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This paper proposes a methodology for modeling magnetic anisotropy in ferromagnetic materials. This approach was initially
used to represent the isothermal remanent magnetization (IRM) acquired by natural mineral assemblages and based on the use of
the cumulative distribution function (CDF) of a probability density function (PDF). For the purpose of this work, the anisotropy
of electrical steel sheets is modeled by means of cumulative distribution functions of Gaussians. The methodology is validated by
comparisons between numerical and experimental data obtained from an Epstein frame and a Rotational Single Sheet Tester. The
outcomes of the study are twofold: firstly, the parameters defining the CDF follow a polynomial trendline and secondly, they can
easily be calculated from a limited amount of experimental data which is a key point from an engineering point of view.

Index Terms—Magnetic anisotropy, non oriented electrical steel, grain oriented electrical steel, first magnetization curves modeling,
cumulative distribution functions.

I. INTRODUCTION

DEVELOPING a model of magnetic materials, such as
electrical steel, that allows to account for both their

nonlinear and anisotropic behavior remains a challenge. In
the past decades, several approaches aiming to achieve this
goal have been presented, each with their particular strengths
and weaknesses. In the earliest approach the magnetic in-
duction B is related to the magnetic field H by means of
a diagonal tensor composed of magnetic permeabilities along
the Rolling Direction (RD), the Transverse Direction (TD) and
the Orthogonal Direction (OD) [1]. The main drawback of
this method lies in the fact that the relationship between B
and H along any other direction than the RD, TD and OD
are naturally obtained through linear interpolations, making
both its accuracy and relevance questionable. This point has
been slightly improved with the elliptical model [2] by using
nonlinear interpolations. Nevertheless, both methods remain
not representative enough of the actual anisotropic behavior
of electrical steel. In order to solve this difficulty, another
approach based on the use of a set of first magnetization
curves along several magnetization directions is proposed
in [3] and [4]. Nevertheless, this approach requires a very large
amount of experimental data which is a major drawback from
an engineering point of view. According to [5,6] , the approach
based on the orientation distribution theory [7] allows to estab-
lish a model accounting for any magnetization direction while
requiring a limited amount of experimental data. Nevertheless,
as pointed out in [8] it involves the computation of numerous
nonlinear coefficients and the amount of required experimental
data remains significant.

The approach followed in this paper is based on the one
introduced by Roberston and France [9] who noticed that
the shape of an isothermal remanent magnetization (IRM)
acquisition curves of a natural mineral assemblage is very
similar to the one of a cumulative log Gaussian. It can be

noted that Paesano et al. also noticed the similarity between
another type of CDF, that is the complementary of the Hill
equation, in [10].The aim of the work presented in this paper
is to enhance the approach based on Gaussian CDF in order
to establish a mathematical expression of the constitutive
relation between B and H that accounts for both the nonlinear
and anisotropic behavior of electrical steel while keeping the
number of experimental data as low as possible. The key
outlines of the presented study are multiple. Firstly, to the
authors’ knowledge, this approach has never been used in the
case of first magnetization curve of electrical steel modeling
although it has been used to deal with a statistical approach of
hysteresis phenomenon [11]. Secondly it is highlighted that the
nonlinear behavior of electrical steel can be accurately taken
into account by using the cumulative distribution function
(CDF) of a sum of probability density functions (PDF) instead
of just one PDF. Thirdly, it is shown that the anisotropic
behavior of electrical steel can be taken into account by
defining θ-dependant PDFs, where θ is the angle between H
and the RD of the steel sheet. Fourthly, it is shown that those
parameters defining the PDF are easy to calculate from a very
limited amount of experimental data.

The paper is structured as follows. In Section II the theo-
retical framework is presented. In particular, the way a CDF
can be shaped in order to match a first magnetization curve is
detailed. Moreover, θ-dependant parameters defining the CDF
are introduced. In Section III the model is tested and validated
on four different electrical steel grades. Section IV, as for it,
is devoted to the exploitation of the model.

