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ABSTRACT
This paper addresses the optimization of the truck to door assignment problem in cross-docks.
It defines a new form of horizontal collaboration between suppliers by sharing the platform’s
resources in order to enhance service level and reduce economical costs. Moreover, this study
proposes to solve the problem considering uncertainty in transfer time that is frequently observed
in real-world cross-docks. Due to imprecise arrival time of trucks, equipment breakdown, or
workload variation, etc, the actual transfer time tends to be shorter or longer than the prefixed one.
This uncertainty is modeled as a triangular fuzzy number then a Fuzzy Chance Programming
model has been proposed to solve the problem using possibilistic measures. The efficiency and
robustness of both (deterministic and fuzzy) proposedmodels are tested empirically and obtained
results confirm the positive effect of collaboration and uncertainty handling.

1. Introduction
Inspired by Silk Road supply chains (Ertek, 2011), cross-docking (CD) is one of the most growing trends in supply

chain management. It defines a distribution center that can be seen as a very high-speed warehouse: goods arrive
from suppliers (origins) to the terminal by inbound trucks. They are received, sorted, and then directly transferred
from inbound (receiving) docks to outbound (shipping) docks to be shipped to customers (destinations) onto outbound
trucks. This logistics strategy aims to reduce, if not eliminating, intermediate storage that cannot exceed 24h anyway.
These particularities, enable to reduce delivery times, transportation costs, order picking costs, and inventory holding
costs (Apte andViswanathan, 2000). Successful cross-docking experiences ofWal-Mart retail chain (Stalk et al., 1992),
UPS mailing company (Forger, 1995), and Toyota Automobile producer (Witt, 1998) have witnessed the success of
this logistics technique and have motivated more and more companies to adopt this practice.

However, making the move to a cross-dock distribution center requires companies to have a mature supply-chain
organization and an efficient Information Technology (IT) system. Besides, cross-docking involves many decisions
that cover different time scales and different stakes. Authors such as (Napolitano, 2000; Gue, 2007; Vogt, 2010) have
considered this problem and have provided practical guidelines for successful implementation and use of a cross-dock.
They have afforded key factors to improve services’ quality and to achieve economies of scale by considering decisions
relative to the cross-dock planning, designing, implementing, and running. These decisions can be classified according
to three different levels: strategic decisions concern essentially terminal location and layout design. Tactical decisions
are relative to cross-docking networks and operational decisions comprise vehicle routing, temporary storage, dock
door assignment, and truck scheduling problem (Van Belle et al., 2012).

In this work, we consider the operational cross-docking decisions that concern the optimization of short-term
decisions that are directly related to transit of goods from (unloading) inbound trucks to (loading) outbound trucks.
We focus especially on the optimization of the Truck to Door Assignment (TDA) which is one of the key issues in
cross-docking. It attempts to find an optimal assigning of each incoming inbound or outbound truck to the appropriate
inbound or outbound dock with regards to the cross-dock characteristics. These characteristics have been classified by
Van Belle et. al. (Van Belle et al., 2012) into three groups: physical characteristics (like the number of docks, shape,
internal transportation), operational characteristics (as the service mode, pre-emption) and flow characteristics (such as
arrival/departure time, product interchangeability, temporary storage). Solving this problem is known to be NP-Hard
(Chen and Song, 2009), it requires perfect synchronization of operational processes (receiving, sorting, and shipping
goods) taking into account internal as well as external parameters. Hence, a good TDA system greatly influences
the whole cross-docking performances. It may considerably enhance cross-dock service efficiency, improve delivery
quality, and reduce the transshipment processing costs and delays.
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Many research efforts have been conducted in this direction. Studied objectives in these works are commonly
the minimization of time-based objective functions, utilization-based objective functions, and cost-based objective
functions. The considered assumptions could be classified into six categories: costs and penalties-related assumptions,
facility-related assumptions, freight-related assumptions, layout-related assumptions, truck-related assumptions, and
finally, other assumptions (Ghomi, 2019). The majority of these studies have been performed under the assumption of
a deterministic environment that supposes a certain and perfect knowledge about the problem’s parameters. However,
this is unfortunately seldom in real-world cross-docking. Because of traffic congestion, engine failures, broken forklift,
and, many other contingencies the problem’s parameters such as arrival and departure time of trucks, or service time are
always subject to uncertainties. In these cases, applying a deterministic planned assignmentmay not be relevant and can
economically cause substantial losses. Hence, the necessity to deal with such unusual or unforeseen circumstances in
cross-docks as noticed for the first time by (Boysen and Fliedner, 2010). Few proposals have been developed to address
this need such as the studies (Yu and Egbelu, 2008; Acar et al., 2012) and more recently (Fatthi, 2016).

From a practical point of view, to bear with uncertainty and increase their ability to absorb risks, companies are
increasingly opting for collaboration. This allows generally a significant cost reduction and enables the achievement
of desired common objectives (enhance the service level, customer satisfaction, innovation, and sustainability). Some
studies have concurred that collaboration in cross-docks hasmany advantages at the strategical (Moutaoukil et al., 2013;
Makaci et al., 2017; Sitadewi et al., 2018), tactical (Badea et al., 2014; Vanovermeire et al., 2014) and operational
decision level (Serrano-Hernandez et al., 2018; Nataraj et al., 2019). However, none of the existing works in the
literature has considered the impact of collaboration on the truck to door assignment problem. The present paper tries
to address this issue considering both deterministic and uncertain environments. We first have proposed amathematical
model to consider collaboration in cross-docks and then we have adapted it to deal with uncertainty. After that, we have
illustrated through a well-elaborated experimental study the positive impact of both considerations on the total cost
efficiency. It is organized as follows: The next section is devoted to a review of TDA related literature. In Section 3 we
propose a clear description of the problem and we define a relative mathematical integer programming formulation.
Section 4 presents a Fuzzy Chance Constrained (FCC) adaptation of the mathematical model to deal with uncertain
transfer time. The picture is finally completed by an experimental study, presented in Section 5, to investigate the
efficiency and robustness of proposed models.

2. Related work
Over the last decade, a lot of attention has been paid to tackle cross-docking related decisions (such as cross-

dock location, vehicle routing, truck scheduling, goods transshipment,...) from different theoretical points of view.
Some literature reviews have been developed to offer an in-depth grasp of the problem, to compare and synthesize
prior research works. Among the most frequently cited, the survey of Boysen and Fliedner (Boysen and Fliedner,
2010) performed in 2010 where the authors have addressed the question of deterministic truck scheduling optimization
programming and have classified studied works using the tuple notation for machine scheduling (Graham et al., 1979).
Besides, in their study, the authors have raised the need for further research and have identified the most relevant
issues related to the implementation of real-world cross-docking applications. Agustina et al. (Agustina et al., 2010)
have considered a more global view of cross-docking mathematical models and have classified them based on their
decision levels (strategic, tactical, or operational). Stephan et al. (Stephan and Boysen, 2011) have proposed a different
classification scheme for structuring the cross-dock applications according to the location in the distribution network,
the technical support of inner cross-dock transport, and whether or not value-adding services are provided. The authors
have detailed the decision problem structure defined in (Boysen and Fliedner, 2010) and have suggested integrating
the cross-docking concept to other business functions.

