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ON THE DESCENT FOR QUADRATIC AND BILINEAR FORMS

AHMED LAGHRIBI1 AND DIKSHA MUKHIJA2

ABSTRACT. This paper is devoted to the study of the descent problem in the spirit of conjectures
proposed by Kahn in characteristic different from 2 [15]. Descent problem seeks conditions
under which a K-form (quadratic or bilinear) is defined over F for a field extension K/F . We
study this problem in a complete manner for K-quadratic and bilinear forms up to dimension 4

when F is a field of characteristic 2 and K is the function field of a projective quadric.

1. INTRODUCTION

Throughout this paper F denotes an infinite field of characteristic 2. Let K be a field
extension of F . A general problem in the algebraic theory of quadratic (bilinear) forms consists
in studying the behavior of F -quadratic (bilinear) forms after extending scalars to K. Another
problem, which we may consider as an opposite to the behavior study, is the descent problem
that can be formulated in a general setting as follows: Let φ be a quadratic (bilinear) form
over K. Under which conditions the form φ is defined over F up to isometry (or up to Witt
equivalence)? Recall that the K-form φ is defined over F up to isometry (resp. up to Witt
equivalence) if there exists an F -form ψ such that φ ≃ ψK (resp. φ ∼ ψK), where ψK is
the form ψ considered as a form over K after scalar extension, and ≃ (resp. ∼) denotes the
isometry (resp. the Witt equivalence) of quadratic forms.

The descent problem is very difficult to study for an arbitrary field extensionK of F . The case
of an extension given by the function field of a quadric is very important because it is related
to other problems, mainly the isotropy problem and the classification of forms by height and
degree in the sense of Knebusch’s splitting theory. In [15] Kahn formulated some conjectures
on the descent problem over function fields of quadrics in characteristic not 2. The philosophy
of his conjectures is that when K = F (Q), the function field of the quadric given by the F -
quadratic form Q, then the K-quadratic form φ is defined over F once it is Witt equivalent to
θK for some F -quadratic form θ, and the dimension of Q is large enough than the dimension of
φ. Up to now only some positive answers to Kahn’s conjectures have been obtained (see [15],
[18] and [14, Theorem 3.9]).

In this paper we study the descent for quadratic and bilinear forms in characteristic 2 in the
spirit of Kahn’s conjectures. Taking inspiration by the conjecture [15, Conjecture 2], we give
the following analogue for quadratic forms in characteristic 2 that takes into account the case of
singular forms:

Conjecture 1.1. Let Q be an anisotropic F -quadratic form and K = F (Q). Let φ be a
quadratic form over K such that dimQ > 2 dimφ and one of the two conditions holds:

(1) If φ is nonsingular, we suppose that φ + In+1
q K ∈ Im(Wq(F )/I

n+1
q F −→

Wq(K)/In+1
q K) and 2n > dimφ for some integer n ≥ 1.

(2) If φ is singular, we suppose that φ ∼ θK for some F -quadratic form θ.
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Then, φ is defined over F .

Conjecture 1.1 is obviously true when φ is totally singular, this is due to the fact that the
anisotropic part of any totally singular F -quadratic form over any field extension K/F is
defined over F [10, Proposition 8.1(iii)]. Henceforth, we consider Conjecture 1.1 for φ not
totally singular. Moreover, sometimes it happens that the condition dimQ > 2 dimφ in
Conjecture 1.1 is not optimal as we will see in Theorem 1.2. In fact, this condition can be
written as 2r + s > 2 dimφ, where (r, s) denotes the type of Q. For some K-forms φ of
dimension ≤ 4 we will take the weaker condition r + s > dimφ as the following result shows:

Theorem 1.2. Let Q be an anisotropic F -quadratic form of type (r, s). Let φ be an anisotropic
K-quadratic form which is not totally singular. Suppose that 2 ≤ dimφ ≤ 4 and one of the
following conditions holds:

(1) dimφ = 2, φ+ I3qK ∈ Im(Wq(F )/I
3
qF −→ Wq(K)/I3qK) and r + s > 2.

(2) dimφ = 3, φ ∼ θK for some F -quadratic form θ, and either (r = 0 and s > 4) or
(r ≥ 1 and r + s > 3).

(3) φ is nonsingular of dimension 4, φ + I4qK ∈ Im(Wq(F )/I
4
qF −→ Wq(K)/I4qK) and

r + s > 4.
(4) φ is of type (1, 2), φ ∼ δK for some F -quadratic form δ and dimQ > 8.

Then, φ is defined over F .

For bilinear forms, the situation is more subtle comparing to that of quadratic forms. First,
for the field K = F (Q) we have to distinguish between the cases where Q is totally singular or
not. In fact, for Q not totally singular, we get the descent of an F (Q)-bilinear form B without
the hypothesis dimQ > 2 dimB as given in the following proposition.

Proposition 1.3. Let Q be an anisotropic F -quadratic form of dimension ≥ 2 which is not
totally singular, and K = F (Q). Let B be an anisotropic bilinear form over K such that
B + In+1K ∈ Im(W (F )/In+1F −→ W (K)/In+1K) for some integer n ≥ 1 satisfying
2n > dimB. Then, B is defined over F .

This proposition was noticed before by Laghribi and Rehmann when they tried to continue on
the descent results obtained in [28]. They used a sophisticated proof based on a lifting argument
to reduce the question to the descent in characteristic not 2. Here we propose a direct argument
based on transfer and the Hauptsatz.

However, for the field F (Q), whereQ is a totally singular form, we must not restrict ourselves
to the analogues of the conditions given by Conjecture 1.1. Otherwise, Proposition 8.2 produces
a counterexample. In fact, by this proposition we should take into account the notion of the norm
degree of Q. In this case, we formulate the following question:

Question 1.4. Let Q be an anisotropic totally singular quadratic form over F , and K = F (Q).
Let B be an anisotropic bilinear form over K such that dimQ > 2 dimB and B + In+1K ∈
Im(W (F )/In+1F −→ W (K)/In+1K) for some integer n ≥ 1 satisfying 2n > dimB and
ndegF (Q) > 2n+1. Is it true that B is defined over F?

Our answers to Question 1.4 are given in the following theorem.

Theorem 1.5. Let Q be an anisotropic totally singular F -quadratic form, K = F (Q) and B
an anisotropic bilinear form over K. Suppose that dimB ∈ {2, 3, 4}, dimQ > 2 dimB, and
one of the following conditions holds:
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(1) dimB = 2 and B + I3K ∈ Im(W (F )/I3F −→ W (K)/I3K).
(2) dimB = 3, ndegF (Q) > 8 and B ∈ Im(W (F ) −→ W (K)).
(3) B ∈ GBP2(K) and B ∈ Im(W (F ) −→ W (K)).

Then, B is defined over F in cases (1) and (2). In case (3), there exists ρ ∈ BP2(F ) such that
B is similar to ρ. In particular, B is defined over F when B ∈ BP2(K).
(here GBPm(F ) denotes the set of F -bilinear forms similar to m-fold bilinear Pfister forms,
see below.)

Note that for the descent in dimension 2, we don’t need the hypothesis ndegF (Q) > 8, just
the condition dimQ > 4 suffices. Moreover, the descent in dimensions 2 and 4 mentioned in
Theorem 1.5 was considered in [28, Theorem 1.3], but the proof there is incomplete as we will
explain at the beginning of Section 8. We propose new arguments and results to complete the
proof.

We finish this section by a result giving a relation between Conjecture 1.1 and Question 1.4,
this is due to the fact that the Witt group Wq(F ) of nonsingular F -quadratic forms is endowed
with a structure of module over the Witt ring W (F ) of regular symmetric F -bilinear forms.

Proposition 1.6. Let s ≥ 1 be an integer, Q an anisotropic totally singular F -quadratic form
of dimension ≥ 2, and K = F (Q). Suppose that Conjecture 1.1 is true for nonsingular K-
quadratic forms φ of dimension ≤ 2s when dimQ > 4s. Then, Question 1.4 is true for K-
bilinear B of dimension ≤ s when dimQ > 4s using only the hypothesis that B + In+1K ∈
Im(W (F )/In+1F −→ W (K)/In+1K) where n ≥ 1 is the smallest integer satisfying 2n >

dimB.

Note that the hypothesis ndegF (Q) > 2n+1, originally needed in Question 1.4, becomes
superfluous in Proposition 1.6 as it is deduced from the hypotheses that dimB ≤ s, dimQ > 4s

and 2n > dimB. In fact, if ndegF (Q) ≤ 2n+1, then 4 dimB ≤ 4s < dimQ ≤ ndegF (Q) ≤
2n+1. Hence, dimB < 2n−1, which contradicts the minimality of n.

The rest of this paper is organized as follows. The next section is devoted to some
backgrounds on quadratic forms. In Section 3 we summarize all the cohomological kernels
needed for the proofs. After that we present the proofs of the two main results of the paper,
Theorems 1.2 and 1.5. This requires intensive tools, inspiration from the work of Kahn [15],
and will be done case by case into two main parts talking about descent for quadratic forms and
bilinear forms separately.

2. BACKGROUND

Recall that any quadratic form φ over F can be written up to isometry as follows:

φ ≃ [a1, b1] ⊥ [a2, b2] ⊥ . . . ⊥ [ar, br] ⊥ ⟨c1, . . . , cs⟩, (2.1)

where ⊥ denotes the orthogonal sum of quadratic forms, and [a, b] (resp. ⟨a⟩) denotes the
quadratic form ax2 + xy + by2 (resp. ax2). Obviously, dimφ = 2r + s (the dimension of φ).
The quadratic form ⟨c1, . . . , cs⟩ is unique up to isometry, we call it the quasilinear part of φ, and
denote it by ql(φ). As in equation (2.1), the form φ is called:

• nonsingular (resp. singular) if s = 0 (resp. s > 0),
• totally singular if r = 0,
• semisingular if r > 0 and s > 0.
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Any quadratic form φ uniquely decomposes as follows: φ ≃ φan ⊥ i × [0, 0] ⊥ j × ⟨0⟩.
The form φan is called the anisotropic part of φ, and the integer i (resp. j) is called the Witt
index and denoted by iW (φ) (resp. the defect index and denoted by id(φ)). The total index of
φ, denoted by it(φ), is the integer iW (φ) + id(φ).

Let φ and ψ be quadratic forms of underlying vector spaces V and W , respectively. We
say that φ is dominated by ψ, denoted by φ ≺ ψ, if there exists an injective F -linear map
σ : V −→ W such that φ(v) = ψ(σ(v)) for all v ∈ V . We refer to [10, Th. 3.4] for an explicit
formulation of this relation.

We mention the completion lemma due to Hoffmann and Laghribi which will play a crucial
role in many proofs.

Lemma 2.1. ([10, Lemma 3.9]) Let R and R′ be nonsingular quadratic forms over F , and
ci, c

′
i, di ∈ F , 1 ≤ i ≤ n. Suppose that R ⊥ ⟨c1, . . . , cn⟩ ≃ R′ ⊥ ⟨c′1, . . . , c′n⟩. Then, there exist

d′1, . . . , d
′
n ∈ F such that R ⊥ [c1, d1] ⊥ . . . ⊥ [cn, dn] ≃ R′ ⊥ [c′1, d

′
1] ⊥ . . . ⊥ [c′n, d

′
n].

For a, b ∈ F with b ̸= 0, we denote by [a, b) the quaternion F -algebra generated by two
elements i and j subject to the relations: i2 + i = a, j2 = b and jij−1 = i + 1. Quaternion
F -algebras satisfy the following relations in the Brauer group Br(F ) of F :

[a1 + a2, b) ∼ [a1, b)⊗F [a2, b),

[a, b1b2) ∼ [a, b1)⊗F [a, b2).