II. THEORETICAL FRAMEWORK

A. PDF, CDF and first magnetization curve
Let a PDF parametrized in terms of the mean and the

variance, denoted by µ and σ2 respectively:

f(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )

2

. (1)
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(a) An example of a PDF (µ = 0
and σ2 = 0.2)
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(b) CDF of the PDF presented in
Fig. 1a
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(d) Influence of parameter σ on the
shape of a CDF (µ = 0)
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(f) Influence of parameter µ on the
shape of a CDF (σ2 = 0.2)
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(g) Influence of parameter s on the
shape of a PDF (µ = 0 and
σ2 = 0.2)
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(h) Influence of parameter s on the
shape of a CDF (µ = 0 and
σ2 = 0.2)

Fig. 1. Influence of parameters σ, µ and s on the shape of a PDF and a CDF

The associated CDF, which is the area under the PDF curve
from −∞ to x, can be expressed in terms of the error function
erf(x) = 2√

π

∫ x

0
e−t2dt [12], leading to:

F (x) =

∫ x

−∞
f(z)dz =

1

2

[
1 + erf

(
x− µ

σ
√
2

)]
. (2)

As an illustration f(x) and F (x) are presented in Figs. 1a
and 1b respectively. One can notice the great similarity of
the shape of the CDF and the one of a magnetization curve as
originally pointed out by Roberston and France [9]. Therefore,
it appears possible to shape a CDF by playing on the afor-
mentioned parameters. Firstly, parameter σ allows to define
the slope of the linear part of the CDF as shown in Figs. 1c
and 1d. Then, parameter µ allows to shift the position of
this linear part of the CDF along the abscissa axis. Finally,
since lim

x→+∞
erf(x) = 1 a scaling factor, denoted s, is to be

introduced in order to allow the maximum value of the CDF
to be greater than 1 (Figs. 1g and 1h).

B. Modeling first magnetization curves of electrical steel by
means of CDF

The first magnetization curve can be expressed either in
terms of magnetic induction B or magnetization M . Since
lim

H→+∞
B (H) = µ0H whereas lim

x→+∞
erf(x) = 1, relation (2)

has to be used to model M . Then, B can be classically defined
as B (H) = µ0 (H +M). Nevertheless, (2) can not be used
to express M as it is. As a matter of fact, M (0) = 0 whereas
F (x) > 0,∀x ∈ R. To solve this problem, let us define a
function G (x) such that:

G (x) = s (F (x)− F (0))

= s

(∫ x

−∞
f(z)dz −

∫ 0

−∞
f(z)dz

)
=

s

2

[
erf

(
x− µ

σ
√
2

)
− erf

(
−µ

σ
√
2

)] (3)

which, once rewritten in terms of magnetization and magnetic
field, leads to:

M (H) =
s

2

[
erf

(
H − µ

σ
√
2

)
− erf

(
−µ

σ
√
2

)]
(4)

Although Robertson and France proposed to use one CDF to
model an IRM curve [9], Stockhausen [13] and Leonhardt [14]
pointed out that using a sum of CDFs instead of just one leads
to a better accuracy. Then, (4) becomes:

M (H) =

N∑
i=1

si

2

[
erf

(
H − µi

σi
√
2

)
− erf

(
−µi

σi
√
2

)]
(5)

where N is the number of CDFs.

C. Taking anisotropy into account

As defined in Section II-B, the values of the three param-
eters σ, µ and s are scalars linked to the studied material. In
this way, the model defined by (5) allows to deal with isotropic
material only. We propose to enhance it by defining each of
the three parameters σ, µ and s as functions of θ instead of
scalars, where θ is the angle between H and the RD of the
considered electrical steel sheet. Then, the constitutive relation
that relates B and H and that allows to account for both the
saturation and the anisotropy can be expressed as:

B (H, θ) = µ0

[
H+

N∑
i=1

si (θ)

2

[
erf

(
H − µi (θ)

σi (θ)
√
2

)
− erf

(
−µi (θ)

σi (θ)
√
2

)]]
.