A bit later, Van Belle et al. (Van Belle et al., 2012) have conducted a more exhaustive study on cross-docking
problems. They have studied the physical, operational, and flow characteristics of a cross-dock terminal to distinguish
between the various cross-docking types and techniques. This categorization has been used to classify existing works
according to the decision problem level: strategical, tactical, and operational. Then, the authors have made suggestions
to improve and extend the cross-docking research field. Ladier and Alpan (Ladier and Alpan, 2016) have concentrated
their efforts to highlight the shortcomings between literature and industry practice captured through cross-docking
platform visits and interviews with their managers. They identify the main issues and challenges met in real-world
cross-docking operations. More recently, a new survey on cross-docking (Theophilus et al., 2019) has been published
in 2019 to fill the gap of literature from different standpoints. It identifies the new cross-docking trends with a particular
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focus on the truck scheduling problem. The studied works have been categorized into four major classes: general CD
truck scheduling, multi-objective truck scheduling, uncertainty modeling truck scheduling, and miscellaneous works.
Then, the evaluation has been performed with regards to the major attributes of cross-docking operations defined in
(Boysen and Fliedner, 2010).

All these studies agree that Truck Scheduling (TS) and Truck to Door Assignment (TDA) represent the main ac-
tivities in a cross-docking terminal and are the most challenging operational problems. These optimization issues have
been widely studied in the literature from different viewpoints. The contributions differ according to the cross-dock
characteristics (shape, number of doors, intermediate storage, service mode,...) and also according to the considered
objectives, assumptions, and performance measures. However, it’s rather difficult to provide a clear classification of
these works and explicitly clarify the limits between both problems. As stated in (Ladier and Alpan, 2014), different
terms (such as door assignment, truck dock assignment, dock door assignment, truck scheduling, cross-dock schedul-
ing, truck sequencing ....) could be used in different papers to qualify the same issue and there are no standard names to
designate distinctively these problem variants. In our sense, "Truck to Door Assignment" (TDA) consists of assigning
a set of trucks present at a given time to a set of available dock doors. This problem is generally restricted to a single
time moment and considers only the spatial dimension to provide the best assignment. Truck Scheduling (TS) adds
a time dimension to the Truck to Door Assignment where the cross-dock manager has to assign incoming trucks to
available docks over time.

In this work, we focus on Truck to Door Assignment Problem that has been formulated for the first time by Peck
(Peck, 1983). The author has developed a greedy heuristic approach for assigning inbound and outbound trailers to
the dock doors in the objective to minimize the total shipment transfer time from inbound to outbound docks. Tsui
et al. (Tsui and Chang, 1990, 1992) have tackled the minimization of total traveled distance within the terminal and
have proposed a bilinear integer programming to model the problem and a branch and bound algorithm to solve it.
Their proposed formulation is nowadays by far the most cited model for cross-dock assignment. Besides, in these
works, the authors have proved that the problem at hand is a special case of the Quadratic Assignment Problem (QAP),
and thereby like all QAP problems, this is an NP-complete problem. In his thesis dissertation (Brown, 2003), Brown
has considered a case study to investigate the trailers to dock doors assignment and sequencing of the shipments’
unloading at hubs. The used performance measures are bottleneck time, total labor time, and total travel distance.
The tests have been performed considering two different hub layouts (semi-permanent and dynamic) and five freight
sequencing approaches (trailer-at-a-time, trailer-at-a-time with offloading, nearest neighbor within a group, nearest
neighbor within a shared group, and nearest neighbor).

Later, Oh et al. (Oh et al., 2006) have addressed the problem of assigning destinations to shipping doors in a Korean
mail distribution center. In such platforms, clustering destinations into groups and defining the optimal number of these
groups is mandatory to ensure the proper activity of the center. To this end, the authors have proposed a nonlinear
integer program tomodel the problem and have developed a decomposition heuristics and genetic algorithm to solve the
problem with the objective of minimizing the travel distance of shipments. Bozer et al. (Bozer and Carlo, 2008) have
proposed a linear mixed-integer program formulation for the general rectilinear-quadratic assignment problem and have
developed a Simulated Annealing (SA)-based heuristic for the optimization of inbound and outbound door assignment
in less-than-truckload cross-docks. The effectiveness of this method has been verified through experiments performed
on data sets from Con-way company. Cohen et al. (Cohen and Keren, 2009) have considered capacity constraints
on the weight of each truck and have suggested a new mathematical formulation and a new heuristic approach for
assigning cross-dock doors to trailers.

The majority of the previous literature has been proposed under the assumption stating that an equal number of
docks and destinations can easily be ensured (Zenker and Boysen, 2018). Lim et al. (Lim et al., 2006a,b) have consid-
ered such restrictions and have proposed a more realistic version of the problem, with a number of trucks that exceeds
the number of docks, for a given time horizon instead of a single moment. They have formulated an over-constrained
problem version with limited capacity and pre-fixed processing time windows. They have proposed a MIP model
formalization of the problem aiming to minimize the total shipping distance between docks and have performed tabu
search and genetic algorithm to solve it. In the same direction, Miao et al. (Miao et al., 2009) have resumed the
mathematical representation of the problem and have considered the same heuristics to minimize the operational cost
of the cargo shipment and the number of unfulfilled shipments. Alpan et al. (Alpan et al., 2011) have studied the
same problem in a cross-dock with multiple dock doors and have proposed its resolution using a graph-based dynamic
programming approach. The objective has been also the minimization of the total cost (handling cost + penalty cost).
Later, Miao et al. (Miao et al., 2014) have adapted the formulation to a more realistic case and have distinguished
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between inbound docks and trucks from outbound docks and trucks.
Another strand of the literature concerns the generalized assignment problem in cross-docking systems. Zhu et

al. (Zhu et al., 2009) have addressed the issue as a Generalized Quadratic 3-dimensional model aiming to optimize
the traveled distance between inbound and outbound docks. Based on this model, Guignard et al. (Guignard et al.,
2012) have proposed a local search algorithm, and the Convex Hull Relaxation (CH) meta-heuristic to optimize the
assignment of inbound and outbound dock doors. More recently, Nassief et al. (Nassief et al., 2016) have studied
the problem with the objective of minimizing the total material handling cost. They have defined a new linear MIP
formalism based on Zhu et al. (Zhu et al., 2009) model and have proposed a Lagrangean relaxation (LR) and local
search to solve the problem. Comparing with Guignard et al. (Guignard et al., 2012) experimental results, performed
tests confirm the efficiency of the proposed solution. In 2018, the same authors (Nassief et al., 2018), have presented
two new mixed-integer programming for door assignment and have compared them with previously existing ones. The
used solution methods have been column generation and tabu search. Finally, Gelareh et al. (Gelareh et al., 2020)
have performed a more extensive empirical comparative study considering 11 MIP formulations for the assignment
of inbound and outbound dock doors. Eight of these models have been introduced for the first time and have been
compared with Nassief et al. models to prove their equivalence under some integrality requirements.

