an analogue in characteristic 2 of a theorem of Rost (cf. [Ros99], [START_REF] Rost | On the Galois cohomology of spin[END_REF]).

Theorem 7.10. Let ϕ ∈ I 3 q (k) be an anisotropic form of dimension 14. Then, ϕ contains an Albert form as a subform.

Proof. Let A be a Henselian discrete rank 1 valuation ring of characteristic 0 whose maximal ideal is 2A and residue field k (see [Wad85, (1.4)]). Let K and A × be the field of fractions and the group of units of A, respectively.

There exists a nondegenerate quadratic module θ of rank 14 defined on an A-module V that is a lifting of ϕ, i.e., ϕ is isometric to the induced quadratic form θ on the k-vector space V /2V . The form θ is anisotropic.

Let

S = {(-1) k a 2 + 4b | k ∈ Z, a ∈ A × , b ∈ A}.
This is clearly a subgroup of A × . By [Wad85, Lemma 1.6], there exists a surjective group homomorphism

γ : S -→ k/℘(k)
given by: (-1) k a 2 + 4b → ba -2 + ℘(k), and Kerγ = ±A ×2 . Moreover, det θ ∈ S/A ×2 and γ(det θ) = Arf(θ) [Wad85, Proposition 1.14].

Using [BCL20, Corollary 5.4], we get a form ϕ ∈ I 3 A such that ϕ is Witt-equivalent to ϕ ∼ = θ. Since A is Henselian, it follows that ϕ is Witt-equivalent to θ [Kne69, Satz 3.3]. Hence, θ ∈ I 3 A. In particular, θ K ∈ I 3 K. It follows from a theorem of Rost ([Ros99], [START_REF] Rost | On the Galois cohomology of spin[END_REF]) that θ K contains an Albert form θ as a subform.

We write θ

∼ = [a 1 , b 1 ] ⊥ [a 2 , b 2 ] ⊥ [a 3 , b 3 ] for suitable a i , b i ∈ K, 1 ≤ i ≤ 3.
We claim that a i , b i ∈ A × for all 1 ≤ i ≤ 3, i.e., θ is defined over A. In fact, let us write a i = u i 2 i and b i = v i 2 δ i for u i , v i ∈ A × and i , δ i ∈ Z.

(i) The form ϕ is nothing but the first residue form of θ K , and thus the second residue form of θ K is the zero form by (7.9.2).

(ii) By (i) we deduce that i and δ i are even for all 1 ≤ i ≤ 3, otherwise the second residue form of θ K would be of dimension > 0.

(iii) By (ii) we get [a i , b i ] ∼ = [u i 2 i +δ i , v i ] for all 1 ≤ i ≤ 3 (using that δ i is even and the isometry a[b, c] ∼ = [ab, a -1 c] for scalars a = 0, b and c).

(iv) By the inequality (7.9.1), we have i + δ i ≤ 0. Moreover, if for some i, we have i + δ i < 0, then the first residue form of [u i 2 i +δ i , v i ] is the degenerate form u i , v i , this is excluded since ϕ is nondegenerate. Consequently, [a

i , b i ] = [u i 2 i , v i 2 -i ] ∼ = 2 i [u i , v i ] ∼ = [u i , v i ] because i is even.
Hence, θ ∼ = (θ ) K , where θ is the form

[u 1 , v 1 ] ⊥ [u 2 , v 2 ] ⊥ [u 3 , v 3 ].
Now, the conditions that θ is defined over A and θ ∼ = (θ ) K is a subform of θ K imply that θ is also a subform of θ over A. Taking the reduction modulo 2, we get that θ is a subform of ϕ. The form θ has determinant -A ×2 because the scalar 1≤i≤3 (4u i v i -1) ∈ A × is a representative of det(θ ) K = -K * 2 ∈ K * /K * 2 . Since Kerγ = ±A ×2 , it follows that γ(det θ ) = Arf(θ ) = 0, which means that θ is an Albert form.

Theorem 7.11. For every nondegenerate form ϕ of dimension ≥ 13 over k, CH 3 (X ϕ ) is elementary.

Proof. Combine Theorem 7.10 with Lemma 7.8 and Prop. 7.6.