Let φ be an F -quadratic form of underlying vector space V . The Clifford algebra of φ,
denoted by C(φ), is the algebra

C(φ) = T (V )/I,

where T (V ) is the tensor algebra of V , and I is the two-sided ideal of T (V ) generated by
v ⊗ v − φ(v) for all v ∈ V . The algebra C(φ) is central simple over F and admits a Z/2Z-
grading C(φ) = C0(φ)⊕ C1(φ).

The subalgebra C0(φ) of C(φ) is called the even Clifford algebra of φ. Recall that
dimF C(φ) = 2dimφ and dimF C0(φ) = 2dimφ−1.

If φ is nonsingular, then C(φ) is a central simple F -algebra. Its class in Br(F ), denoted by
c(φ), is called the Clifford invariant of φ. Moreover, the center ofC0(φ) is a separable quadratic
algebra F [x]/⟨x2 + x+ δ⟩ for some δ ∈ F . The class δ + ℘(F ) in F/℘(F ) is called the Arf
invariant of φ and denoted by △(φ). Explicitly, if φ ≃ a1[1, b1] ⊥ a2[1, b2] ⊥ . . . ⊥ an[1, bn] for

a1, . . . , an ∈ F ∗ and b1, . . . , bn, then we have C(φ) ≃ ⊗n
i=1[bi, ai) and △(φ) =

n∑
i=1

bi + ℘(F ).

We will prove some results on bilinear forms after reducing to nonsingular quadratic forms
defined over the Laurent series field F ((t)). More specifically, we will need the notion of
residue forms that we recall below.

Let K be a field with a discrete Henselian valuation v. We denote by A its ring, π a
uniformizer and k = A/πA the residue field. Let φ be an anisotropic K-quadratic form
(possibly singular) of underlying vector space V . For each integer i = 0, 1, 2, we attach the
set Vi = {v ∈ V | φ(v) ∈ πiA}, this is an A-module [30, page 342]. The induced residue
forms φ0 and φ1 are the k-forms given by:

φi : Vi/Vi+1 −→ k

v + Vi+1 7→ π−iφ(v).
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The form φ0 (resp. φ1) is called the first residue form (resp. the second residue form)
of φ. Clearly, these forms are anisotropic and could be singular. If φ is nonsingular, then
dimφ = dimφ0 + dimφ1 [30, Theorem 1].

We recall some results needed for the proofs. The first one is the “Hauptsatz” of Arason-
Pfister:

Theorem 2.2. ([7, Theorem 23.7])
(1) Let φ ̸= 0 be an anisotropic quadratic form lying in Inq F . Then, dimφ ≥ 2n.
(2) Let B ̸= 0 be an anisotropic bilinear form lying in InF . Then, dimB ≥ 2n.

We recall some results on the isotropy over function fields of quadrics.

Proposition 2.3. ([19, Corollary 3.1]) Let ψ and ψ′ be an anisotropic quadratic forms over F of
dimension ≥ 2. If ψ is totally singular and ψ′ is not totally singular, then ψF (ψ′) is anisotropic.

As a corollary we get:

Corollary 2.4. Let ψ and ψ′ be an anisotropic quadratic forms over F of dimension ≥ 2.
Suppose that ψ′ is not totally singular. If ψF (ψ′) is isotropic then iW (ψF (ψ′)) ≥ 1.

Proof. Suppose that ψF (ψ′) is isotropic. The corollary is trivial if ψ is nonsingular. So suppose
that ψ is singular. Since ψ′ is not totally singular, it follows from Proposition 2.3 that ψ is not
totally singular and ql(ψ)F (ψ′) is anisotropic. By the uniqueness of the quasilinear part, we get
iW (ψF (ψ′)) ≥ 1. □

Theorem 2.5. ([11, Theorem 1.1]) Let φ and ψ be anisotropic quadratic forms over F such
that dimφ ≤ 2n < dimψ for some integer n ≥ 0. Then, φF (ψ) is anisotropic.

Lemma 2.6. ([11, Lemma 2.11]) Let φ be an isotropic quadratic form over F . Then, any form
ψ satisfying ψ ≺ φ and dimψ ≥ dimφ− it(φ) + 1 is also isotropic.

Recall that an Albert quadratic form is a nonsingular quadratic form of dimension 6 and
trivial Arf invariant. We will often use the following result on the isotropy of an Albert form:

Proposition 2.7. Let γ be an anisotropic Albert form over F , ψ an anisotropic quadratic form
of type (r, s) such that either (r = 0 and s > 4) or (r ≥ 1 and r + s > 3). Then γF (ψ) is
anisotropic.

Proof. (1) Suppose r ≥ 1 and r + s > 3. Then, ψ dominates a form ψ′ of dimension 5

and type (1, 3). Moreover, iW (ψF (ψ′)) ≥ 1 (Corollary 2.4). Hence F (ψ′)(ψ)/F (ψ′) is purely
transcendental. Since, γF (ψ′) is anisotropic by [19, Theorem 1.1], we conclude that γF (ψ) is
anisotropic.

(2) Suppose that r = 0 and s > 4. Again, [19, Theorem 1.1] implies that γF (ψ) is anisotropic.
□

Corollary 2.8. Let D be a division biquaternion algebra over F and ψ an anisotropic F -
quadratic form of type (r, s) such that either (r = 0 and s > 4) or (r ≥ 1 and r+ s > 3). Then,
D ⊗F F (ψ) is a division algebra.

Proof. Let γ be an Albert quadratic form over F such that C(γ) ∼ D. By Proposition 2.7,
γF (ψ) is anisotropic. It follows from [31] that DF (ψ) is a division algebra. □

Nonsingular forms in I2qF and I3qF are classified by their Arf and Clifford invariants.
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Theorem 2.9. ([33, Theorem 2]) Let φ be a nonsingular quadratic form over F . Then, we
have:
(1) φ ∈ I2qF iff △(φ) = 0.
(2) If φ ∈ I2qF , then φ ∈ I3qF iff C(φ) ∼ 0.

Lemma 2.10. Let Q be an anisotropic F -quadratic form, and K = F (Q). Let φ ∈ Wq(K)

and ψ ∈ Wq(F ) be such that φ ⊥ ψK ∈ I2qK. Then, △(φ) = r + ℘(K), where r ∈ F is a
representative of △(ψ).

Proof. This is because φ ⊥ ψK ∈ I2qK implies △(φ) = △(ψK). □

The following lemma will be helpful for computing the even Clifford algebra.

Lemma 2.11. ([29, Lemma 2]) Let φ be a nonsingular F -quadratic form and a ∈ F ∗. Then,
C0(φ ⊥ ⟨a⟩) ≃ C(aφ).

3. COHOMOLOGICAL KERNELS

Let Wq(F ) be Witt group of nonsingular quadratic forms over F , and W (F ) the Witt ring of
regular bilinear forms over F . It is well known that Wq(F ) is endowed with a W (F )-module
structure induced by tensor product [5]. For any integer m ≥ 1, let ImF denote the m-th power
of the fundamental ideal IF of W (F ), and Im+1

q F = ImF ⊗Wq(F ) (we take I0F = W (F )).

The quotients Im+1
q F/Im+2

q F and ImF/Im+1F are denoted by I
m+1

q F and I
m
F .

For c1, · · · , cm ∈ F ∗, let ⟨c1, · · · , cm⟩b denote the diagonal bilinear form
∑m

i=1 cixiyi. For n ≥
1 an integer, an n-fold bilinear Pfister form is a bilinear form isometric to ⟨1, a1⟩b⊗· · ·⊗⟨1, an⟩b
for a1, · · · , an ∈ F ∗. We denote this form by ⟨⟨a1, · · · , an⟩⟩b. The form ⟨1⟩b is called the
0-fold bilinear Pfister form. An (n + 1)-fold quadratic Pfister form is a form isometric to
⟨⟨a1, · · · , an⟩⟩b ⊗ [1, b] for some a1, · · · , an ∈ F ∗ and b ∈ F , we denote it by ⟨⟨a1, · · · an; b]].
Let Pn(F ) (resp. BPn(F )) be the set of forms isometric to n-fold quadratic Pfister forms (resp.
the set of forms isometric to n-fold bilinear Pfister forms). We take GPn(F ) = F ∗ · Pn(F ) and
GBPn(F ) = F ∗ ·BPn(F ).

To any bilinear formB of underlying vector space V , we associate a totally singular quadratic
form B̃ defined on V as follows: v 7→ B(v, v) for all v ∈ V . A quasi-Pfister form is a
totally singular quadratic form isometric to B̃, where B is a bilinear Pfister form. Recall that
a quadratic (bilinear) Pfister form is isotropic iff it is hyperbolic (metabolic). A (quasi-)Pfister
form φ is round which means that φ represents a scalar α ∈ F ∗ iff φ ≃ αφ.

A quadratic form φ is called a Pfister neighbor if there exists a quadratic Pfister form π such
that φ ≺ π and 2 dimφ > dimπ. In this case, the form φ is not totally singular and for any
field extension L/F , one knows that φL is isotropic iff πL is isotropic. We define in the same
way the notion of quasi-Pfister neighbor for totally singular quadratic forms[10, Section 8]. The
notion of Pfister neighbor also exists for bilinear forms but we don’t need it here.

We recall the famous Kato’s isomorphisms [16] that will play a crucial role in some results.

αm : I
m
F → νF (m)

⟨⟨a1, . . . , am⟩⟩b 7→ da1
a1

∧ . . . ∧ dam
am

(3.1)
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and

em+1 : I
m+1

q F → Hm+1
2 (F )

⟨⟨a1, . . . , am; b]] 7→ b
da1
a1

∧ . . . ∧ dam
am

(3.2)

where Hm+1
2 (F ) (resp. νF (m)) is the cokernel (resp. the kernel) of the Artin-Schreier operator

℘ : Ωm
F −→ Ωm

F /dΩ
m−1
F such that Ωm

F is the space of m-differential forms over F and d is the
differential operator.

For any field extension K/F , let Hm+1
2 (K/F ) denote the kernel of the restriction map

Hm+1
2 (F ) −→ Hm+1

2 (K). Similarly, we define the kernels I
m+1

q (K/F ) and I
m+1

(K/F ).

We summarize in this section the cohomological kernels that will be needed. We start with
an injectivity result in the setting of Kato cohomology due to Aravire and Baeza.

Proposition 3.1. ([2, Lemma 2.17]) Let L/F be a purely transcendental extension. Then,
Hm+1

2 (L/F ) = 0.

We prove a general result that is helpful for the descent over function fields of singular
quadratic forms.

Proposition 3.2. Let L be an arbitrary field extension of F , and φ an anisotropic F -quadratic
form of dimension ≥ 3 such that

(1) φ ≃ [1, a] ⊥ φ′, or
(2) φ ≃ ⟨1⟩ ⊥ φ′,

for a suitable quadratic form φ′ of dimension n. Let (α1, α2, β1, · · · , βn) ∈ Ln+2 be such that:

– In case (1) we suppose (α1, α2) ̸= (0, 0) and α2
1 + α1α2 + aα2

2 + φ′(β1, · · · , βn) = 0.
– In case (2) we suppose α2

1 + φ′(β1, · · · , βn) = 0 and p := X2 + φ′(β1, · · · , βn) ∈
F (β1, · · · , βn)[X] irreducible.

Then, Hm+1
2 (F (φ)/F ) ⊆ Hm+1

2 (L/F ) for any integer m ≥ 0.