Studies presented above as almost all studies on the truck to door assignment have been performed assuming perfect
knowledge about the problem. Variations in available resources, workload, or possible disruptions in the cross-docking
process have been often neglected. Yu et al. (Yu and Egbelu, 2008) were the pioneers to consider uncertainty in such
optimization problems. In their work, authors have supposed that uncertainty may concern the number of inbound
trailers, their arrival times, their contents, or the time needed to unload them. They have developed an on-line policy
for inbound trailers door allocations aiming tominimize the expectedman-hours for goods consolidating. Besides, they
have proposed a stochastic linear program to model the destination door allocation and two heuristic methods (namely
the local search and genetic algorithm) to solve the problem. Thereafter, just a few proposals have been performed in
this sense. We may cite Acar et al. (Acar et al., 2012) where the authors have considered uncertainty on truck arrival
and departure time as well as freight flow. They have introduced a new mixed-integer quadratic formulation for the
problem and have proposed to solve it using a Door Assignment Heuristic (DAH) that distributes the idle times at
doors between trailer service times to absorb uncertainty. Fattahi et al. (Fatthi, 2016) have developed a mixed-integer
programming model for a real-time truck-to-door assignment and scheduling problem in the inbound phase with the
objective to minimize the total service time of trucks. They have considered a dynamic arrival time of trucks and
an estimated value of unloading time (see (Walha et al., 2014) and (Ardakani and Fei, 2020) for further details on
cross-docking under uncertainty).

As uncertainty handling, collaborative supply chains is one of the latest logistics trends in the literature. In perpet-
ual search for evolution and improvement, nowadays several companies have opted for this solution to meet customer
requirements and confront economic, environmental, and social challenges. Researches conducted in this area dis-
tinguish between two forms of collaboration: vertical or horizontal collaboration. The former defines collaboration
between logistic entities from two or more different levels of the same supply chain (exp. customers and suppliers).
The latter refers to the collaboration between actors from the same layer of the supply chain (exp. competitors for
different logistic chains) (Mrabti et al., 2019). Collaboration implies the sharing of information, resources but also
risks and enables collaborators to satisfy and optimize their common objectives. This aspect can take place at sev-
eral stages of the chain and with different levels of interaction (Gonzalez-Feliu and Morana, 2011). It may concern
several logistic activities such as network design (Moutaoukil et al., 2013; Makaci et al., 2017) and partner selection
(Sitadewi et al., 2018) for the strategical decision level. The allocation of costs and emissions of CO2 (Badea et al.,
2014; Vanovermeire et al., 2014) for tactical level and transport planning (Serrano-Hernandez et al., 2018; Nataraj
et al., 2019) for the operational decision level (Allaoui et al., 2019). However, to the best of our knowledge, no work
considers collaboration when dealing with the optimization of the truck to door assignment as illustrated in Table 1.
This is the major contribution of this paper that introduces a new form of shared cross-docks and studies its impact
on service efficiency and economic costs under the assumption of a fully known environment and then considering
uncertainty in transfer time.

3. Problem statement and mathematical formulation
The objective of this paper is the optimization of trucks assignment to multiple inbound and outbound dock doors

under time windows constraints. This matter has been previously studied by (Lim et al., 2006a,b).
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Context Proposed model Author(s) (year) Objective(s) Solution method

Non-Collaborative

D

Peck (1983) TT Heuristic
Tsui and Chang (1990, 1992) TD Exact method
Brown (2003) BT, LT, TD Heuristic
Oh et al. (2006) TD Meta-heuristic
Lim et al. (2006a,b) TD Meta-heuristic
Bozer and Carlo (2008) TD Meta-heuristic
Cohen and Keren (2009) TD Heuristic
Miao et al. (2009) TC Meta-heuristic
Zhu et al. (2009) TC Heuristic
Alpan et al. (2011) TC Exact method
Guignard et al. (2012) TD Meta-heuristic
Miao et al. (2014) TC Meta-heuristic
Nassief et al. (2016) TC Meta-heuristic
Fatthi (2016) TT Simulation
Nassief et al. (2018) TC Meta-heuristic
Gelareh et al. (2020) TC Exact method
Yu and Egbelu (2008) TT Meta-heuristic
Acar et al. (2012) TT Heuristic

Collaborative F This paper TC Exact method

TT = transfer time, TD = traveled distance, BT = bottleneck time, LT = labor time, TC = Total (economic) cost
D = deterministic, F = fuzzy

Table 1
Overview of reviewed papers on the truck to door assignment

After that, Miao et al. (Miao et al., 2009, 2014) have considered the same problem with the objective to minimize
the total handling cost (operational cost + penalty cost). The operational cost depends on the transfer time of pallets
from inbound docks to outbound docks. This transfer time varies essentially according to the cross-dock shape and the
distance between inbound and outbound docks: the greater is the distance, the higher is the unit cost. The penalties are
extra costs for unfulfilled shipments: when it is not possible to serve the client, he receives a payment compensation
relative to uninsured order. This is due to a no assignment of the inbound or the outbound truck or a reduced time
window that does not allow to make the transfer. These trucks are later rescheduled to complete their job.

Our proposal tries to elaborate a new horizontal form of collaboration between suppliers by extending Miao et al.
model (Miao et al., 2014) to a "shared cross-dock". We attempt first to show the positive impact of collaboration to
make cost-saving and then in the next section, we will adapt the model to handle uncertainty. We assume that the
platform, illustrated by Figure 1, is used by m suppliers (or any involved supply chain actor), rather than a single one
and each of them possesses at least one inbound dock. However, since they have the same customers we suppose that
outbound docks are commonly shared. Also, the collaboration allows sharing of inbound docks between suppliers but
this engenders extra costs relative to docks’ rental fees: when a new inbound truck nI of supplier s is to be docked, it
is assigned to a dock k belonging to s if possible otherwise it is assigned to any other available dock for an additional
rental cost. Nevertheless, these additional costs are generally absorbed by the generated saving costs of collaboration.
Actually, the cross-docking system is supposed to provide the optimal assignment and ordering that generates less
global costs. Sometimes, even if truck i1 belonging to m1 and truck i2 belonging to m2 are candidates for the same
available inbound dock k1 belonging to m1, it may be more advantageous to assign i2 to this dock door in order to
minimize the total cost of penalties.
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Inbound area

Sorting area

Outbound area

100% shared aera

Dock of supplier 1

Dock of supplier 2

Truck of supplier 1

Truck of supplier 2

• At a given time t, there are 3 inbound trucks: two
from supplier 1 and one from supplier 2.