In characteristic different from 2, Izhboldin completely determined when the group CH 3 (X ϕ ) tors is trivial for all nondegenerate forms ϕ of dimension ≥ 9 ([Izh01, Thm. 0.5]). A full proof of his theorem builds upon computations of the fourth unramified cohomology groups of quadrics. Without going into study of unramified cohomology, in the rest of this section we discuss a few cases of Izhboldin's results in characteristic 2.

The proofs of the other cases in Prop. 7.12 may also be given along the lines of the case treated in [START_REF] Izhboldin | Fields of u-invariant 9[END_REF]Prop. 3.7]. We shall not provide full details, but content ourselves with the easy observation that the key ingredient we need is the characteristic 2 version of [Izh01, Lemma 1.19]. That is, it suffices to prove the following: Lemma 7.13. Let n be an integer ≥ 2 and let ϕ be a nondegenerate quadratic form over k such that one of the following conditions holds:

1. dim ϕ = 2n, Arf(ϕ) = 0 ∈ k/℘(k), and ind(ϕ) ≤ 2.

2. dim ϕ = 2n -1 and ind(ϕ) ≥ 2. Then there exists a (2n + 1)-dimensional nondegenerate form φ and a (2n + 2)dimensional nondegenerate form γ ∈ I 3 q (k) such that ϕ ⊆ φ ⊆ γ and ind( φ) = 1.

Below we provide a detailed the proof of Lemma 7.13, which seems to involve some more subtleties than its counterpart in characteristic different from 2.

First note that we have: Lemma 7.14. Let A be a central simple k-algebra of exponent ≤ 2, L/k a separable field extension of degree ≤ 2 and m an integer. Suppose that one of the following conditions holds:

1. ind(A L ) = 1 and m = 2.

2. L = k, ind(A) ≤ 2, and m = 3. In Case (4), A is Brauer equivalent to a biquaternion k-algebra, which gives rise to an Albert form q = c[1, a]⊥ρ, where c ∈ k * , a ∈ k and ρ is a 4-dimensional form with Arf invariant a ∈ k/℘(k). Then we can take µ = c ⊥ρ.

ind(A

Proof.

  Combine (3.1.2) with [Knu88, § 11, Cor. 5 and Remark 13] (see also [KMRT98, (16.5)]). The following lemma includes a characteristic 2 version of [Kar90, (5.4)]. It can be proved in a similar way, with the help of Lemma 3.3 and [EKM08, Prop. 34.8]. Lemma 3.4. Suppose dim ϕ = 6. Let Z be the discriminant algebra of ϕ and let N Z/k : Z → k denote the norm of Z/k regarded as a binary quadratic form. Assume that ϕ is anisotropic. 1. The following conditions are equivalent: (a) ϕ ∼ = a, b, c bil ⊗ N K/k for some a, b, c ∈ k * and some quadratic separable extension K/k. Here N K/k : K → k denotes the norm considered as a binary quadratic form, and a, b, c bil denotes the ternary bilinear form ax 1 x 2 + by 1 y 2 + cz 1 z 2 . (b) ϕ is similar to 1, a, b bil ⊗ N K/k for some a, b ∈ k * and some quadratic separable extension K/k.

  3)]. It has been proved in [Lag15, Lemma 3.6]. Taking (3.1.1) and (3.1.2) into account, we can deduce the second assertion easily. Lemma 3.5. Suppose that ϕ is anisotropic of dimension 8 and Arf(ϕ) = 0. (Note that 0 ≤ s(ϕ) ≤ 3 by (3.1.2).) 1. If s(ϕ) ≥ 2, then there exist a, b, c ∈ k * and a separable quadratic extension L/k such that ϕ is similar to ( 1, a bil ⊥c. 1, b bil ) ⊗ N L/k . In particular, ϕ has a decomposition ϕ = ϕ 1 ⊥ϕ 2 where both ϕ 1 and ϕ 2 are scalar multiples of 2-fold Pfister forms.

( b )

 b If s(ϕ) = 1 (cf. Lemma 3.4 (2)), then CH 3 (X) tors ∼ = Z/2 and CH 2 (X) tors = 0.

3 .