(6)

III. IDENTIFICATION OF PARAMETERS AND MODEL
VALIDATION

A. Tested electrical steel grades

In this Section, the proposed model governed by (6) is tested
and validated on two different non oriented (NO) as well
as two different grain oriented (GO) electrical steel grades
denoted by M530-50A, M270-35A, M11535P and CGO35
respectively. It is worth pointing out that contrary to what
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(a) M530-50A
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(b) M270-35A
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(c) CGO35
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(d) M11535P

Fig. 2. Experimental data for different electrical steels grades

their classification suggests the two NO grades present a non
negligible anisotropic behavior which makes them worthwhile
candidates to validate the proposed model. As an illustration,
the first magnetization curves obtained experimentally for each
of the four grades are presented in Fig. 2 for five different
magnetization directions (θ = {0°, 30°, 45°, 60°, 90°}). Two
different magnetic characterization devices were used to obtain
those curves. The NO samples (M530-50A and 270-35A) were
characterized using a vertical rotating single sheet tester [15].
It is composed of two yokes – and therefore two phases –

arranged along each side of the test sample, which is a
square of 300 mm side length and one sheet thickness. As
in the case of the horizontal single sheet tester, [16]this
device allows to magnetize the sample along any direction,
under pulsating or rotating conditions. In our case, the curves
presented in Fig. 2 were obtained by applying a pulsating
magnetization field along the aforementioned θ angle. The
GO (M11535P and CGO35) were characterized using the
standardized Epstein frame [17]. In this case, the samples,
whose size are 300 mm × 30 mm are cut at different θ angles
to the RD. In this way, each leg of the Epstein frame is
magnetized along θ.

B. Influence of the number of CDF

As mentioned in [13,14] the number of CDFs used in (6)
has an impact on the accuracy of the model. To evaluate this
impact, parameters σi, µi and si are determined by fitting (6)
to the experimental data of Fig. 2 for each grade, for each value
of θ and for N = {1, 2, 3, 4}. Table I gathers all the maximum
absolute errors, denoted by ∆B, obtained when comparing the
first magnetization curves obtained by (6) to the experimental
data. In the following the maximum absolute error is defined
by ∆B(H) = max{|Bexp(H)−Bmod(H)| : H ∈ R+} where
Bexp(H) and Bmod(H) are the values of the magnetic induc-
tion obtained experimentally and (6) respectively.

The review of this Table indicates that:
1) N = 1 leads to the greatest gaps between the curves

given by the model and the experimental data;
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Fig. 3. Comparison between first magnetization obtained by means of (6) for
θ = 0°, N = {1, 2} and experimental data.

2) using N > 2 does not improve substantially the accuracy
of the model compared to N = 2.

As an illustration, Fig. 3 shows a comparison between the
experimental data and the curves obtained from the model
(N = {1, 2}) on the least favorable case reported in Table I,
that is θ = 0°, for both NO and GO grades.

In consequence, N is set to 2 for all results presented in
the following.

C. Taking into account the anisoptropy: evolution of param-
eters σ, µ and s with θ

As mentioned in Section II, the aim of the presented work is
to make (5) able to deal with anisotropic material by making
each of the three parameters defining the CDFs θ-dependant.
Hence, a particular focus is placed here on the analysis of the
evolution of those parameters with θ in order to obtain trends.
Fig. 4 shows the evolution of σi (θ), µi (θ) and si (θ) with
i = {1, 2} for M530-50A and M11535P.

The analysis of the evolution of those three parameters for
each tested grade leads to two key outcomes:

1) all the parameters follow a polynomial trendline what-
ever the grade;

2) the degree of each polynomial is equal to 2 (see Ta-
ble II).