• Truck 1 (resp. Truck 2) is assigned to Dock 1 (resp.
Dock 2) belonging to the same supplier. Truck 3
belonging to Supplier 1 is assigned to Dock 3
belonging to Supplier 2. This is possible under a
rental cost paid from Supplier 1 to Supplier 2.

• The incoming goods from suppliers 1 and 2 are
sorted and temporarily stocked in the sorting
area. Then, they are transferred to the outbound
trucks delivering common customers, docked at
the outbound docks. The sorting resources and
outbound area are 100% shared without rental
costs.

Figure 1: Illustration of shared a cross-dock

The mathematical integer programming model for the given problem can be formulated as follows:
• Variables and parameters

S: set of suppliers, |S| = s;
NI : set of inbound trucks arriving at the cross-dock, |NI

| = nI ;
MI : set of inbound docks available in the cross-dock, |MI

| = mI , where nI > mI ;
NO: set of outbound trucks departing from the cross-dock, |NO

| = nO;
MO: set of outbound docks available in the cross-dock, |MO

| = mO, where nO > mO;
aIi : arrival time of inbound truck i (1 ≤ i ≤ nI );
dIi : departure time of inbound truck i (1 ≤ i ≤ nI );
aOj : arrival time of outbound truck j (1 ≤ j ≤ nO);
dOj : departure time of outbound truck j (1 ≤ j ≤ nO);
qi,j : number of pallets transferred from inbound truck i to outbound truck j (1 ≤ i ≤ nI , 1 ≤ j ≤ nO);
tk,l: operational time per pallet from inbound dock k to outbound dock l (1 ≤ k ≤ mI , 1 ≤ l ≤ mO);
ck,l: operational cost per pallet from inbound dock k to outbound dock l (1 ≤ k ≤ mI , 1 ≤ l ≤ mO);
pi,j : penalty cost per pallet from inbound truck i to outbound truck j (1 ≤ i ≤ nI , 1 ≤ j ≤ nO);
fm,i: indicates that inbound truck i belongs to supplier m (1 ≤ m ≤ s, 1 ≤ i ≤ nI );
gm,k: indicates that inbound dock k belongs to supplier m ( 1 ≤ m ≤ s, 1 ≤ k ≤ mI );
ℎm,k: rental fees per unit time for inbound dock k from supplier m (1 ≤ m ≤ s, 1 ≤ k ≤ mI ,
if fm,i = gm,k = 1, then ℎm,k = 0);
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We also define a pre-processing parameters xIii′ and xOjj′ that define the arriving order between inbound and
outbound trucks respectively. It takes 1 if ai′ ≥ di (resp. aj′ ≥ dj ) i.e. the inbound (resp. outbound) truck i′
(resp. j′) arrives after the departure of inbound (resp. outbound) truck i (resp. j); 0 otherwise.

• Decision variables

yIi,k =
{

1, if inbound truck i is assigned to inbound dock k
0, otℎerwise

yOj,l =
{

1, if outbound truck j is assigned to outbound dock l
0, otℎerwise

zi,j,k,l =
{

1, if qi,j pallets are transferred from inbound dock k to outbound dock l
0, otℎerwise

vi,m,k =
⎧

⎪

⎨

⎪

⎩

1, if inbound truck i belonging to m is assigned to
inbound dock k not belonging to m
0, otℎerwise

• Objective function

Minimize ∶ Operational cost + Penalty cost + Rental cost
where:

Operational cost =
mI
∑

k=1

mO
∑

l=1

nI
∑

i=1

nO
∑

j=1
ck,l qi,j zi,j,k,l

Penalty cost =
nI
∑

i=1

nO
∑

j=1
qi,j pi,j ( 1 −

mI
∑

k=1

mO
∑

l=1
zi,j,k,l )

Rental cost =
a
∑

m=1

mI
∑

k=1

nI
∑

i=1
vi,m,k ℎm,k (dIi − aIi )

• Constraints

mI
∑

k=1
yIi,k ≤ 1, ∀i ∈ NI (1)

mO
∑

l=1
yOj,l ≤ 1, ∀i ∈ NO (2)

yIi,k + y
I
i′,k − 1 ≤ 2 (xIi,i′ + x

I
i′,i), ∀k ∈MI ,∀i, i′ ∈ NI , i ≠ i′ (3)

yOj,l + y
O
j′,l − 1 ≤ 2 (xOj,j′ + x

O
j′,j), ∀l ∈MO,∀j, j′ ∈ NO, j ≠ j′ (4)

yIi,k + y
O
j,l ≤ 2 zi,j,k,l, ∀i ∈ NI ,∀i ∈ NO,∀k ∈MI ,∀l ∈MO (5)

(dOj − aIi − (tk,l ∗ qi,j)) zi,j,k,l ≥ 0,∀i ∈ NI , ∀i ∈ NO,∀k ∈MI ,∀l ∈MO (6)
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vi,m,k = yIi,k ∗ |fm,i − gm,k|, ∀i ∈ NI ,∀m ∈ S,∀k ∈MI (7)

yIi,k ∈ {0, 1}, yOj,l ∈ {0, 1}, zi,j,k,l ∈ {0, 1}, vi,m,k ∈ {0, 1},∀i ∈ NI ,∀j ∈ NO,∀k ∈MI ,∀l ∈MO, (8)
∀m ∈ S

The objective of this mathematical model is to find an optimal assignment of trucks in a shared cross-dock that
minimizes simultaneously the operational cost of the cargo shipments, the total number of unfulfilled shipments and
the rental cost of docks loaning. These objectives are combined into one term, namely the total cost. Hence, the
objective function is defined by the sum of the Operationalcost, the Penaltycost, and the Rentalcost. The first one isrelative to the handling cost of pallets from inbound to outbound docks. The second corresponds to the sum of payment
compensations due to unfulfilled transshipment. The last is a new proposed cost paid by any supplier using a dock that
does not belong to him. Thus, the minimization of the total cost comes back to the minimization of each of the three
generated costs. These costs are all expressed in the same monetary unit (in instance euro) and computed on the basis
of the predefined unit costs, namely ck,l, pi,j and ℎm,k. As shown in the experimental study, the proportion relating
each of these costs may change depending on the problem instance. However, as a general rule we have the operational
costs > penalty costs > rental costs.