Proof. In case (1) we see that iW (φL) ≥ 1 because (α1, α2) ̸= 0. Hence, the extension
L(φ)/L is purely transcendental. Now if w ∈ Ωm

F satisfies w ∈ Hm+1
2 (F (φ)/F ), then

wL ∈ Hm+1
2 (L(φ)/L). It follows from Proposition 3.1 that w ∈ Hm+1

2 (L/F ).
Now suppose we are in case (2). We propose another argument since we don’t know if the

condition iW (φL) ≥ 1 is satisfied. The function field of the affine quadric given by φ is as
follows: F (φ) = F (z1, · · · , zn)(

√
φ′(z1, · · · , zn)), where z1, · · · , zn are independent variables

over F . Let K = F (z1, · · · , zn).
Let w ∈ Ωm

F be such that w ∈ Hm+1
2 (F (φ)/F )). Since wK ∈

Hm+1
2 (K(

√
φ′(z1, · · · , zn))/K), we get by the norm theorem for differential forms [32]

that

w ∧ d(X2 + φ′(z1, · · · , zn))
X2 + φ′(z1, · · · , zn)

= 0 ∈ Hm+2
2 (K(X)).

In particular, we have

w ∧ d(X2 + φ′(z1, · · · , zn))
X2 + φ′(z1, · · · , zn)

= 0 ∈ Hm+2
2 (K(X, βn)). (3.3)
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Consider on the field K(X, βn) the (zn − βn)-adic valuation and take π = zn − βn as an
uniformizer. Applying the residue map χπ given in [6, Page 15] to equation (3.3), we get

w ∧ d(X2 + φ′(z1, · · · , zn−1, βn))

X2 + φ′(z1, · · · , zn−1, βn)
= 0 ∈ Hm+2

2 (F (z1, · · · , zn−1, X, βn)). (3.4)

Now repeating the same argument successively for the variables z1, · · · , zn−1, we obtain

w ∧ dp
p

= 0 ∈ Hm+2
2 (F (β1, · · · , βn, X)). (3.5)

Since the polynomial p ∈ F (β1, · · · , βn)[X] is irreducible, we get by the norm theorem [32]
thatw = 0 over the field F (β1, · · · , βn)(p), which is isomorphic to F (α1, β1, · · · , βn), a subfield
of L. Hence, w ∈ Hm+1

2 (L/F ). □

As a consequence, we get the following corollary:

Corollary 3.3. Let φ be an anisotropic F -quadratic form of dimension ≥ 3, and ψ an F -
quadratic form of dimension ≥ 2 dominated by φ. Then, Hm+1

2 (F (φ)/F ) ⊆ Hm+1
2 (F (ψ)/F )

for any integer m ≥ 0.

Proof. If iW (φF (ψ)) ≥ 1, then we are in case (1) of Proposition 3.2, and thusHm+1
2 (F (φ)/F ) ⊆

Hm+1
2 (F (ψ)/F ). So suppose that iW (φF (ψ)) = 0. Then, ψ is necessarily dominated by ql(φ).

In particular, we have φ ≃ ψ ⊥ φ′ for some quadratic form φ′. Without loss of generality
we may suppose 1 ∈ DF (ψ), and put ψ = ⟨1, c1, · · · , cs⟩. The function field of the affine
quadric given by ψ is F (ψ) = F (x1, · · · , xs)(α), where α =

√
c1x21 + · · ·+ csx2s. Obviously,

v := (α, x1, · · · , xs, 0, · · · , 0) is an isotropy vector of φF (ψ). Since ψ is anisotropic over F , the
polynomial X2 +

∑s
i=1 cix

2
i ∈ F (x1, · · · , xs)[X] is irreducible. Consequently, we are in the

conditions of case (2) of Proposition 3.2, and thus Hm+1
2 (F (φ)/F ) ⊆ Hm+1

2 (F (ψ)/F ). □

The following corollary is an immediate consequence of Corollary 3.3 and the Kato’s
isomorphism (3.2).

Corollary 3.4. Let φ be an anisotropic F -quadratic form of dimension ≥ 3, and ψ an F -
quadratic form of dimension ≥ 2 dominated by φ. Then, I

m+1

q (F (φ)/F ) ⊆ I
m+1

q (F (ψ)/F ) for
any integer m ≥ 0.

Another result that will play an important role is the following proposition.

Proposition 3.5. ([22, Corollary 4.11]) Let φ ∈ Im+1
q F for some m ≥ 0, and ψ an anisotropic

totally singular F -quadratic form of dimension > 2m. If φF (ψ) ∈ Im+2
q F (ψ), then φ ∈ Im+2

q F .

In other words, I
m+1

q (F (ψ)/F ) = {0}.

We deduce the following corollary:

Corollary 3.6. Let φ ∈ Im+1
q F for some m ≥ 0, and ψ an anisotropic F -quadratic form of

type (r, s) such that r + s > 2m. If φF (ψ) ∈ Im+2
q F (ψ), then φ ∈ Im+2

q F .

In other words, I
m+1

q (F (ψ)/F ) = {0}.

Proof. Since ψ is of type (r, s), there exists ψ′ a totally singular form of dimension r + s such
that ψ′ ≺ ψ. Corollary 3.4 implies that Im+1

q (F (ψ)/F ) ⊂ Im+1
q (F (ψ′)/F ). Since dimψ′ =

r + s > 2m, it follows from Proposition 3.5 that Im+1
q (F (ψ′)/F ) = {0}. This proves the

corollary. □
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We extend the previous corollary to the case of a compositum of two function fields of
quadrics.

Corollary 3.7. Let ψ be an anisotropic singular F -quadratic form of type (r, s) such that r+s >
2m for some integer m ≥ 0. Let θ be an anisotropic F -quadratic form satisfying one of the
following conditions:

(1) θ is not totally singular.
(2) θ is totally singular and the type (r′, s′) of (ψF (θ))an satisfies r′ + s′ > 2m.

Then, I
m+1

q (F (θ)(ψ)/F ) ⊂ I
m+1

q (F (θ)/F ).

Proof. (1) Suppose that θ is not totally singular. If ψF (θ) is isotropic, then iW (ψF (θ)) ≥ 1

(Corollary 2.4). Hence, F (θ)(ψ)/F (θ) is purely transcendental, and thus the corollary is
verified. If ψF (θ) is anisotropic, then the corollary is a consequence of Corollary 3.6.

(2) Suppose that θ is totally singular and the type (r′, s′) of (ψF (θ))an satisfies r′ + s′ > 2m.
If iW (ψF (θ)) ≥ 1 or ψF (θ) is anisotropic, then we conclude as in case (1). So suppose

that ψF (θ) is isotropic and iW (ψF (θ)) = 0, then id(ψF (θ)) > 0 and thus F (θ)(ψ) is
purely transcendental over F (θ)(ψ′), where ψ′ = (ψF (θ))an. Hence, I

m+1

q (F (θ)(ψ)/F ) ⊂
I
m+1

q (F (θ)(ψ′)/F ). With the hypothesis on the type of ψ′, we get by Corollary 3.6

I
m+1

q (F (θ)(ψ′)/F ) ⊂ I
m+1

q (F (θ)/F ). □

Below we give another kernel that will be needed to study the descent for quadratic forms of
dimension 4.

Theorem 3.8. ([1, (6.2)] for k = 1, and [3, Theorem 1.5] for k = 2)
Let τ ∈ PkF anisotropic such that k = 1 or 2. Then, for any integer m ≥ 1, we have

I
m+1

q (F (τ)/F ) = Im+1−kF ⊗ τ .

In the case k = 2, this theorem is mentioned in [3] for a function field of a Pfister neighbor φ
of τ of dimension 3. Our formulation of Theorem 3.8 involving the field F (τ) is possible using
Proposition 3.1 and the fact that the extensions F (τ)(φ)/F (τ) and F (φ)(τ)/F (φ) are purely
transcendental because τF (φ) and φF (τ) are isotropic.

Using the Kato’s isomorphism (3.2), we deduce from [13, Theorem 5.6] the following:

Theorem 3.9. Let τ be an anisotropic F -quadratic form of dimension ≥ 3. Then, we have

Iq
3
(F (τ)/F ) = {ρ+ I4qF | ρ ∈ P3F and xτ ⊂ ρ for some x ∈ F ∗}.

In particular, this kernel is trivial if dim τ > 8, or 5 ≤ dim τ ≤ 8 and τ is not a Pfister
neighbor.

We recall the kernel of the function field of a bilinear Pfister form, it is a consequence of [2,
Theorem 4.1] and the Kato’s isomorphism (3.2).

Theorem 3.10. Let B = ⟨⟨a1, · · · , an⟩⟩b be an anisotropic bilinear Pfister form over F . Then,
for any integer m ≥ 1, we have

Iq
m+1

(F (B)/F ) =

{
B ⊗ Im−n+1

q F if m ≥ n

0 if m < n.

9



We finish this section with some kernels in the setting of bilinear forms. Recall that for L/F
a purely transcendental extension, the natural map Ωm

F −→ Ωm
L is injective by [2, Lemma 2.2].

Similarly, this map is also injective for L/F separable because a 2-basis of F stays a 2-basis
of L. In particular, in both cases, we get the injectivity of the natural map νF (m) −→ νL(m).
Using the Kato’s isomorphism (3.1), we deduce that

I
m
(L/F ) = {0}. (3.6)

This injectivity result applies to the case of quasi-Pfister neighbors as follows:

Proposition 3.11. Let π be an anisotropic quasi-Pfister form over F , and Q a quasi-Pfister
neighbor of π. Then, I

m
(F (Q)/F ) = I

m
(F (π)/F ) for any integer m ≥ 0.

In other words, if B ∈ ImF then BF (π) ∈ Im+1F (φ) iff BF (Q) ∈ Im+1F (Q).

Proof. Since Q is a quasi-Pfister neighbor of π, the forms πF (Q) and QF (π) are isotropic.
It follows from [4, Proposition 7.7] that F (π)(x1, · · · , xs) = F (Q)(y1, · · · , yt) for some
independent variables x1, · · · , xs, y1, · · · , yt over F . Now it is clear from equation (3.6) that
I
m
(F (Q)/F ) = I

m
(F (π)/F ). □

As for Theorem 3.10, the kernel of the function field of a bilinear Pfister forms was also
computed by Aravire and Baeza in the setting of the graded-Witt group of bilinear forms. We
need this kernel in the following specific case:

Theorem 3.12. ([2, Theorem 2.2]) Let B = ⟨⟨a1, · · · , an⟩⟩b be an anisotropic bilinear Pfister
form over F . Then, we have

I
n
(F (B)/F ) = {⟨⟨x1, · · · , xn⟩⟩b | x1, · · · , xn ∈ F (a1, · · · , an)∗} ∪ {0}.

In the setting of Witt ring, we have the following theorem:

Theorem 3.13. ([20, Theorem 1.2]) Let Q be an anisotropic totally singular F -quadratic form
of dimension ≥ 2, and ndegF (Q) = 2d. Then, an anisotropic F -bilinear form B becomes
metabolic over F (Q) iff B ≃ α1π1 ⊥ · · · ⊥ αsπs for some integer s ≥ 1, where αi ∈ F ∗ and
πi ∈ BPdF such that π̃i ≃ θ for all 1 ≤ i ≤ s, where θ is the quasi-Pfister form associated to
the norm field of Q. In particular, dimB is divisible by 2d.

4. PROOF OF THEOREM 1.2: THE CASE OF TYPES (1, 0) AND (1, 1)

Let Q be an anisotropic F -quadratic form of type (r, s), and K = F (Q). Let φ be an
anisotropic K-quadratic form which is not totally singular such that dimφ ∈ {2, 3}.