In order to validate those outcomes all the three parame-
ters are now calculated by the polynomials of Table II and
used in (6) to generate new first magnetization curves. The
maximum absolute errors obtained when comparing those first
magnetization curves to experimental data are gathered in
Table III. It can be seen that those maximum absolute errors
are in the same order of magnitude as those presented in
Table I.

This validates that 2nd order polynomials can be used to
determine all the parameters defining (6), which makes the
model able to determine any first magnetization curve along
any θ from a limited amount of experimental data. As a matter
of fact, the number of required experimental data is equal to
the order of the polynomial plus 1.

It may be noted that some of the terms of 2nd order of
polynomials in Table II seem negligible. This is e.g. the
case for polynomials governing σ1 and µ2. Nevertheless, as
negligible they might seem, it turns out those terms have a
significant influence on the final accuracy of the model. As
an example, in the case of σ1 the term of 2nd order can
represent up to 26 % – for θ = 90° – of the total value of
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TABLE I
MAXIMUM ABSOLUTE ERRORS BETWEEN FIRST MAGNETIZATION CURVES OBTAINED BY (6) AND EXPERIMENTAL DATA. ALL VALUES ARE IN mT

N 1 2 3 4

θ 0° 30° 45° 60° 90° 0° 30° 45° 60° 90° 0° 30° 45° 60° 90° 0° 30° 45° 60° 90°

M530-35A 157 128 127 136 125 61 66 52 38 46 68 125 70 45 36 100 116 64 44 37
M270-35A 196 195 181 169 118 133 112 134 71 45 81 200 101 68 35 117 193 83 63 35
M11535P 254 107 127 147 180 116 75 69 62 65 131 58 57 55 52 70 45 57 49 55
CGO35 139 179 148 158 165 76 32 27 32 26 68 21 18 20 18 21 16 17 18 25
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Fig. 4. Evolution of σi, µi and si with θ. Square marks and dashed lines
represent experimental data and trend lines respectively.

the polynomial. Then, the absolute errors between the model
and the experimental data is doubled for the GO grades when
a 1st order polynomial is used for σ1.

IV. MODEL EXPLOITATION: REDUCING THE AMOUNT OF
REQUIRED EXPERIMENTAL DATA AND PREDICTING THE

MAGNETIC BEHAVIOR AT ANY θ

Results presented in Section III highlighted that the three
parameters used in (6) can be derived from 2nd order polyno-
mials obtained from experimental data. Still in Section III, they
are determined from five experimental data, which is obviously
more than enough for such an order.

Here the 2nd order polynomials governing the evolution
of parameters σi, µi and si with θ are determined from
θ = {0°, 45°, 90°} only and used in (6) to generate new
first magnetization curves again. Our aim here is twofold: to
analyze the impact of using only three experimental data on
the accuracy of the model and, more important, to generate
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(a) M530-50A at θ = 30°
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(b) M11535P at θ = 30°
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(c) M530-50A at θ = 60°
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Fig. 5. Comparison between first magnetization obtained by means of (6) for
θ = {30°, 60°}. Parameters σi, µi and si are polynomials determined from
three experimental data (θ = {0°, 45°, 90°}) only.

first magnetization curves along magnetization directions that
are not involved in the determination of parameters σi, µi and
si, i.e. that are not involved in the determination of (6).

Table IV gathers all the maximum absolute errors obtained
when comparing the first magnetization curves obtained by (6)
in such conditions to the experimental data. The review of this
Table indicates that:

1) for θ = {0°, 45°, 90°} the maximum absolute errors are
almost identical to those reported in Table I, i.e. when
the CDFs in (6) are directly determined by fitting to the
experimental data. This was expected given the fact that
the polynomial has been generated from those specific
angles;

2) for 30° and 60° the maximum absolute errors are in the
same order of magnitude as those reported in Table I.

The magnetization curves along θ = {30°, 60°} are pre-
sented in Fig. 5. One can notice the great concordance between
the curves generated by the model and experimental data.