 3 More precisely, following some ideas in [BCL20, Appendix], with some extra effort we can prove the following in characteristic 2: Write ϕ = ϕ 0 ⊥[b, c]⊥τ with b, c ∈ k and dim τ = 4. Then there exists a purely transcendental extension L/k and an element f ∈ L * such that the above properties (1)-(4) hold for ϕ and ψ := [f, c]⊥τ .

  there must exist elements a, b ∈ k * and c ∈ k such that α = (a) ∪ (b) ∪ (c] ∈ H 3 (k) and ϕ is similar to a subform of the 3-fold Pfister form a, b ; c ]]. Proof. Let ψ be a 3-dimensional nondegenerate subform of ϕ. After scaling if necessary, we may assume ψ = [1, c]⊥ b . Write k(ψ) for the function field of the projective quadratic defined by ψ over k, and similarly for the function fields of other projective quadrics.

( b )

 b dim ρ = 6 and ρ is not a Pfister neighbor. (c) dim ρ = 4 and ρ is not contained in a scalar multiple of a 3-fold Pfister form Lemma 6.3. Let ρ be a nondegenerate quadratic form of dimension n ≥ 2 over k, and suppose that ρ is not a hyperbolic plane. Let a , b ∈ k, c ∈ k * and ϕ = [ac -2 , b]⊥ρ. Let U ⊆ A n+1 k be the affine quadric defined by the equation a + cy + by 2

  where a i , b i ∈ k * and ρ is an Albert form. Put F = k(y 1 , y 2 , x 2 , x 3 ) and let U be the affine quadric over F defined by the equation (α + a 4 x 2 4 ) + x 4 Y 4 + b 4 Y 2 4 + ρ = 0 where α = a 1 + y 1 + b 1 y 2 1 + 2≤i≤3

3 .

 3 dim ϕ = 2n -2, Arf(ϕ) = 0 ∈ k/℘(k), and ind(ϕ) = 2.4. dim ϕ = 2n -3 and ind(ϕ) ≥ 4.

  L ) ≤ 2 and m = 4. 4. L = k, ind(A) ≤ 4, and m = 5. Then there exists an m-dimensional nondegenerate form µ over k such that the algebra C 0 (µ) has center L and is Brauer equivalent to A L . Proof. In Cases (1)-(3), one can use the same arguments as in the proof of [Izh01, Lemma 1.17]. It suffices to change the notations k( √ d) , d , 1, -a, -b , a, b in characteristic = 2 to k[t]/(t 2 -t -d) , d ]] , a ⊥[1, b] , a ; b ]] in characteristic 2 .

  We assume the reader is familiar with the general theory of quadratic forms. Terminology and notation about quadratic forms, if not explained, are standard and are

(2.1) adopted from

[EKM08]

. In particular, a quadratic form is called nondegenerate if the radical of its polar bilinear form is anisotropic of dimensional ≤ 1. A quadratic form of dimension ≥ 2 is nondegenerate if and only if its projective quadric is smooth as an algebraic variety.

A nondegenerate quadratic form ϕ over k has the following normal form

We begin with the following result, which is the characteristic 2 analogue of [Izh01, Prop. 3.7].

Proposition 7.12. Let ϕ be a nondegenerate quadratic form over k satisfying one of the following conditions:
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In this case we can write ϕ = [a, b]⊥ρ for some (n -1)-dimensional form ρ over F . Let U be the affine quadric defined by a + y + by 2 + ρ = 0. By induction and excision, it remains to show CH p (U ) = 0. This can be done by using a fibration arugment as in [START_REF] Karpenko | Chow groups of quadrics and index reduction formula[END_REF](6.2)] and applying Lemma 6.1.

Case 2. n + 1 is odd. Now we can write ϕ = a ⊥[b, c]⊥τ for some nondegenerate form τ of dimension n -2. If b = 0, then [b, c] ∼ = H and CH p (X ϕ ) ∼ = CH p-1 (X a ⊥τ ). The result then follows immediately from P(p -1, n -1).

We may thus assume b = 0. Let U be the affine quadric defined by a + bx 2 + xy + cy 2 + τ = 0 .

As in Case 1, it is sufficient to show CH p (U ) = 0. This again follows from the induction hypothesis and a fibration argument, together with Lemma 6.1.

Proposition 7.6. Let n be an odd integer > 8. Then the following are equivalent:

1. For every field extension F/k and every nondengenerate quadratic form ψ of dimension ≥ n over F , CH 3 (X ψ ) tors = 0.

2. For every field extension F/k and every nondengenerate quadratic form ψ of dimension n over F , CH 3 (X ψ ) tors = 0.

3. For every field extension F/k and every nondengenerate quadratic form ψ of dimension n + 1 over F with ψ ∈ I 2 q (F ), CH 3 (X ψ ) tors = 0.