1. Suppose dimφ = 2 and r + s > 2. Set φ ≃ a[1, b] for a, b ∈ K∗ and suppose we have

φ ⊥ ψK ∈ I3qK (4.1)

for some nonsingular F -form ψ. By Lemma 2.10, we may suppose b ∈ F . Moreover, using
Theorem 2.9, we get C(φ ⊥ ψK) ∼ 0, that is, C(ψK) ∼ [b, a). It follows that C(ψ)K(α) ∼ 0,
where α2 + α = b. Taking the Clifford invariant, this means c(ψ) ∈ I

2

q(K(α)/F ). Since

r+ s > 2, Corollary 3.7 implies that c(ψ) ∈ I
2

q(F (α)/F ). Hence, there exists u ∈ F ∗ such that
c(ψ) is the class of [b, u) in Br(F ). Theorem 2.9 implies that ψ ⊥ u[1, b] ∈ I3qF . Extending
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this relation to K, and combining with equation (4.1) yields φ ⊥ u[1, b]K ∈ I3qK. It follows by
the Hauptsatz that φ ≃ u[1, b]K .

2. Suppose dimφ = 3 and either (r = 0 and s > 4) or (r ≥ 1 and r + s > 3). Let us write
φ ≃ a[1, b] ⊥ ⟨c⟩ for a, b, c ∈ K∗, and suppose that φ ∼ ψK for some F -quadratic form ψ.
By the uniqueness of the quasilinear part, we may suppose c ∈ F ∗ and ql(ψ) = ⟨c⟩. Without
loss of generality, we may suppose c = 1. Taking the even Clifford algebra in the equivalence
φ ∼ ψK , we get by Lemma 2.11

C0(ψK) ∼ C0(a[1, b] ⊥ ⟨1⟩) ∼ C(a[1, b]) ∼ [b, a).

Hence indC0(ψK) ≤ 2. We get by Corollary 2.8 indC0(ψ) ≤ 2. Thus, there exist scalars
e, f ∈ F ∗ such that C0(ψ) ∼ [e, f). So we get [b, a) ≃ [e, f)K . Since the two quaternion
algebras are isomorphic if and only if their norm forms are isometric, we get:

a[1, b] ⊥ [1, b] ≃ ([1, e] ⊥ f [1, e])K .

Adding ⟨1⟩ to the previous equation and canceling [0, 0], we get:

a[1, b] ⊥ ⟨1⟩ ≃ (f [1, e] ⊥ ⟨1⟩)K .

5. PROOF OF THEOREM 1.2: THE CASE OF TYPE (2, 0)

Let Q be an anisotropic F -quadratic form of type (r, s), and K = F (Q). Let φ be
an anisotropic K-quadratic form of type (2, 0). We suppose r + s > 4 and φ + I4qF ∈
Im(Wq(F )/I

4
qF −→ Wq(K)/I4qK). Let ψ be an F -quadratic form such that

φ ⊥ ψK ∈ I4qK. (5.1)

We treat two cases according to △(φ) = 0 or not.

1. Suppose dimφ = 4 and △(φ) = 0. Taking the Clifford algebra in equation (5.1) yields
C(φ) ∼ C(ψK). Since, φ ∈ GP2(K) anisotropic, we have indC(φ) = 2. Thus, we get
indC(ψ)K = 2. By using Corollary 2.8, we get indC(ψ) = 2. Hence, there exists φ0 ∈ P2(F )

such that C(ψ) ∼ C(φ0). Theorem 2.9 implies that

ψ ⊥ φ0 ∈ I3qF. (5.2)

Passing to K, we obtain ψK ⊥ (φ0)K ∈ I3qK. Combining with equation (5.1), we get

φ ⊥ (φ0)K ∈ I3qK. (5.3)

Further for any scalar x ∈ K∗, we have φ0 ⊥ xφ0 ∈ I3qK. We choose a scalar x ∈ DK(φ),
adding φ0 ⊥ xφ0 ∈ I3qK to equation (5.3), we get:

φ ⊥ (xφ0)K ∈ I3qK.

Note that since φ and xφ0 both represent x, thus φ ⊥ xφ0 is isotropic. Hence, we get by the
Hauptsatz φ ≃ (xφ0)K . Consequently, K(φ) = K(φ0).

Now extending equation (5.1) to K(φ0), we get

φK(φ0) ⊥ ψK(φ0) ∈ I4qK(φ0).

Since K(φ) = K(φ0) and φ ∈ GP2(K), we have φK(φ0) ∼ 0 and thus ψK(φ0) ∈ I4qK(φ0).

Since (φ0)K(φ0) ∼ 0, it follows (ψ ⊥ φ0)K(φ0) ∼ ψK(φ0) ∈ I4qK(φ0). To sum up, we have
11



ψ ⊥ φ0 ∈ I3qF and (ψ ⊥ φ0)K(φ0) ∈ I4qK(φ0). Hence,

ψ ⊥ φ0 + I4qF ∈ Iq
3
(K(φ0)/F ). (5.4)

Recall that K(φ0) = F (φ0)(Q) (since the polynomial given by Q stays irreducible over
F (φ0), see [10, Section 4.2] for details). Since r + s > 4, we apply Corollary 3.7(1) to get

ψ ⊥ φ0 + I4qF ∈ Iq
3
(F (φ0)/F ).

Hence, by Theorem 3.8, there exists ρ ∈ IF such that

ψ ⊥ φ0 ⊥ ρ⊗ φ0 ∈ I4qF. (5.5)

Let r ∈ F ∗ be a representative of det ρ. Since ρ ⊥ ⟨1, r⟩b ∈ I2F , it follows from equation
(5.5):

ψ ⊥ φ0 ⊥ ⟨1, r⟩b ⊗ φ0 ∈ I4qF.

Consequently, ψ ⊥ rφ0 ∈ I4qF . Passing to K and combining with equation (5.1), we get
φ ⊥ (rφ0)K ∈ I4qK. The Hauptsatz implies φ ≃ (rφ0)K , as desired.

2. Suppose dimφ = 4 and △(φ) ̸= 0. Recall that we have φ ⊥ ψK ∈ I4qF by equation (5.1).
By Lemma 2.10, we have △(φ) = r + ℘(K) for some r ∈ F \ ℘(F ) satisfying △(ψ) =

r + ℘(F ). Let L = K(α) be such that α2 + α = r. Taking Clifford algebra in equation (5.1),
we get C(φ) ∼ C(ψK). In particular, C(φL) ∼ C(ψL). Note that φL ∈ GP2(L) because
r ∈ ℘(L). Hence, indC(ψL) ≤ 2. Moreover, we have L = F (α)(Q). By Corollary 2.8, we get
indC(ψF (α)) ≤ 2. Thus, either indC(ψ) ≤ 2 or indC(ψ) = 4. We carefully consider the two
cases separately:

(1) If indC(ψ) ≤ 2, then there exists a, b ∈ F ∗ such that C(ψ) ∼ [b, a). In particular, C(ψ) ∼
[r, 1)⊗F [b, a).

(2) If indC(ψ) = 4, then there exists an Albert form γ such that C(ψ) ∼ C(γ). Since
indC(γF (α)) = indC(ψF (α)) ≤ 2, the form γF (α) is isotropic. We get, by [19, Théorème
1.1(2)], γ ≃ x[1, r] ⊥ y[1, t] ⊥ z[1, r + t] for some scalars x, y, z, t ∈ F ∗. Now we write C(γ)
explicitly:

C(γ) = C(x[1, r] ⊥ y[1, t] ⊥ z[1, r + t])

∼ [r, x)⊗F [t, y)⊗F [r + t, z)

∼ [r, x)⊗F [t, y)⊗F [r, z)⊗F [t, z)

∼ [r, xz)⊗F [t, yz).

Thus, in both cases we can write C(ψ) ∼ [r, s)⊗F [b, a) for suitable scalars a, b, s ∈ F ∗. We
now consider τ = s(a[1, b] ⊥ [1, b+ r]) and compute its Clifford algebra:

C(τ) = C(as[1, b] ⊥ s[1, b+ r])

∼ [b, as)⊗F [b+ r, s)

∼ [b, a)⊗F [b, s)⊗F [b, s)⊗F [r, s)

∼ [b, a)⊗F [r, s).

Hence, we have C(ψ) ∼ C(τ), and thus, by Theorem 2.9, we get

ψ ⊥ τ ∈ I3qF. (5.6)

12



Passing to K, we get ψK ⊥ τK ∈ I3qK, and adding to equation (5.1) we get:

φ ⊥ τK ∈ I3qK. (5.7)

We now have an F -quadratic form τ of dimension 4 such that φ ⊥ τK ∈ I3qK and △(φ) =

△(ψK) = △(τK) = r + ℘(K). We pass equation (5.7) to K(τ) to get:

φK(τ) ⊥ τK(τ) ∈ I3qK(τ).

Since dim(τK(τ))an < 4, we obtain by the Hauptsatz

(φ ⊥ τ)K(τ) ∼ 0 (5.8)

that is, φK(τ) ≃ τK(τ). Hence, φK(τ) is isotropic, and thus by [19, Theorem 1.3], φ ≃ xτK for
some scalar x ∈ K∗. Consequently, K(φ) = K(τ).

Summarizing, we have our initial hypothesis φ ⊥ ψK ∈ I4qK (equation (5.1)) for some F -
quadratic form ψ, another F -quadratic form τ of dimension 4 such that ψ ⊥ τ ∈ I3qF (equation
(5.6)) and E := K(φ) = K(τ).

We extend equation (5.1) to E, to get (φ ⊥ ψ)E ∈ I4qE. In other words, ψE ∼ φE ⊥ η for
some form η ∈ I4qE. In particular, we have (ψ ⊥ τ)E ∼ φE ⊥ τE ⊥ η. But we have seen
before that φE ⊥ τE ∼ 0 (equation (5.8)), hence (ψ ⊥ τ)E ∈ I4qE. Since ψ ⊥ τ ∈ I3qF , we
conclude that

ψ ⊥ τ + I4qF ∈ I
3

q(E/F ). (5.9)

Note that E = K(τ) = F (τ)(Q). Since r + s > 4, it follows from Corollary 3.7(1)

ψ ⊥ τ ∈ I
3

q(F (τ)/F ).

By Theorem 3.9, there exists ρ ∈ P3(F ) such that

ψ ⊥ τ ⊥ ρ ∈ I4qF, (5.10)

and xτ ⊂ ρ for some x ∈ F ∗. We write ρ ≃ xτ ⊥ θ for some F -quadratic form θ. Since τF (τ)

is isotropic, the Pfister form ρF (τ) is hyperbolic, and thus θF (τ) is isotropic. Again using [19,
Theorem 1.3], we get a scalar y ∈ F ∗ such that θ ≃ yτ , and thus ρ ≃ xτ ⊥ yτ . Hence, we
derive from equation (5.10) the following

ψ ⊥ xyτ ∈ I4qF.

Extending this last equation to K, and combining with equation (5.1), we get:

φ ⊥ xyτK ∈ I4qK.

It follows from the Hauptsatz φ ≃ (xyτ)K , as desired.

6. PROOF OF THEOREM 1.2: THE CASE OF TYPE (1, 2)

The proof we will give is quite trickier than the previous cases and we will use a different
line of approach. We recall a preliminary result.

Proposition 6.1. ([21, Corollary 2.13]) Let p ∈ F [X] be an irreducible polynomial. For any
anisotropic totally singular F -quadratic form γ, we have id(γF (p)) ≤ [dim γ

2
], where [m] denotes

the integer part of m.
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Corollary 6.2. Let Q be an anisotropic F -quadratic form of dimension > 8. Let p ∈ F [X] be
an irreducible polynomial, and (r′, s′) the type of (QF (p))an. If iW (QF (p)) = 0, then r′+ s′ > 4.

Proof. Let L = F (p) and (r, s) the type of Q. We have id(QL) = id(ql(Q)L). Let (r′, s′) be the
type of (QL)an. Since iW (QL) = 0, we get r = r′.