Those outcomes imply that the model governed by (6) can
be fully determined with an amount of experimental data
limited to three magnetization directions only, which is an
important enhancement compared to others methods dealt in
the literature [3]–[5,8].
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TABLE II
POLYNOMIAL EXPRESSION OF σi (θ), µi (θ) AND si (θ) OBTAINED FROM 5 EXPERIMENTAL DATA

M530-50A M270-35A M11535P CGO35

σ1 −0.002 θ2 + 0.486 θ + 16.581 −0.001 θ2 + 0.292 θ + 12.216 −0.005 θ2 + 0.610 θ + 11.520 −0.004 θ2 + 0.444 θ + 14.675
σ2 −0.024 θ2 + 1.705 θ + 329.956 −0.002 θ2 + 0.767 θ + 268.711 0.027 θ2 − 1.328 θ + 244.339 0.011 θ2 − 0.479 θ + 238.923
µ1 −0.007 θ2 + 1.276 θ + 45.248 −0.002 θ2 + 0.643 θ + 30.519 −0.016 θ2 + 3.469 θ + 14.487 −0.013 θ2 + 2.957 θ + 11.770
µ2 0.009 θ2 − 0.450 θ + 1.552 0.000 θ2 + 0.000 θ + 0.000 −0.007 θ2 + 2.164 θ − 12.934 0.001 θ2 + 0.080 θ − 1.327
s1 −1.160 θ2 − 2859.113 θ + 1e06 33.200 θ2 − 4377.696 θ + 8.5e5 180.685 θ2 − 2.1e4 θ + 1.3e6 190.968 θ2 − 2.4e6 θ + 1.4e6
s2 8.585 θ2 + 2811.496 θ + 5.2e5 −19.069 θ2 + 2055.501 θ + 6e5 1.013 θ2 − 1213.151 θ + 3.7e5 5.747 θ2 + 53.779 θ + 3.9e5

TABLE III
MAXIMUM ABSOLUTE ERRORS BETWEEN EXPERIMENTAL DATA AND

FIRST MAGNETIZATION CURVES OBTAINED BY (6) WHEN σi , µi AND si
ARE CALCULATED BY MEANS OF THE 2ND ORDER POLYNOMIAL

PRESENTED IN TABLE II. ALL VALUES ARE IN mT

θ 0° 30° 45° 60° 90°

M530-50A 69 81 62 68 45
M270-35A 104 128 130 61 54
M11535P 199 179 38 179 67
CGO35 164 121 29 118 30

TABLE IV
MAXIMUM ABSOLUTE ERRORS BETWEEN EXPERIMENTAL DATA AND

FIRST MAGNETIZATION CURVES OBTAINED BY (6) WHEN WHEN σi , µi

AND si ARE CALCULATED BY MEANS OF THE 2ND ORDER POLYNOMIAL
EVALUATED FROM 3 EXPERIMENTAL DATA. ALL VALUE ARE IN mT

θ 0° 30° 45° 60° 90°

M530-50A 61 79 56 93 46
M270-35A 133 164 134 72 45
M11535P 116 197 38 190 44
CGO35 74 148 27 128 26

V. CONCLUSION

In this paper an approach initially used to represent the
IMR acquired by natural mineral assemblages and based on
the use of the CDFs has been studied. An enhanced version,
taking into account the anisotropic behavior of electrical steel,
has been proposed and validated on two NO and two GO
grades. It has been highlighted that the parameters defining the
CDFs follow a 2nd order polynomial trendline. Based on this
result, it has been shown that the model, taking into account
both nonlinearity and anisotropy, can be fully derived from a
number of experimental data limited to three only, which is a
significant enhancement compared with other models dealt in
the literature.

Furthermore, several sensibility analyses are to be done to
improve the accuracy of the model. A first one would allow
studying the impact of the curve fitting method used. A second
one would allow determining the best set of three angles to
consider to determine the polynomials. These are intended
future activities.
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