4. For every field extension F/k and every nondengenerate quadratic form ψ of dimension n + 1 over F with ψ ∈ I 3 q (F ), CH 3 (X ψ ) tors = 0.

Proof. Combine Lemma 7.5, Prop. 4.2 and [Kar95, (4.9)]. (The proof of the result we cite from [START_REF] Karpenko | Chow groups of quadrics and index reduction formula[END_REF] goes through in characteristic 2 without change.)

Lemma 7.7. Let τ be a nondegenerate quadratic form of even dimension m ≥ 6 over k, and let U 0 ⊆ A m+3 be the affine quadric over k defined by the equation

Assume either m ≥ 8 or τ is an Albert form. Then CH 3 (U 0 ) ∼ = CH 3 (U ), where U ⊆ A m+1 is the affine quadric over the rational function field F = k(y 1 , x 2 ) defined by the equation

Proof. Let k 1 be the rational function field k(y 1 ) and let U 1 ⊆ A m+2 be the affine quadric over k 1 defined by (a 1 + cy 1 + b 1 y 2 1 ) + [a 2 , b 2 ]⊥τ = 0 . By considering a fibration over A 1 as in Case 1 of the proof of Lemma 7.5, we can use Cor. 6.2 to get CH 3 (U 0 ) ∼ = CH 3 (U 1 ).

The proof of Lemma 7.13 also relies on the lemma below.

Lemma 7.15 (See [Izh98, Lemma 4.3] in characteristic = 2). Let ϕ and ψ be even dimensional nondegenerate quadratic forms over k with the same Arf invariant (so the algebras C 0 (ϕ) and C 0 (ψ) have the same center). Suppose that C 0 (ϕ) and C 0 (ψ) are Brauer equivalent.

Then there exists an element a ∈ k * such that ϕ⊥aψ ∈ I 3 q (k).

Proof. First assume ϕ and ψ have trivial Arf invariant, i.e. they lie in I 2 q (k). Then the assumption implies that ϕ and ψ have the same Clifford invariant. So we can just take a = -1.

Now assume ϕ and ψ have the same nontrivial Arf invariant

By assumption in the Brauer group Br(L) we have

Thus the forms φ := ϕ⊥[1, d] and ψ = ψ⊥ [1, d] lie in I 2 q (k), and the forms φL and ψL have the same Clifford invariant (see e.g. [EKM08, § 14]). Thus, the Clifford invariant

By the well known structure of the group Br(L/k), we have e 2 ( φ) -e 2 ( ψ) = (a, d] for some a ∈ k * . Note that e 2 (a ψ) = e 2 ( ψ) since ψ ∈ I 2 q (k). Thus e 2 ( φ -a ψ -a ; d ]]) = 0, and it follows that

This completes the proof.

Proof of Lemma 7.13. Put m = 2n + 2 -dim ϕ.

In Cases (1) and (3), if ϕ ∈ I 2 q (k), we put A = C 0 (ϕ) and L = k; otherwise put A = C(ϕ) and let L be the center of C 0 (ϕ) = C 0 (ϕ). Then A L is Brauer equivalent to C 0 (ϕ), and ind(ϕ) = ind(A L ). By Cases (1) and (3) of Lemma 7.14, there exists an m-dimensional nondegenerate form µ over k such that C 0 (ϕ) and C 0 (µ) have the same center and are Brauer equivalent. Here ϕ and µ are even dimensional. So we can apply Lemma 7.15 to find an element a ∈ k * such that the form γ := ϕ⊥aµ lies in I 3 q (k). Writing aµ = θ⊥c [1, b] It follows that aγ ∈ I 3 q (k) and hence γ ∈ I 3 q (k). Set φ := ϕ 0 ⊥ a ⊥bµ 0 = ϕ⊥bµ 0 . We have

Hence ind( φ) = 1. This completes the proof.

Remark 7.16. One can also check that Corollary 3.10 and Lemmas 3.11 and 3.12 of [START_REF] Izhboldin | Fields of u-invariant 9[END_REF] extend to characteristic 2. Namely, for a nondegenerate quadratic form ϕ over k, the following statements hold:

1. Suppose dim ϕ is even and > 8, the discriminant algebra L of ϕ is a field (i.e. Arf(ϕ) = 0) and ϕ L is hyperbolic. Then CH 3 (X ϕ ) tors = 0.