Constraints (1) and (2) impose that each inbound or outbound truck is assigned at most to one dock. Constraints (3)
and (4) ensure that at a given time, two different trucks can not be assigned simultaneously to the same dock. Constraint
(5) specifies the decision variable z and the logical relationship between it and yI and yO. Constraint (6) guarantees
that the transfer process between inbound truck i and inbound truck j should be performed within the arrival of i and
departure of j. Finally, we added constraint (7) to define the variable v that represents if truck i owned bym is assigned
to a dock belonging or not to the same supplier.

This model resumes almost the same formulation and notations as in (Miao et al., 2014). We have performed
some modifications and have adapted the model to deal with collaboration. Miao et al. consider the same transfer
time between inbound dock k and outbound dock l for any goods’ quantity in their papers (Miao et al., 2009, 2014).
However, in our case, we suppose that it is more appropriate to define a unit transfer time tk,l per pallet for variablequantity (qij) of transferred goods. This modification has engendered the adjustment of constraint (7) allowing the
verification that the time window between the arrival of the inbound truck i and the departure of the outbound truck j
is sufficient for handling the ordered goods. Moreover, to deal with shared cross-dock, new variables, and parameters
have been added such S the set of suppliers, fm,i that indicates if truck i belongs or not to supplier m, gm,k that definesif dock k belongs or not to supplier m and ℎm,k relative to the rental fees of dock k that have to be paid by supplier m.
Besides, it was necessary to propose a new variable decision vi,m,k that receives 1 if a truck i belonging tom is assigned
to a dock k not belonging to the same supplier and 0 otherwise. This variable is indispensable for the computation of
the rental cost.

Finally, in order to illustrate the impact of collaboration, we assume that outbound docks as well as internal re-
sources (materials, workforce, ...) are totally shared in the platform. But, for inbound docks, we define two different
cases. The first one is detailed above ensures inbound docks sharing for a rental cost between suppliers. In the sec-
ond one, each supplier uses only its own inbound docks. This scenario is formulated using the following additional
constraint:

s
∑

m=1
vi,m,k ≤ 0, ∀i ∈ NI ,∀k ∈MI (9)

The constraint (9) forces each supplier to use only its own docks. An inbound truck i belonging to supplier m can
be assigned only to a dock k belonging to the same supplier.

4. Fuzzy Chance Constrained Optimization (FCCO) for truck assignment
Even if cross-docking allows companies to enhance their shipping process by saving time and costs, this process

inevitably generates costs. The amount of these costs depends essentially on the structure of the cross-dock platform
(number of inbound and outbound docks, capacity, distance between docks, available human and material resources,
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etc.) and the characteristics of goods’ flow to be transferred (quantity of goods, number of inbound and outbound
trucks,...). An efficient truck assignment may considerably help to minimize generated fees. The efficiency of such
a strategy is very sensitive to external and/or internal changes that may occur. Actually, in real-world problems, no
one can predict with certainty neither the availability of resources ( equipment breakdown, the absence of staff, ...)
nor the exact arrival time of inbound and/or outbound trucks due to unforeseen circumstances (road traffic, weather
conditions,...). In our case, we focus on internal operations such as loading, unloading, sorting, and labeling. In
practice, these operations are typically subject to perturbations and due to an incident, the service may be slowed down
or even interrupted.

Given such uncertainties, deterministic optimization reaches its limits and the planned solution becomes obsolete.
To better address such circumstances, one may consider stochastic optimization. However, the use of the latter imposes
that the knowledge about the problem is rich enough to be modeled using a large number of probabilistic scenarios.
When available information defines only imprecise or vague values and cannot be quantified in a probabilistic way the
fuzzy set theory (Zadeh, 1965) and fuzzy mathematical programming (FMP) (Tanaka et al., 1973) are natural alterna-
tives to consider. This representation form is currently in vogue in the field of logistics and supply chain management.
It is used to model uncertainties associated with cross-docking location planning (Mousavi et al., 2019), production
planning (Darvishi et al., 2020), vehicle-routing (Baniamerian et al., 2019), and many other cross-docking problems,
embedded with uncertainty. In these models, fuzziness may arise in the parameters of the objective function and/or
constraints. Or, it may be related to the flexibility of constraints or predefined target values in the objective function
(Inuiguchi and Ramık, 2000).

In our study, we consider an uncertain transfer time parameter modeled using a triangular form of fuzzy numbers.
Then, based on the possibility theory (Dubois and Prade, 2012), we propose a Fuzzy Chance Constrained programming
to carry out the defuzzification of the fuzzy model and generate its crisp and linear reformulation that can be effectively
solved by an exact solution algorithm. Specifically, We express uncertain transfer time by allowing a negative and
positive variation of 20 % of initially established transfer time. Instead of a single (crisp) value, this variable will be
defined as a triangular fuzzy number denoted by ∼

tk,l. It is characterized by a triplet (tk,l, t̂k,l, tk,l) where t̂k,l defines the
average transfer time, tk,l and tk,l represent, respectively, the minimal (̂tk,l − 20 % t̂k,l) and maximal (̂tk,l + 20 % t̂k,l)
values of ∼

tk,l. Hence, the definition of a new Fuzzy Truck to Door Assignment (FTDA) problem. To model this
uncertainty, we have adjusted the mathematical representation, detailed in Section 3 in order to encompass uncertainty.
More precisely, the modification concerns, constraint (6) that refer to the time needed to transfer goods from inbound
dock k to outbound dock l with regards to the arrival time of inbound trucks and departure of outbound ones. This
constraint has been defined in the crisp model as follows:

(dOj − aIi − (tk,l ∗ qi,j)) zi,j,k,l ≥ 0 (10)
To represent the transfer time’s fuzziness, constraints (6 ) can be redefined in such terms:

(
∼
tk,l ∗ qi,j) ∗ zi,j,k,l

∼
≤ (dOj − aIi ) (11)

For notation convenience, we designate by Twi,j the time window (dOj − aIi ) between the arrival of inbound truck
i and departure of outbound truck j and we denote by (

∼
tk,l ∗ qi,j) ∗ zi,j,k,l the needed transfer time to transfer goods

from inbound truck i docked at k to outbound truck j docked at l by ∼
T ti,j,k,l. Then, we obtain:

∼
T ti,j,k,l

∼
≤ Twi,j (12)

where ∼
T ti,j,k,l, by definition of tkl, can be denoted by (T ti,j,k,l, T̂ ti,j,k,l, T ti,j,k,l), and it is equal to the triplet