(1) Suppose that s = 2k. By Proposition 6.1, we have id(ql(Q)L) ≤ [ s
2
] = k. So, we have

s′ = dim(ql(Q)L)an = s− id(ql(Q)L) ≥ k. By our hypothesis dimQ = 2r+ s = 2r+2k > 8,
and thus in this situation r′ + s′ ≥ r + k > 4.

(2) Suppose that s = 2k + 1. Again, as we did in (1), id(ql(Q)L) ≤ [ s
2
] = k and thus

s′ = s− id(ql(Q)L) ≥ s− k = k + 1. Moreover, dimQ = 2r + s = 2r + 2k + 1 > 8, that is,
r + k ≥ 4. We thus have r′ + s′ ≥ r + k + 1 > 4. □

Definition 6.3. A singular quadratic form φ is called quasi-hyperbolic if it(φ) ≥ dimφ
2

.

We also need the following lemma:

Lemma 6.4. ([26, Corollary 2.7]) Let φ = R ⊥ ql(φ) be an anisotropic quadratic form over
F , and π a quasi-Pfister form such that ql(φ) ≃ π ⊗ γ for some totally singular form γ. Let
c1, · · · , cs ∈ DF (π) be such that ⟨c1, · · · , cs⟩ ≺ φ. Suppose that 1 ∈ DF (R). Then, there exist
d1, · · · , ds ∈ F andR′ a nonsingular form such that φ ≃ [c1, d1] ⊥ · · · ⊥ [cs, ds] ⊥ R′ ⊥ ql(φ).
In particular, dimR ≥ 2s.

The descent for quadratic forms of type (1, 2) will be based on the following corollary that
answers the quasi-hyperbolicity over inseparable quadratic extensions.

Corollary 6.5. Let φ = R ⊥ ql(φ) be an anisotropic semisingular F -quadratic form. Let
d ∈ F \F 2 and suppose that φ is quasi-hyperbolic over F (

√
d). Then, dimR ≥ 4, and for any

scalar α ∈ DF (R), there exist a nonsingular form R′ of dimension dimR − 2 and a ∈ F such
that

φ ∼ α ⟨1, d⟩b ⊗ [1, a] ⊥ R′ ⊥ ql(φ). (6.1)

Proof. Let L = F (
√
d) and V the underlying vector space of φ. We may suppose α = 1.

Since φL is quasi-hyperbolic, then the uniqueness of the quaslinear part implies that ql(φ)L
is quasi-hyperbolic. Hence, ql(φ) ≃ ⟨1, d⟩ ⊗ ρ for some totally singular form ρ [9, Theorem
7.7]. Moreover, x2 + d is a norm of φF (x) [25]. Hence, φF (x)(v) = x2 + d for some vector
v ∈ V ⊗ F (x). We may suppose v ∈ V ⊗ F [x] [7, Theorem 17.3]. Since φ is anisotropic, we
may write v = v0 + xv1 for v0, v1 ∈ V . Hence, the condition φF (x)(v) = x2 + d implies the
following relations: φ(v0) = d, φ(v1) = 1 and Bφ(v0, v1) = 0, meaning that ⟨1, d⟩ ≺ φ. It
follows from Corollary 6.4 that dimR ≥ 4, and we have the following isometry:

φ ≃ [1, a] ⊥ d[1, b] ⊥ θ ⊥ ql(φ),

where a, b ∈ F and θ is a nonsingular quadratic form of dimension dimR − 4. The previous
isometry can be re-written as follows:

φ ∼ ⟨1, d⟩b ⊗ [1, a] ⊥ R′ ⊥ ql(φ),

where R′ = d[1, a+ b] ⊥ θ is of dimension dimR− 2. Hence the corollary. □
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For the rest of this section, we fix Q an anisotropic F -quadratic form of dimension > 8,
K = F (Q), and φ an anisotropic K-quadratic form of type (1, 2) such that φ ∼ ψK for some
F -quadratic form ψ. We will prove that φ is defined over F in many steps.

Set φ ≃ a[1, b] ⊥ ⟨1, x⟩ for some scalars a, b, x ∈ K∗. By the uniqueness of the quasilinear
part, we have ql(ψ)K ≃ ⟨1, x⟩, and thus we may suppose x ∈ F ∗ and write ψ ≃ θ ⊥ ⟨1, x⟩ for
some nonsingular F -quadratic form θ. So we have

φ ∼ (θ ⊥ ⟨1, x⟩)K . (6.2)

Note that K(
√
x) = F (

√
x)(Q) as the polynomial given by Q remains irreducible over F (

√
x).

Proposition 6.6. We keep the same notations as mentioned before. Then, there exist k, l ∈ F ∗

such that
φK(

√
x) ≃ (k[1, l] ⊥ ⟨1, x⟩)K(

√
x). (6.3)

Proof. (1) Suppose iW (QF (
√
x)) > 0. Then, the extension K(

√
x)/F (

√
x) is purely

transcendental, so we write K(
√
x) = F (

√
x)(t1, · · · , tn) for some independent variables

t1, · · · , tn over F (
√
x). Let L = F (t1, · · · , tn).

Extending equation (6.2) to K(
√
x), canceling the form ⟨0⟩, and using the excellence of the

extension L(
√
x)/L, we get a nonsingular L-quadratic form δ of dimension 2 such that

(θ ⊥ ⟨1⟩)L(√x) ∼ (δ ⊥ ⟨1⟩)L(√x). (6.4)

Since in equation (6.4) we have nondefective forms and F is infinite, we can apply [17,
Proposition 2.9] by specializing t1, · · · , tn to suitable scalars in F , getting scalars k, l ∈ F ∗

such that
(θ ⊥ ⟨1⟩)F (

√
x) ∼ (k[1, l] ⊥ ⟨1⟩)F (

√
x). (6.5)

After extending equation (6.5) to K(
√
x) and adding the form ⟨0⟩, we get

(θ ⊥ ⟨1, x⟩)K(
√
x) ∼ (k[1, l] ⊥ ⟨1, x⟩)K(

√
x). (6.6)

Now combining with equation (6.2) yields φK(
√
x) ≃ (k[1, l] ⊥ ⟨1⟩)K(

√
x), as desired.

(2) Suppose iW (QF (
√
x)) = 0. Extending equation (6.2) toK(

√
x), and canceling the zero form

⟨0⟩, we obtain
(a[1, b] ⊥ ⟨1⟩)K(

√
x) ∼ (θ ⊥ ⟨1⟩)K(

√
x). (6.7)

We will apply to equation (6.7) the descent for forms of type (1, 1). Let Q′ = (QF (
√
x))an.

Since iW (QF (
√
x)) = 0, the extension F (

√
x)(Q)/F (

√
x)(Q′) is purely transcendental when

QF (
√
x) is isotropic. Moreover, by Corollary 6.2, the type (r′, s′) of Q′ satisfies r′ + s′ > 4. So

without loss of generality, we may suppose that Q is anisotropic over F (
√
x). By the descent

for forms of type (1, 1), there exists a nonsingular F (
√
x)-quadratic form η of dimension 2 such

that

(a[1, b] ⊥ ⟨1⟩)K(
√
x) ≃ (η ⊥ ⟨1⟩)K(

√
x) (6.8)

∼ (θ ⊥ ⟨1⟩)K(
√
x).

By abuse of notations, we identify △(η) and △(θ) with their representatives. Applying the
completion lemma to equation (6.8), we get (η ⊥ [1,△(η)])K(

√
x) ∼ (θ ⊥ [1,△(θ)])K(

√
x), and

thus
(η ⊥ θ ⊥ [1,△(η) +△(θ)])K(

√
x) ∼ 0.
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This implies that η ⊥ θ ⊥ [1,△(η) + △(θ)] + I3qF (
√
x) belongs to Iq

2
(K(

√
x)/F (

√
x)).

Applying Corollary 3.7(2), we deduce

η ⊥ θ ⊥ [1,△(η) +△(θ)] ∈ I3qK(
√
x).

Hence, C(η) ∼ C(θ)F (
√
x), and thus indC(θ)F (

√
x) ≤ 2. Then, there exists τ1 := ⟨⟨k, l]] ∈ P2F

and e ∈ F such that
C(θ) ∼ C(τ1)⊗ [e, x).

Passing to F (
√
x), we obtain

C(η) ∼ C(η ⊥ [1,△(η)]) ∼ [l, k)F (
√
x).

Hence, η ⊥ [1,△(η)] ≃ (k[1, l] ⊥ [1, l])F (
√
x). Adding the form ⟨1⟩F (

√
x) and canceling the

hyperbolic plane yields
η ⊥ ⟨1⟩ ≃ (k[1, l] ⊥ ⟨1⟩)F (

√
x). (6.9)

Now extending equation (6.9) to K(
√
x), and combining it with equation (6.8), we get

(a[1, b] ⊥ ⟨1⟩)K(
√
x) ≃ (k[1, l] ⊥ ⟨1⟩)K(

√
x). In particular, we obtain

(a[1, b] ⊥ ⟨1, x⟩)K(
√
x) ≃ (k[1, l] ⊥ ⟨1, x⟩)K(

√
x).

This proves the proposition. □

From equation (6.3), it is clear that we have

(a[1, b] ⊥ k[1, l] ⊥ ⟨1, x⟩)K(
√
x) ≃ 2×H ⊥ ⟨1, 0⟩K(

√
x) , (6.10)

which means that the form a[1, b] ⊥ (k[1, l] ⊥ ⟨1, x⟩)K becomes quasi-hyperbolic overK(
√
x).

Moreover, over K, we have

ε := iW (a[1, b] ⊥ k[1, l]K ⊥ ⟨1, x⟩K) ∈ {0, 1, 2}.

We will discuss on each value of ε to descent φ to F .

Lemma 6.7. We keep the same notations as mentioned before. Then, we have ε ̸= 1.

Proof. Suppose ε = 1. This implies

a[1, b] ⊥ (k[1, l] ⊥ ⟨1, x⟩)K ≃ [0, 0] ⊥ a1[1, b1] ⊥ ⟨1, x⟩K , (6.11)

for some scalars a1, b1 ∈ K∗. It is clear from (6.11) and (6.10) that iW ((a1[1, b1] ⊥
⟨1, x⟩)K(

√
x)) = 1, meaning that λ := a1[1, b1] ⊥ ⟨1, x⟩ is quasi-hyperbolic over K(

√
x).

But this is not possible by Corollary 6.5 because the regular part of λ has dimension smaller
that 4. □

Lemma 6.8. We keep the same notations as mentioned before. If ε = 2, then φ is defined over
F .

Proof. The condition ε = 2 means that a[1, b] ⊥ k[1, l]K ⊥ ⟨1, x⟩K ≃ 2 × H ⊥ ⟨1, x⟩K .
Adding on both sides the form k[1, l]K and canceling the form 2 × H, we get φ ≃ (k[1, l] ⊥
⟨1, x⟩)K . □

Proposition 6.9. We keep the same notations as mentioned before. If ε = 0, then we have:

(1) There exist u ∈ K∗ and γ ∈ I3qF such that

a[1, b] ⊥ (k[1, l] ⊥ ⟨1, x⟩)K ≃ k ⟨1, x⟩b ⊗ [1, u] ⊥ ⟨1, x⟩K
∼ (γ ⊥ ⟨1, x⟩)K .
16



(2) If ⟨⟨x, k, u]] is isotropic, then φ is defined over F .
(3) Let L/F be a field extension and η ∈ GPn(L) with n ≥ 3. Suppose we have

(η ⊥ ⟨1, x⟩)K.L ∼ (k ⟨1, x⟩b ⊗ [1, u] ⊥ ⟨1, x⟩)K.L.