2. Suppose dim ϕ = 10, the discriminant algebra L of ϕ is a field (i.e. Arf(ϕ) = 0) and ϕ = τ ⊥c.N L/k for some c ∈ k * and some subform τ . Then CH 3 (X ϕ ) tors = 0 except possibly when the following conditions hold simultaneously: ind(ϕ) = ind(τ L ) = 1 , ind(τ ) = 2 and ϕ L is not hyperbolic.

3. Suppose dim ϕ = 9, ind(ϕ) > 1 and ϕ has one of the following forms:

, where a, b ∈ k and γ is a 7-dimensional Pfister neighbor.

(ii) ϕ = τ ⊥ d , where d ∈ k * and τ ∈ I 2 q (k). Then CH 3 (X ϕ ) tors = 0. Indeed, the above assertions follow on parallel lines along the proofs of the corresponding results in [START_REF] Izhboldin | Fields of u-invariant 9[END_REF], as all the necessary ingredients in characteristic 2 have been established previously in this paper.

A Two specific results about Pfister neighbors

In this appendix, we prove two results that are needed to conclude our discussions in Remark 5.4.

As before, let k be a field of characteristic 2. Let τ be a nonsingular quadratic form of dimension 4 over k.

and suppose that ϕ is anisotropic. Let K = k(x) be a one-variable rational function field over k, and let

Then ϕ is a Pfister neighbor over k if and only if ψ is a Pfister neighbor over K.

Proof. Without loss of generality we may suppose c = 1. Put θ = c ⊥ τ = 1 ⊥ τ and write the underlying k-vector space of θ as k.s ⊥ U , where U denotes the vector space of τ and θ(s) = 1. Suppose that ψ is a Pfister neighbor of a 3-fold Pfister form π over K. Then, θ K is also a Pfister neighbor of π since it is a subform of ψ of dimension 5. It follows from [START_REF] Laghribi | Certaines formes quadratiques de dimension au plus 6 et corps des fonctions en caractéristique 2[END_REF]Prop. 3.2 (3)] that ind C 0 (θ K ) ≤ 2. Since K/k is purely transcendental, we get ind C 0 (θ) ≤ 2. Again, by [Lag02, Prop. 3.2 (3)], θ is a Pfister neighbor of a 3-fold Pfister form ρ defined over k. Consequently, π ∼ = ρ K because θ K is a Pfister neighbor of both forms π and ρ K . Since Pfister forms are round, we get ψ = [f, 1] ⊥ τ ⊂ ρ K . Our aim is to prove that ϕ is a subform of ρ.

Let W be the underlying k-vector space of ρ and let

The condition that ψ is a subform of ρ K yields the existence of a vector v ∈

Applying [EKM08, Prop. 17.9] to the anisotropic form ρ| V and the vector s ∈ V , we can find a vector w ∈

Since ρ is anisotropic and deg(f ) = 2, we have w = w 0 + x -1 w 1 for suitable w 0 , w 1 ∈ W . Now it is easy to see that the following properties over k hold:

• B ρ (s, w 0 ) = 1, B ρ (s, w 1 ) = 0,

• ρ(w 0 ) = b, ρ(w 1 ) = a and B ρ (w 0 , w 1 ) = 0.

All these properties mean that the restriction of ρ to the subspace k.w 1 ⊥ (k.s + k.w 0 ) ⊥ U is nothing but the form ϕ. Hence, ϕ is a subform of ρ, as desired. Conversely, suppose that ϕ is a Pfister neighbor of a 3-fold Pfister form ρ. Note that

In particular, [b + ax -2 , c] ⊥ τ K = [f, c] ⊥ τ K is a Pfister neighbor of ρ K . This completes the proof.

Proposition A.2. Let ϕ = [a 0 , a 1 ] ⊥ [b, c] ⊥ τ , with a 0 , a 1 , b, c ∈ k * , and suppose that ϕ is anisotropic. Let L = k(t, x) be a two-variable rational function field over k, and let ψ = [f, c] ⊥ τ , where f = (a 0 t 2 + t + a 1 + bx 2 )x -2 . Then ϕ is a Pfister neighbor over k if and only if ψ is a Pfister neighbor over L.