{(tk,l ∗ qi,j) ∗ zi,j,k,l}, {(̂tk,l ∗ qi,j) ∗ zi,j,k,l}, {(tk,l ∗ qi,j) ∗ zi,j,k,l}.According to Farrokh et al. (Farrokh et al., 2017), the possibility theory is very appropriate to handle constraints
with fuzzy parameters. Hence, the use of possibilistic chance constrained programming to solve the problem. The
satisfaction of such constraints can be formulated using the possibility and necessity measures (Dubois and Prade,
2012). Formally, Constraints (12) can be defined as follows:
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Pos ( ෪𝑻𝒕 ≤ 𝑻𝒘 )

Nec (෫𝑻𝒕 ≤ 𝑻𝒘 )

𝑻𝒕 ෢𝑻𝒕 𝑻𝒕

Possibility and necessity measures relative to Constraints 12

Pos (
∼
T ti,j,k,l ≤ Twi,j) =

⎧

⎪

⎨

⎪

⎩

1, T̂ ti,j,k,l ≤ Twi,j
Twi,j−T ti,j,k,l
T̂ ti,j,k,l−T ti,j,k,l

, T ti,j,k,l ≤ Twi,j < T̂ ti,j,k,l
0, Twi,j ≤ T ti,j,k,l

Nec (
∼
T ti,j,k,l ≤ Twi,j) =

⎧

⎪

⎨

⎪

⎩

1, T ti,j,k,l ≤ Twi,j
Twi,j−T̂ ti,j,k,l
T ti,j,k,l−T̂ ti,j,k,l

, T̂ ti,j,k,l ≤ Twi,j < T ti,j,k,l
0, Twi,j ≤ T̂ ti,j,k,l

Therefore, the satisfaction of Constraints 12 depends on the values of the possibility and necessity measure. The
possibility measure evaluates to what extent the satisfaction of the constraints is consistent with the knowledge (the
event is possible). Oppositely, the necessity measure evaluates at which level the constraints satisfaction is certain (the
event is compulsory). Specifically, the satisfaction of Constraints 12 can be expressed as follows:

Pos (
∼
T ti,j,k,l ≤ Twi,j) ≥ �

Nec (
∼
T ti,j,k,l ≤ Twi,j) ≥ �

These inequalities imply that the possibility (resp. necessity) measure corresponding to the satisfaction of the
constraints must be at least equal to the threshold � (resp. �). These values; � and �; are stated in a linearly ordered
scale, exemplified by the unit interval [0, 1]. They are chosen by the decision-maker and implicitly express his attitude
towards risk. Generally, a low possibility degree � describes an adventurous, risk-taking (optimistic) attitude and
allows certain flexibility of the constraints satisfaction. However, a high necessity degree � implies hard constraints
and reflects a risk-averse (pessimistic) attitude of the decision-maker. It should be noted that if the satisfaction of the
constraints is certain to some degree � it is necessary totally possible (� = 1). According to the choice of values � and
� we can distinguish 5 possible combinations:

1. � = 0 and � = 0, For this case, we obtain:

Pos (
∼
T ti,j,k,l ≤ Twi,j) ≥ 0

Nec (
∼
T ti,j,k,l ≤ Twi,j) ≥ 0

Since possibility and necessity degrees are between 0 and 1, these two inequalities are always satisfied. The
results in this case are similar to the solution provided for the crisp model.

2. 0 < � < 1 and � = 0, Hence, we have:

Pos (
∼
T ti,j,k,l ≤ Twi,j) ≥ �

⇒ � T̂ ti,j,k,l + (1 − �) T ti,j,k,l ≤ Twi,j

Nec (
∼
T ti,j,k,l ≤ Twi,j) ≥ 0

⇒ T̂ ti,j,k,l ≤ Twi,j

The necessity measure is always satisfied for any � in [0,1]. We just need to check the satisfaction of the con-
straints with regards to the possibility measure.
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3. � = 1 and � = 0, This case implies that:

Pos (
∼
T ti,j,k,l ≤ Twi,j) = 1

⇒ T̂ ti,j,k,l ≤ Twi,j

Nec (
∼
T ti,j,k,l ≤ Twi,j) ≥ 0

⇒ T̂ ti,j,k,l ≤ Twi,j

This always holds for any � in [0,1]. We have to check the satisfaction of the constraints only for the possibility
measure.

4. � = 1 and 0 < � < 1, This means that:

Pos (
∼
T ti,j,k,l ≤ Twi,j) = 1

⇒ T̂ ti,j,k,l ≤ Twi,j

Nec (
∼
T ti,j,k,l ≤ Twi,j) ≥ �

⇒ � T ti,j,k,l + (1 − �) T̂ ti,j,k,l ≤ Twi,j

The constraints is totally possible and certain with a necessity degree equals to �. Its satisfaction is insured by
the satisfaction of the necessity measure.

5. � = 1 and � = 1, This implies that:

Pos (
∼
T ti,j,k,l ≤ Twi,j) = 1

⇒ T̂ ti,j,k,l ≤ Twi,j

Nec (
∼
T ti,j,k,l ≤ Twi,j) = 1

⇒ T ti,j,k,l ≤ Twi,j

This is the most challenging case. To satisfy the constraints T ti,j,k,l (i.e. the worst scenario happens) must be
inferior to Twi,j .

These different combinations show that the value of the transfer time considered for fuzzy planning depends es-
sentially on the definition of � and �. Instead of the prefixed average value tkl, this parameter will be defined in the
interval [tk,l, tk,l].

5. Experimental study
In this section, we attempt to test the efficiency and the robustness of the proposed models and compare the fuzzy

model with its deterministic version by considering the presence or absence of collaboration. On one hand, our exper-
iments aim to evaluate the effect of collaboration in the context of fully known information: is collaboration profitable
for suppliers? does it allow saving costs? Without any doubt, sharing a cross-dock significantly reduces installation
costs. However, in this work, we want to show that collaborating may offer better service and may generate less oper-
ational process costs. On the other hand, we address the question of the optimization of the truck to door assignment
under uncertainty, taking into account variability in transfer time. In fact, we believe that planning by considering un-
certainty allows a better managing of unforeseen changes and thus reduces economical losses. Thereby, we study the
robustness of the fuzzy model compared to its deterministic version for collaborative or non-collaborative suppliers.
This gives rise to four different configurations as illustrated in Figure 2.