Then, ηK.L is isotropic iff ⟨⟨x, k, u]]K.L is isotropic. When ηK.L is anisotropic, we
necessarily have dim η = 8, i.e., η ∈ GP3(L).

Proof. (1) Since a[1, b] ⊥ (k[1, l] ⊥ ⟨1, x⟩)K is anisotropic over K, and becomes quasi-
hyperbolic over K(

√
x), it follows from Corollary 6.5

a[1, b] ⊥ (k[1, l] ⊥ ⟨1, x⟩)K ∼ k ⟨1, x⟩b ⊗ [1, u] ⊥ v[1, w] ⊥ ⟨1, x⟩K , (6.12)

for some scalars u, v, w ∈ K∗. Passing to K(
√
x), we conclude that (v[1, w] ⊥ ⟨1, x⟩)K(

√
x)

is quasi-hyperbolic. Hence, using again Corollary 6.5 and taking into account the dimension
of the regular part, we necessary have v[1, w] ⊥ ⟨1, x⟩K isotropic. Consequently, v[1, w] ⊥
⟨1, x⟩K ∼ ⟨1, x⟩K because ⟨1, x⟩K is anisotropic. Now equation (6.12) could be written as:

a[1, b] ⊥ (k[1, l] ⊥ ⟨1, x⟩)K ≃ k ⟨1, x⟩b ⊗ [1, u] ⊥ ⟨1, x⟩K . (6.13)

Recall our initial hypothesis a[1, b] ⊥ ⟨1, x⟩ ∼ (θ ⊥ ⟨1, x⟩)K , and substitute in equation (6.13),
we obtain:

(θ ⊥ k[1, l] ⊥ ⟨1, x⟩)K ∼ k ⟨1, x⟩b ⊗ [1, u] ⊥ ⟨1, x⟩ . (6.14)

Passing to K(
√
x) and cancelling ⟨0⟩, gives us

(θ ⊥ k[1, l] ⊥ ⟨1⟩)K(
√
x) ∼ ⟨1⟩ .

Now we obtain by completion lemma:

(θ ⊥ k[1, l] ⊥ [1, l +△(θ)])K(
√
x) ∼ 0.

Hence, θ ⊥ k[1, l] ⊥ [1, l + △(θ)] + I3qF ∈ Iq
2
K(

√
x). Recall that we have either

iW (QF (
√
x)) > 0 or (iW (QF (

√
x)) = 0 and the type (r′, s′) of (QF (

√
x))an satisfies r′ + s′ > 4

(Corollary 6.2)). Hence, we get by Corollary 3.7(2)

θ ⊥ k[1, l] ⊥ [1, l +△(θ)] + I3qF ∈ Iq
2
F (

√
x).

By Theorem 3.10, there exists a nonsingular F -quadratic form ρ such that

θ ⊥ k[1, l] ⊥ [1, l +△(θ)] ⊥ ⟨1, x⟩b ⊗ ρ ∈ I3qF.

Because ρ ⊥ [1,△(ρ)] ∈ I2qF , we have

θ ⊥ k[1, l] ⊥ [1, l +△(θ)] ∼ ⟨1, x⟩b ⊗ [1,△(ρ)] ⊥ γ,

where γ ∈ I3qF . We now pass to K, add ⟨1, x⟩ and cancel the hyperbolic planes, we obtain:

(θ ⊥ k[1, l] ⊥ ⟨1, x⟩)K ∼ (γ ⊥ ⟨1, x⟩)K .

Combining this equation with (6.13) and (6.14) yields

a[1, b] ⊥ (k[1, l] ⊥ ⟨1, x⟩)K ≃ k ⟨1, x⟩b ⊗ [1, u] ⊥ ⟨1, x⟩K (6.15)

∼ (γ ⊥ ⟨1, x⟩)K .

This completes the proof of statement (1). For the rest of the proof, let π denotes the form
⟨⟨x, k, u]] ∈ P3(K).
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(2) Suppose that π is isotropic, then it is hyperbolic. Hence, k ⟨1, x⟩⊗ [1, u] ≃ ⟨1, x⟩⊗ [1, u].
This implies that k ⟨1, x⟩ ⊗ [1, u] ⊥ ⟨1, x⟩K ∼ ⟨1, x⟩K , and by equation (6.15)

a[1, b] ⊥ (k[1, l] ⊥ ⟨1, x⟩)K ∼ ⟨1, x⟩K .

Hence, φ ≃ (k[1, l] ⊥ ⟨1, x⟩)K is defined over F .
(3) Let L be a field extension of F and η ∈ GPn(L) with n ≥ 3. Suppose we have

(η ⊥ ⟨1, x⟩)K.L ∼ (k ⟨1, x⟩b ⊗ [1, u] ⊥ ⟨1, x⟩)K.L.

If ηK.L is isotropic, then it is hyperbolic. Hence, we get

⟨1, x⟩K.L ∼ (k ⟨1, x⟩b ⊗ [1, u] ⊥ ⟨1, x⟩)K.L.

Consequently, πK.L is isotropic because k ⟨1, x⟩b ⊗ [1, u] ⊥ ⟨1, x⟩ ≺ π. Conversely, if πK.L is
isotropic, then the same argument as in the proof of (2) gives (k ⟨1, x⟩b ⊗ [1, u] ⊥ ⟨1, x⟩)K.L ∼
⟨1, x⟩K.L, and thus

(η ⊥ ⟨1, x⟩)K.L ∼ ⟨1, x⟩K.L .
Then, iW ((η ⊥ ⟨1, x⟩)K.L) = dim η

2
. Lemma 2.6 implies that any form dominated by (η ⊥

⟨1, x⟩)K.L and having dimension ≥ dim η
2

+ 3 is isotropic. Hence, ηK.L is isotropic because
dim η ≥ dim η

2
+ 3 since dim η ≥ 8.

Suppose that ηK.L is anisotropic. Hence, πK.L is anisotropic, and thus its Pfister neighbor
(k ⟨1, x⟩b ⊗ [1, u] ⊥ ⟨1, x⟩)K.L is also anisotropic. Then, j := it((η ⊥ ⟨1, x⟩)K.L) = iW ((η ⊥
⟨1, x⟩)K.L) = dim η

2
− 2. Since ηK.L is anisotropic and dominated by (η ⊥ ⟨1, x⟩)K.L, it follows

from Lemma 2.6 that dim η < dim η + 2− j + 1 = dim η
2

+ 5, i.e., dim η = 8. □

Proposition 6.10. We keep the same notations as mentioned before. If ε = 0, then φ is defined
over F .

Proof. Suppose ε = 0. We will prove that φ is defined over F . We have by Proposition 6.9

a[1, b] ⊥ (k[1, l] ⊥ ⟨1, x⟩)K ≃ k ⟨1, x⟩b ⊗ [1, u] ⊥ ⟨1, x⟩K (6.16)

∼ (γ ⊥ ⟨1, x⟩)K ,

for some u ∈ K∗ and γ ∈ I3qF . Without loss of generality, we may suppose γ anisotropic,
and thus dim γ ≥ 8 by the Hauptsatz. Also, we may suppose, by Proposition 6.9(2), that
π := ⟨⟨x, k, u]] is anisotropic. Let λ = ⟨⟨x, k⟩⟩ and µ = k ⟨1, x⟩b ⊗ [1, u] ⊥ ⟨1, x⟩K .

Let (Fi, γi)0≤i≤h be the generic splitting tower of γ, where h is the height of γ. Let d be the
degree of γ and π̃ ∈ Pd(Fh−1) its leading form. So we have γFh−1

∼ zπ̃ for some z ∈ F ∗
h−1.

We discuss on the height h of γ.
(1) Suppose h = 1. This means that γ is similar to π̃. By Proposition 6.9, dim γ = 8 since π

is anisotropic. Moreover, πK(
√
x) isotropic implies that γK(

√
x) is isotropic (Proposition 6.9), and

thus γK(
√
x) is hyperbolic. In particular, γ + I4qF ∈ Iq

3
(K(

√
x)/F ). Corollary 3.7(2) implies

that γF (
√
x) ∈ I4qF (

√
x), and by the Hauptsatz γF (

√
x) ∼ 0. Consequently, γ ≃ y ⟨1, x⟩b ⊗ τ

for some y ∈ F ∗ and τ = ⟨⟨p, q]] ∈ P2(F ). Now since iW ((γ ⊥ ⟨1, x⟩)K) = 2 (by equation
(6.16)), the form (γ ⊥ ⟨1⟩)K is isotropic. Using the roundness of a Pfister form, we get

(γ ⊥ ⟨1⟩)K ≃ (⟨1, x⟩b ⊗ τ ⊥ ⟨1⟩)K .

Consequently,
(γ ⊥ ⟨1, x⟩)K ∼ (p[1, q] ⊥ px[1, q] ⊥ ⟨1, x⟩)K .
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Substituting in equation (6.16), we obtain

a[1, b] ⊥ ⟨1, x⟩ ∼ (k[1, l] ⊥ p[1, q] ⊥ px[1, q] ⊥ ⟨1, x⟩)K .

Since dimQ > 8, it follows from Theorem 2.5 that a[1, b] ⊥ ⟨1, x⟩ is defined over F .
(2) Suppose h > 1. Extending (6.16) to K.Fh−1, we get

(zπ̃ ⊥ ⟨1, x⟩)K.Fh−1
∼ (k ⟨1, x⟩b ⊗ [1, u] ⊥ ⟨1, x⟩)K.Fh−1

, (6.17)

for some z ∈ F ∗
h−1. Moreover, π remains anisotropic over K.Fh−1 because dim γi > 8 for

all i < h − 1. Hence, equation (6.17) and Proposition 6.9 imply that π̃K.Fh−1
is anisotropic

and dim π̃ = 8. Moreover, since πK(π) is isotropic, the form π̃K.Fh−1(π) is isotropic (again by
equation (6.17) and Proposition 6.9). Hence, π̃K.Fh−1

≃ πK.Fh−1
. This implies

(γ ⊥ π)K.Fh−1
∈ I4qK.Fh−1

because γFh−1
∼ zπ̃. In other words, γ ⊥ π + I4qK ∈ I

3

q(K.Fh−1/K). We claim that

γK ⊥ π ∈ I4qK. (6.18)

In fact, if γh−2 is isotropic over K.Fh−2, then K.Fh−1/K.Fh−2 is purely transcendental, and
hence γ ⊥ π + I4qK ∈ I

3

q(K.Fh−2/K). If γh−2 is anisotropic over K.Fh−2, then we get the
same conclusion by Corollary 3.6. Repeating the same argument for the forms γi for i < h− 2,
we get the desired claim.

Now equation (6.18) gives γK(λ) ∈ I4qK(λ). Corollaries 3.7(2) and 6.2 imply that γF (λ) ∈
I4qF (λ), that is, γ + I4qF ∈ I

3

q(F (λ)/F ). Hence, there exists by Theorem 3.10 a scalar v ∈ F

such that
γ ⊥ λ⊗ [1, v] ∈ I4qF. (6.19)

We extend (6.19) to K and we substitute in equation (6.18), we obtain π ⊥ λ ⊗ [1, v] ∈ I4qK.
We get by the Hauptsatz

π ≃ (λ⊗ [1, v])K . (6.20)

Adding on both sides of equation (6.20) the form ⟨1, x⟩K , and canceling the hyperbolic planes,
we deduce

(k ⟨1, x⟩b ⊗ [1, v] ⊥ ⟨1, x⟩)K ≃ k ⟨1, x⟩b ⊗ [1, u] ⊥ ⟨1, x⟩ .
We combine this isometry with equation (6.16) to get

a[1, b] ⊥ ⟨1, x⟩ ∼ (k[1, l] ⊥ k ⟨1, x⟩b ⊗ [1, v] ⊥ ⟨1, x⟩)K .

Since dimQ > 8, it follows from Theorem 2.5 that φ is defined over F . □

7. PROOF OF PROPOSITION 1.3

Let Q be an anisotropic F -quadratic form which is not totally singular, and K = F (Q). Let
B be a bilinear form over K such that B + In+1K ∈ Im(W (F )/In+1F −→ W (K)/In+1K)

for some integer n ≥ 1 satisfying 2n > dimB. We will prove that B is defined over F .

Since Q is not totally singular, we may write K = L(α), where L/F is purely transcendental
and α2 + α ∈ L \ ℘(L). Let s : K −→ L be an L-linear map satisfying s(1) = 0, and let
s∗ : W (K) −→ W (L) be the transfer map induced by s. By [7, Corollary 34.17], we have
s∗(I

n+1K) ⊂ In+1L. Let C ∈ W (F ) be such that

B ⊥ CK ∈ In+1K. (7.1)
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Applying the map s∗ to equation (7.1), we get s∗(B) ∈ In+1L. Since dim s∗(B) =

2 dimB < 2n+1, we conclude by the Hauptsatz that s∗(B) ∼ 0. By [7, Corollary 34.15], there
exists an L-bilinear form D such that B ∼ DK . Since K/L is excellent and B anisotropic, we
may write B ≃ DK . We then have DK ⊥ CK ∈ In+1K. Moreover, for any integer i ≥ 1,
we have I

i
(K/L) = {0} by equation (3.6) because K/L is separable. So, after iterating this

kernel, we obtain from DK ⊥ CK ∈ In+1K the following

D ⊥ CL ∈ In+1L.

Let ρ ∈ In+1L be such that D ⊥ CL ∼ ρ. The field F is infinite, so we specialize D and ρ
to suitable F -bilinear forms D0 and ρ0, respectively (we specialize the variables defining L to
suitable scalars in F so that our bilinear forms D and ρ have “very good reduction” in the sense
of Knebusch [17, Proposition 2.2]). Hence, we get

(D0)L ⊥ CL ∼ ρ0 ∈ In+1L.

Extending scalars to K, and combining with equation (7.1) yields

(D0)K ⊥ B ∈ In+1K.

It follows from the Hauptsatz that B ≃ (D0)K .

8. PROOF OF THEOREM 1.5

The descent for bilinear forms of dimension 2 or 4 has been studied in [28], but it turns out
that the proof for these two cases is incomplete. In fact, it was considered that any element α
of I

2
(F (

√
x)/F ) belongs to IF ⊗ ⟨1, x+ a2⟩b for some scalar a ∈ F , while α must be in a

finite sum
∑

i I
k−1F ⊗ ⟨1, x+ a2i ⟩b. Here we will proceed in a different way. For the descent in

dimension 2 (Proposition 8.1), we use a generic argument to reduce to nonsingular forms, and
thus apply Theorem 1.2. This reduction has the advantage to conclude the descent taking the
group Im(W (F )/I3F −→ W (K)/I3K) instead of Im(W (F ) −→ W (K)). For dimensions
3 and 4 (Propositions 8.2 and 8.4), to avoid the obstacle caused by the finite sum mentioned
before, we work with a kernel I

2
(F (Q′)/F ) for Q′ a totally singular F -quadratic form of

dimension 3, so in this case each nonzero element of the kernel is reduced to a symbol (Theorem
3.12). Moreover, we use a recent result that states the extension F (Q′)/F is excellent for
bilinear forms ([27, Theorem 1]), and we work with the group Im(W (F ) −→ W (K)) instead
of the group Im(W (F )/I4F −→ W (K)/I4K). Taking into account these new changes, the
other arguments that we will use are similar to those used by Laghribi and Rehmann, which are
themselves inspired from Kahn’s method in characteristic not 2 [15].

Proposition 8.1. Let Q be an anisotropic totally singular F -quadratic form of dimension > 4,
and K = F (Q). Let B be an anisotropic bilinear form over K of dimension 2. If B + I3K ∈
Im(W (F )/I3F −→ W (K)/I3K), then B is defined over F .

Proof. We keep the same notations and hypotheses as in the proposition. Let t be a variable
over K and φ = B ⊗ [1, t−1] defined over K̃ := K((t)) the field of Laurent series over K. The
form φ is anisotropic over K̃. Let F̃ denote the field F ((t)).

The condition B + I3K ∈ Im(W (F )/I3F −→ W (K)/I3K) implies that detB is defined
over F by a scalar d ∈ F ∗. Hence, B ≃ α ⟨1, d⟩b for some α ∈ K∗. Moreover, we have
φ + I4K̃ ∈ Im(W (F̃ )/I4F̃ −→ W (K̃)/I4K̃). It follows from Theorem 1.2 that φ ≃ ψK̃ for
some quadratic form ψ over F̃ . Clearly α ⟨1, d⟩ is the first residue form of φ with respect to
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the t-adic valuation of K̃. Similarly, the first residue form of ψK̃ is given by ψ′
K , where ψ′ is

the first residue form of ψ with respect to the t-adic valuation of F̃ . Since α ⟨1, d⟩ ≃ ψ′
K , we

deduce that α ⟨1, d⟩ represents a scalar β ∈ F ∗. Using the roundness of a Pfister form, we get
B ≃ (β ⟨1, d⟩b)K , and thus B is defined over F . □

Proposition 8.2. Let Q be an anisotropic totally singular F -quadratic form of dimension > 6

such that ndegF (Q) > 8. Let K = F (Q) and B an anisotropic K-bilinear form of dimension
3 such that B ∈ Im(W (F ) −→ W (K)). Then, B is defined over F .

Proof. We keep the same notations and hypotheses as in the proposition. We can write F (Q) =
L(Q′), where L/F is purely transcendental and Q′ is an anisotropic totally singular L-form of
dimension 3.

Let C ∈ W (F ) be such that B ∼ CK . In particular, B ≃ (CK)an. The extension L(Q′)/L

is excellent for bilinear forms ([27, Theorem 1]), hence there exists an L-bilinear form C ′ of
dimension 3 such that (CK)an ≃ C ′

K . Consequently, (C ⊥ C ′)L(Q′) ∼ 0. Since dimQ′ > 2, we
get detCL = detC ′, and thus CL ⊥ C ′ ∈ I2L. Consequently, we have

CL ⊥ C ′ + I3L ∈ I
2
(L(Q′)/L). (8.1)

Let ρ ∈ BP2(L) be such that Q′ is similar to a subform of ρ (i.e., Q̃′ is a quasi-Pfister neighbor
of ρ̃). By Proposition 3.11, we get CL ⊥ C ′ + I3L ∈ I

2
(L(ρ)/L). Hence there exists, by

Theorem 3.12, a form C ′′ ∈ BP2(L) such that

CL ⊥ C ′ ⊥ C ′′ ∈ I3L. (8.2)

Now since L/F is purely transcendental and F is infinite, we specialize the equation (8.2),
as we did in the proof of Proposition 1.3, to get

C ⊥ C ′
1 ⊥ C ′′

1 ∈ I3F,

for suitable F -bilinear forms C ′
1 and C ′′

1 such that dimC ′
1 = 3 and C ′′

1 ∈ BP2(F ). Let x ∈
DF (C

′
1). Since C ′′

1 ⊥ xC ′′
1 ∈ I3F , we deduce

C ⊥ C ′
1 ⊥ xC ′′

1 ∈ I3F.

Let D = (C ′
1 ⊥ xC ′′

1 )an. Since we chose x ∈ DF (C
′
1), we have dimD ≤ 5. Passing to K

and keeping in mind our initial hypothesis B ∼ CK , we get

B ⊥ DK ∈ I3K. (8.3)

If dimD = 3, then simply using the Hauptsatz on equation (8.3), we get that B ≃ DK , as
desired. So suppose dimD = 5.

Let detD = d, γ = D ⊥ ⟨d⟩b (an Albert bilinear form) and θ = B ⊥ ⟨d⟩b ∈ GBP2(K).
Then, we have:

θ ⊥ γK ∈ I3K. (8.4)

Passing to K(θ), we get by the Hauptsatz γK(θ) ∼ 0. Since θ is anisotropic, we have
ndegK(θ̃) = 4. It follows from Theorem 3.13 that dim(γK)an is divisible by 4. Hence, γK
is isotropic.

(1) Suppose that γ is isotropic. Then, γ ∼ ρ for some ρ ∈ GBP2(F ). Let y ∈ DF (ρ). Since
ρ ⊥ dyρ ∈ I3F , it follows from equation (8.4)

B ⊥ (⟨d⟩b ⊥ dyρ)K ∈ I3K.

Since λ := (⟨d⟩b ⊥ dyρ)an has dimension < 5, we conclude by the Hauptsatz that B ≃ λK .
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(2) Suppose that γ is anisotropic. Note that ndegF (γ̃) = {8, 16} because γ is anisotropic.
Moreover, we have ndegF (γ̃) ≥ ndegF (Q) > 8 because γK is isotropic (a consequence of
[10, Proposition 8.13]). Hence, ndegF (γ̃) = 16. Consequently, γK isotropic implies that Q is
similar to a subform of γ̃ [24, Theorem 1.1], which is not possible since dimQ > 6. □

Below we present an example showing that Proposition 8.2 fails in general when dimQ > 6

but ndegF (Q) = 8.

Example 8.3. Take F = F0(x, y, z) the rational function field in the variables x, y, z over a
field F0 of characteristic 2. Let η = ⟨x, y, xy, 1 + x, z, (1 + x)z⟩b ⊥ ⟨yz⟩b. Then, we have the
following:

(1) η is anisotropic over F , and ndegF (η̃) = 8.
(2) dim(ηF (η))an = 3 and (ηF (η))an is not defined over F .

Proof. (1) Using the standard isometry ⟨a, b⟩ ≃ ⟨a, a+ b⟩, we deduce

η̃ = ⟨x, y, xy, 1 + x, z, (1 + x)z⟩ ⊥ ⟨yz⟩
≃ ⟨x, y, xy, 1, z, xz⟩ ⊥ ⟨yz⟩
= ⟨⟨x, y⟩⟩ ⊥ z ⟨1, x, y⟩ .

Thus, η̃ is anisotropic over F and it is a quasi-Pfister neighbor of the quasi-Pfister form
⟨⟨x, y, z⟩⟩. The norm field of η̃ is F 2(x, y, z), hence ndegF (η̃) = 8.

(2) Let γ denote the Albert bilinear form ⟨x, y, xy, 1 + x, z, (1 + x)z⟩b. Since η̃ is a quasi-
Pfister neighbor of dimension 7, it follows that id(η̃F (η)) = 3 [10, Theorem 8.11(ii)]. But, by
[12, Proposition 1], we know 2iW (ηF (η)) ≥ id(ηF (η)), thus we obtain iW (ηK(η)) ≥ 2.

(i) Suppose iW (ηF (η)) = 2. Then, B := (ηF (η))an is an F (η)-bilinear form of dimension 3.
Suppose that B is defined over F . Then, there exists an F -bilinear form C of dimension 3 such
that B ≃ CF (η). In particular, (η ⊥ C)F (η) ∼ 0, that is

(γ ⊥ ⟨yz⟩b ⊥ C)F (η) ∼ 0.