First Author et al.: Preprint submitted to Elsevier Page 12 of 24



TDA in shared cross-docks

Uncertainty

Collaboration

Collaboration

Uncertainty

Collaboration

Uncertainty

Collaboration

Uncertainty

Collaboration

Uncertainty

Config. I Config. II

Config. III Config. IV

With

Without

Figure 2: The different experimental configurations

5.1. Experimental setting and data generation
The experiments have been complimented on Intel(R) Core(TM) Duo i5-6300CPU 2.4 GHz, 2.5 GHz processor, 8

Gb RAMmemory and underWindows 10 operating systemwith 64 bits architecture. They have been solved usingMIP
on the IBM ILOG CPLEX solver v.12.8. Our benchmark has been generated as follows: We resume the same cross-
dock layout as in (Miao et al., 2014) with two sets of terminals where inbound and outbound docks are symmetrically
located. The distance between docks has been computed using theManhattanmetric (assuming 1 unit between adjacent
docks and 3 units for parallel ones). The remaining parameters of the model have been generated using the protocol
defined by the same authors, except for the transfer time that has been generated per pallet and not globally. Its value
has been defined by tkl = ckl∕10.Besides, since we are dealing with shared cross-docks it was necessary to define additional parameters relative to
collaboration that do not exist in Miao et al. model. In addition to the number of inbound docks and inbound trucks,
our data generation program requires the number of suppliers that we have set to 3. The unit rental fees have been
assumed the same for all suppliers such as ℎmk = minij{pij}∕10. Regarding the apportionment of inbound trucks and
inbound docks between suppliers, we have considered either a fair distribution (if it is possible) or a majority/minority
distribution. For the first case, each supplier owns the same number of inbound trucks (resp. inbound docks) as his
collaborators. In the second case, there is a majority supplier that owns the maximal number of inbound trucks (resp.
inbound docks) and a minority supplier that owns the minimal number of inbound trucks (resp. inbound docks). Each
of these suppliers (i.e. the majority or minority supplier) is chosen randomly and independently for inbound docks and
trucks. The majority (resp. minority) supplier for docks is not necessarily the same for trucks.

In our study, we consider only MIP optimization to solve the assignment problem. So, only small and medium
instances have been generated to test the models. We have conducted 30 instances sorted into 12 groups. Each group
is denoted by mI -nI the number of inbound docks (ranging from 3 to 6) and respectively the number of inbound
trucks (ranging from 6 to 15). The maximal number of docks and trucks have been chosen according to an arbitrary
computational time limit of 2 hours for CPLEX solver to obtain optimal solutions. The instances in the same group
vary according to the docks and trucks apportionment as mentioned above. So, each group contains 2 or 4 instances
depending on the number of possible distribution combinations: Equal docks - Equal trucks, Equal docks - Majority /
Minority trucks, Majority / Minority docks - Equal trucks, and Majority / Minority docks - Majority / Minority trucks.
(e.g., we consider 3 suppliers, 4 inbound docks, and 6 inbound trucks. For docks apportionment, we can only consider
the Majority / Minority distribution (since 4 is not divisible by 3). For trucks, we consider a fair distribution with 2
trucks for each supplier and a Majority / Minority with 3 trucks (resp. 1 truck) for a randomly chosen majority (resp.
minority) supplier and 2 trucks for the third one.) In our experiments, each of the tested instances has been executed
5 times to compute the average run time.
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5.2. Deterministic optimization
The first step of our tests consists in evaluating the impact of collaboration in a fully known environment. To

do so, we have considered the two deterministic cases Config. I and Config. II defined in Figure 2. Both of them
do not consider uncertainty. Yet, Config. I supposes that each supplier can use only his inbound doors to dock his
inbound trucks and there is no collaboration. The second (Config. II) assumes that the use of inbound docks is shared
between all suppliers. Any incoming truck may be docked to any available inbound dock which reduces the global
costs regardless of its ownership (the fact that a truck and the dock, to which it is assigned, belong or not to the same
supplier is taken into account only to compute the rental cost). We define the optimal strategy �∗() as the best truck to
door assignment of all the inbound and outbound trucks as well as the optimal goods’ flow obtained by the decision
variables yIik, yOjl, zijkl, and vimk.This strategy may vary for the same problem depending on the service mode: with or without collaboration or even
for the same configuration according to the docks and trucks apportionment. This variation can be also noticed in terms
of temporal performances, as shown in Figure 3 and Table 21. Obviously, whatever the docks and trucks apportionment
the CPU time increases with the size of the problem, especially for the most tricky cases 5-15 and 6-15. Besides, it
can be easily checked that no-collaboration optimization is always faster than the collaboration configuration. This
is visible especially for 5-15 instances where the average CPU time for the Config. I is about 125 times slower than
Config.II. However, it remains below the prefixed limit time of 7200 sec. Regarding the dock and truck apportionment,
the tests do not offer a conclusive answer. But, at least for medium instances, the tests verify that the Maj-Min dock
appointment and Equal truck appointment is the most time-consuming combination.

Figure 3: Average CPU time, in seconds, for deterministic instances (Config. I and Config. II) according to the size of the
problem

Concerning the solution quality, the CPLEX solver generates an optimal solution that minimizes the global cost for
each instance. This cost comprises the operational cost relative to goods transfer, penalty cost for unfulfilled shipments,
and a rental cost; paid only in the collaborating case; by suppliers who use docks not belonging to them. Details about

1For the sake of clarity and for better reading comprehension an appendix have been dedicated for all result tables.
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these generated costs are summarized in Figure 4 and Table 3 that translate economically the optimal solutions of
different instances regarding Config. I and Config. II. The results show that the collaboration makes it possible to
save costs. In 100% of cases, the total cost relative to Config.I (without collaboration) is higher than the one obtained
for Config. II (with collaboration). Savings are at least equal to 2.78% for the 03-09 group of instances and reach
26.29% for 06-09. This gain results generally from the satisfaction of more demands that reduces considerably the
penalty costs. Or, even if the penalties remain the same an optimal truck assignment considering all the terminal’s
docks allows a more advantageous truck assignment which reduces operational cost and thus the total cost. Obviously,
collaboration involves an additional rental cost. But, it is usually absorbed by the total saving costs.