Moreover, the condition ndegK(η̃) = 8 implies, by Theorem 3.13, that dim(γ ⊥ ⟨yz⟩b ⊥ C)an
is divisible by 8. The form γ ⊥ ⟨yz⟩b ⊥ C is not metabolic, otherwise we would get

γ ∼ ⟨yz⟩b ⊥ C

and thus γ would be isotropic over F . Hence, dim(γ ⊥ ⟨yz⟩b ⊥ C)an = 8, and we have by
Theorem 3.13

γ ∼ ⟨yz⟩b ⊥ C ⊥ π,

for some π ∈ GBP3(F ). Since dim γ = 6, we get iW (⟨yz⟩b ⊥ C ⊥ π) = 3. This is a
contradiction, since ⟨yz⟩b ⊥ C ∈ GBP2(F ) and π ∈ GBP3(F ), this Witt index must be a
power of 2 by [23, Theorem 3.7].

(ii) Suppose iW (ηF (η)) = 3. Then, comparing determinants yields ηF (η) ∼ (⟨yz⟩b)F (η).
Adding ⟨yz⟩b on both sides, we get:

γF (η) ∼ 0.

This is not possible by Theorem 3.13 because dim γ is not divisible by 8 = ndegF (η̃).
Hence, we deduce from the two cases (i) and (ii) that dim(ηF (η))an = 3 and (ηF (η))an is not

defined over F . □
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Proposition 8.4. Let Q be an anisotropic totally singular F -quadratic form of dimension > 8,
and K = F (Q). Let B ∈ GBP2(K) be anisotropic such that B ∈ Im(W (F ) −→ W (K)).
Then, we have:

(1) There exists ρ ∈ BP2(F ) such that B is similar to ρK .
(2) If B ∈ BP2(K), then B is defined over F .

Proof. We write B = xδ, where x ∈ K∗ and δ ∈ BP2K. Let C ∈ W (F ) be such that
B ∼ CK . We write K = L(Q′) such that the extension L/F is purely transcendental and
Q′ is an anisotropic L-bilinear form of dimension 3. Using the fact that K/L is excellent for
bilinear forms and following the same arguments as in the proof of Proposition 8.2, we prove
the existence of C ′

1 ∈ GBP2(F ) and C ′′
1 ∈ BP2(F ) such that

C ⊥ C ′
1 ⊥ yC ′′

1 ∈ I3F, (8.5)

where y ∈ DF (C
′
1). Let D = (C ′

1 ⊥ yC ′′
1 )an. We have D ∈ I2F of dimension ≤ 6. Extending

equation (8.5) to K and using B ∼ CK , we get

xδ ⊥ DK ∈ I3K. (8.6)

It follows from the Hauptsatz that DK(δ) ∼ 0. We have two cases:
(i) If dimD < 6, then necessary dimD = 4, otherwise by the Hauptsatz and equation (8.6)

δ would be isotropic. Hence, D ≃ zρ for some z ∈ F ∗ and ρ ∈ BP2(F ). Then, from equation
(8.6), we get δ ⊥ ρK ∈ I3K. By the Hauptsatz δ ≃ ρK .

(ii) If dimD = 6, then the condition DK(δ) ∼ 0 implies that ndegK(δ̃) = 4 divides dimD

(Theorem 3.13), which is not possible.
This concludes the proof of statement (1). This proof also shows that B is defined over F

when B ∈ BP2(K). □

9. PROOF OF PROPOSITION 1.6

Let s ≥ 1 be an integer, Q an anisotropic totally singular F -quadratic form of dimension
≥ 2, and K = F (Q). Suppose we have the following hypothesis: “Conjecture 1.1 is true
for nonsingular F (Q)-quadratic forms φ of dimension ≤ 2s when Q is a totally singular F -
quadratic form such that dimQ > 4s”.

Let B be an anisotropic K-bilinear form such that dimB ≤ s. Suppose dimQ > 4s and
B + In+1K ∈ Im(W (F )/In+1F −→ W (K)/In+1K) such that 2n > dimB. Our aim is to
prove that B is defined over F .

Let t be a variable over K, K̃ = K((t)), F̃ = F ((t)) and φ = B ⊗ [1, t−1]. The form φ

is anisotropic over K̃ and satisfies: φ + In+2
q F̃ ∈ Im(Wq(F̃ )/I

n+2
q F̃ −→ Wq(K̃)/In+2

q K̃),
dimφ ≤ 2s and 2n+1 > dimφ.

Since dimQ > 4s and 2n+1 > dimφ, we deduce from our hypothesis that φ ≃ ψK̃ for
some F̃ -quadratic form ψ. On the one hand, the first residue form of φ with respect to the
t-adic valuation of K̃ is B̃, the totally singular form associated to B. On the other hand, the
first residue form of ψK̃ is give by θK , where θ is the first residue form of ψ with respect to the
t-adic valuation of F̃ .

Since θ is defined over F , we deduce that B̃ represents a scalar c ∈ F ∗. Hence,B ≃ ⟨c⟩b ⊥ C

for some K-bilinear form C. The form C satisfies the same conditions as B, and thus we apply
to C the same argument as we did for B. We continue step by step until we prove that B is
defined over F .

23



REFERENCES

[1] R. Aravire, R. Baeza, Milnor’s K-Theory and quadratic forms over fields of characteristic two, Comm.
Algebra 20 (1992), 1087-1107.

[2] Aravire, R. and Baeza, R., Linkage of fields in characteristic 2., Comm. Algebra, 31 (2003), no. 1, 463-473.
[3] Aravire, R. and Jacob, B., H1(X, ν) of conics and Witt kernels in characteristic 2, Quadratic forms - algebra,

arithmetic, and geometry, 1-19, Contemp. Math., 493 (2009),Amer. Math. Soc., Providence RI, 1-19.
[4] R. Aravire, A. Laghribi, M. O’Ryan, Graded Witt kernels of the compositum of multiquadratic extensions

with the function fields of Pfister forms. J. Algebra 449 (2016), 635-659.
[5] Baeza, R., Quadratic Forms over Semilocal rings, Lect. Notes Maths., Vol. 655, Springer, Berlin 1978.
[6] Barry D., Chapman A., Laghribi A., The descent of biquaternion algebras in characteristic two, Israel J.

Math. 235 (2020), no. 1, 295-323.
[7] Elman R., Karpenko N. and Merkurjev A., The algebraic and geometric theory of quadratic forms, American

Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI,
2008.

[8] Elman R., Lam T. Y., Wadsworth A., Amenable fields and Pfister extensions, Conference on quadratic forms
1976. Queen’s pap. Pure Appl. Math. 46, 445-491 (1977).

[9] Hoffmann D.W., Diagonal forms of degree p in characteristic p, Algebraic and arithmetic theory of quadratic
forms, Contemp. Math., vol. 344, Amer. Math. Soc., Providence, RI, 2004, pp. 135-183.

[10] Hoffmann D. W. and Laghribi A., Quadratic forms and Pfister neighbors in characteristic 2, Trans. Amer.
Math. Soc., 356 (2004), no. 10, 4019-4053.

[11] Hoffmann D. W., Laghribi A., Isotropy of quadratic forms over the function field of a quadric in characteristic
2., J. Algebra, 295 (2006), no. 2, 362-386.

[12] Hoffmann D. W., Laghribi A., Similitude des multiples des formes d’Albert en caractéristique 2, Bull. Soc.
Math. France 141 (2013), 343-354.

[13] Hu Y., Laghribi A., Sun P., Chow Groups of Quadrics in Characteristic Two, J. Number Theory 253 (2023),
188-214.

[14] Izhboldin O. T., Vishik A., Quadratic forms with absolutely maximal splitting, Quadratic forms and their
applications (Dublin, 1999), Contemp. Math., vol. 272, Amer. Math. Soc., 2000, p. 103–125.

[15] Kahn, B., A descent problem for quadratic forms., Duke Math. J., 80 (1995), no. 1, 139-155.
[16] Kato K., Symmetric bilinear forms, quadratic forms and Milnor K-theory in characteristic two, Invent. Math.,

66 (1982), 493-510.
[17] Knebusch M., Specialization of quadratic and symmetric bilinear forms, and a norm theorem, Acta Arith., 24

(1973), 279-299, Collection of articles dedicated to Carl Ludwig Siegel on the occasion of his seventy-fifth
birthday, III.

[18] Laghribi A., Sur le problème de descente des formes quadratiques, Arch. Math. (Basel) 73 (1999), 18–24.
[19] Laghribi A., Certaines formes quadratiques de dimension au plus 6 et corps des fonctions en caractéristique

2., Israel J. Math., 129 (2002), 317-361.
[20] Laghribi A., Witt kernels of function field extensions in characteristic 2., J. Pure Appl. Algebra., 199 (2005),

no. 1-3, 167-182.
[21] Laghribi A., The norm theorem for totally singular quadratic forms, Rocky Mountain J. Math., 36 (2006),

no. 2, 575-592.
[22] Laghribi A., Sur le déploiement des formes bilinéaires en caractéristique 2., Pacific J. Math., 232 (2007), no.

1, 207-232.
[23] Laghribi A., Les formes bilinéaires et quadratiques bonnes de hauteur 2 en caractéristique 2., Math. Z., 269

(2011), no. 3-4, 671-685.
[24] Laghribi A., Isotropie d’une forme bilinéaire d’Albert sur le corps de fonctions d’une quadrique en

caractéristique 2., J. Algebra, 355 (2012), 1-8.
[25] Laghribi, A. and Mukhija D., The norm theorem for semisingular quadratic forms, J. Pure Appl. Algebra 225

(2021), no. 6, 106601, 13 pp.
[26] Laghribi, A. and Mukhija D., The behavior of singular quadratic forms under purely inseparable extensions,

J. Algebra 632 (2023) 31-61.

24



[27] Laghribi, A. and Mukhija D., The excellence of function field of conics, Preprint 2023 available at the link:
https://univ-artois.hal.science/hal-04176315

[28] Laghribi A. and Rehmann U., On bilinear forms of height 2 and degree 1 or 2 in characteristic 2, J. Algebra,
322 (2009), no. 1, 1-12.

[29] Mammone, P.; Tignol, J.-P.; Wadsworth, A., Fields of characteristic 2 with prescribed u-invariants, Math.
Ann., 290 (1991), no. 1, 109-128.

[30] Mammone, P.; Moresi R.; Wadsworth, A., u-invariants of fields of characteristic 2, Math. Z. 208 (1991),
335-347.

[31] Mammone P., Shapiro D., The Albert quadratic forms for an algebra of degree four, Proc. Amer. Math. Soc.
105, (1989), 525-530.

[32] Mukhija D., Two applications of the transfer for Kato-Milne cohomology over purely inseparable extensions,
Appendix to: R. Aravire, A. Laghribi, M. O’Ryan Transfer for Kato-Milne cohomology over purely
inseparable extensions, J. Pure Appl. Algebra 226 (2022), no.8, Paper No. 106930, 38 pp.

[33] Sah, C. H., Symmetric bilinear forms and quadratic forms, J. Algebra, 20 (1972), 144-160.

1 UNIV.ARTOIS, UR 2462, LABORATOIRE DE MATHÉMATIQUES DE LENS (LML), FACULTÉ DES SCIENCES

JEAN PERRIN, F-62300 LENS, FRANCE

Email address: 1ahmed.laghribi@univ-artois.fr

2 DEPARTMENT OF MATHEMATICAL AND STATISTICAL SCIENCES, UNIVERSITY OF ALBERTA, 632 CENTRAL

ACADEMIC BUILDING EDMONTON, AB T6G 2G1 CANADA

Email address: 2dmukhija@ualberta.ca

25

https://univ-artois.hal.science/hal-04176315

	1. Introduction
	2. Background
	3. Cohomological kernels
	4. Proof of Theorem 1.2: The case of types (1,0) and (1,1)
	5. Proof of Theorem 1.2: The case of type (2, 0)
	6. Proof of Theorem 1.2: The case of type (1, 2)
	7. Proof of Proposition 1.3
	8. Proof of Theorem 1.5
	9. Proof of Proposition 1.6
	References