Figure 4: Average optimal cost values for deterministic instances (Config. I and Config. II) according to the size of the
problem

The obtained results enable us to deduce that collaboration allows reducing costs. However, it is important to note
that these results are extremely sensitive to the variation in the values of the unit transfer cost ckl, the unit penalty
cost pij , and especially the unit rental fees ℎmk. For example, to illustrate the impact of the variability of the rental
cost on the optimal solution, we have considered the instance 3E-6E and have varied the value of this parameter (ℎmk)upwards and downwards. By decreasing the value of the rental cost each time by 1%, we have noted that the optimal
solution �∗ remains the same until ℎmk = ℎmk−29%. Of course, subtracting 1% of the rental cost value each time (from
33 to 23.43) has impacted the value of generated total cost which has slightly felt by 0.2% (from 4656 to 4646.43).
However, the decision variables, the operational cost, and penalties remain unchanged. Below 29%, the solver offers
new solutions that further reduce costs and promote collaboration. In the opposite sense, by increasing the rental cost
even by 100% the solution remains the same. In this case, the optimal solution is insensitive to the increase in the
rental cost until rising it to 7 times its initial value. Beyond that, the solver generates less interesting solutions with
increased costs until reaching the limit where the collaboration is no longer advantageous. This limit is obtained in
our case when the rental cost is equal to 10 times its initial value (330 instead of 33).
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5.3. Fuzzy optimization
As previously mentioned, in real-world problems the transfer time can not always be predicted with certainty. Sev-

eral factors can intervene to affect the presupposed period. To handle this uncertainty, we model uncertain transfer time
∼
tk,l = (tk,l, t̂k,l, tk,l) as a fuzzy number and provide a fuzzy chance constrained model to solve the problem (Section 4).
We assume that t̂k,l is the presupposed transfer time period (a reference scenario) and consider a 20% less or more
variation (tk,l and tk,l respectively the best and worst scenarios). The optimal solution is obtained according to the
possibility � and necessity � degrees, given by the decision-maker. These values define the decision-maker attitude
toward risk and allow a certain degree of flexibility to the constraints satisfaction.

For sake of simplicity and to facilitate the comparison with the deterministic cases (Config. I and Config. II), the
fuzzy optimization considering Config. III (uncertainty without collaboration) and Config. IV (both uncertainty and
collaboration), has been performed only on the most challenging group of instances 6-15. Config. I and Config. II can
be considered as special cases of Config. III and Config. IV respectively by assuming that � = � = 0.

Regarding the temporal performance, the results present in Figure 5 and Table 4 show that Config. IV is more time
consuming than Config. III. But, both of them are slower than the deterministic cases. For each instance and each
configuration, the average execution time increases by 17% at least. However, the CPU time remains affordable. In
terms of quality of solutions, we notice as for the deterministic case that the collaboration between suppliers allows
the reduction of costs. Optimal solutions generated for Config. IV (when suppliers collaborate) are more interesting
than those relative to Config. III (when suppliers do not collaborate) and this is valid for all instances. Besides, we
observe that generated costs for Config. III presents a relatively remarkable variation according to the trucks and docks
apportionment for the same problem. Unlike, this is not the case for Config. IV where the variability of trucks and
docks apportionment does not really affect the optimal solution.

Figure 5: Average CPU time, in seconds, for fuzzy 6-15 group of instances (Config. III and Config. IV)

Furthermore, as illustrated in Figure 6 and Table 5, our tests show that the obtained optimal solution and the relative
generated costs are very sensitive to the values of possibility and necessity degrees � and � for both configurations.
For each instance, the minimal global cost is obtained considering a null necessity degree and a low possibility degree
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(generally � ≤ 0.3). In such situations, the decision-maker adopts an optimistic attitude toward risk and presume a
needed transfer time below average. Contrariwise, when the decision-maker is pessimistic, he considers the worst
scenario with the maximal value of transfer time and reinforces the constraints by assuming that is totally possible and
totally certain (� = � = 1). Hence, we obtain the maximal generated cost. For intermediate cases, when the possibility
degree is fairly possible (� = 1 or almost) with a low necessity degree (� = 0 or a little bit higher) we obtain the same
results as for the deterministic case where the average value of transfer time has been used to compute the optimal
solution.

Figure 6: Optimal cost values for 6-15 group of instances (Config. III and Config. IV) with regards to � and �

In conclusion, we can say that by increasing the values of � and � the decision-maker develops an increasingly
risk-averse attitude that reinforces the constraints and allows us to have a more robust, but more expensive solution
against changes. Conversely, decreasing these values allows having a more economically advantageous solution, based
on an optimistic view of the problem. The effective gains or losses will depend on the scenario that will actually occur.
Hence, it is relevant to test the robustness of obtained solutions as we have performed in the next section.
5.4. Solutions robustness

In this subsection, we want to test the robustness of obtained solutions in presence of changes and provide a com-
parison between deterministic optimal solutions and fuzzy ones. For different reasons, things may not go as planned
and the transshipment process can be performed in a shorter or a longer-term. To this purpose, we first resume 6-15
group of instances and consider three different scenarios: the average transfer time t̂kl is identified as the reference
scenario and we define the best and the worst scenarios BS and WS by considering 20% positive and negative varia-
tions of average time. For BS the transfer time is equal to tkl and it is equal to tkl for WS. To perform the tests, we
re-execute the optimal truck to assignment for deterministic as well as fuzzy cases and we consider once BS and then
WS to determine the optimal flow of goods and generated costs for each situation.
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5.4.1. Deterministic solutions
The deterministic optimal solutions obtained in Section 5.2 have been computed on the basis of a crisp transfer time

value. We suppose that the best or the worst scenario may occur and we study the consequence of these changes on the
planned solution, with regards to Config. I and Config. II. The test reveals that the occurrence of the optimal scenario
BS does not really impact the optimal solution i.e. if the transshipment process takes less time than expected, the
optimal solution and relative generated costs remain the same. Except for the instance 6E-15E where the time saving
can be translated into financial savings equal to (174 units) 0.5% of generated costs regarding Config. I. However,
when the worst scenario WS occurs the optimal solution becomes irrelevant and generates losses for each instance. As
shown in Figure 7 and Table 6, these losses stem from unfulfilled shipments that increase considerably the penalties.
Nevertheless, we notice that the collaboration helps to better cope with such situations since losses for Config. I
(between 278 and 595 units) are about 1.6% of planned solutions, which is higher than losses observed for Config. II
(between 303 and 399 units, 1% of expected costs). Hence, we can deduce that collaboration does not only make it
possible to have better-planned solutions but also allows us to cope with changes when unforeseen events occur.

Figure 7: Best and Worst scenarios vs Reference scenario (Config.I and Config. II)

5.4.2. Fuzzy solutions
For fuzzy optimization, uncertainty is already considered for the planned solutions. Wewant to check if this enables

or not better handling of unforeseen events. In fact, the results outlined in Figure 8 and Table 7 for Config. III as well
as Config. IV, show that the optimal solution and effective generated costs obtained when the shipments’ transfer
needs less time than expected are almost the same as the planned ones. This is especially true when the necessity
degree � is null and the possibility degree � is below 1. Beyond that, the time reduction creates an increasing gap
between the planned solution and that of the possible obtained solution for best scenario BS. For each instance, this
gap attains the maximal value when the constraint is supposed to be totally possible and totally necessary or almost (�
= 1, � ≥ 0.8). Regarding Config. III, this gap varies from 0.26% (96 units) for 6MajMin-15MajMin to 0.76% (256
units) for 6E-15MajMin. For Config. VI, the total cost decreases by 0.96% (203 units) for 6E-15E to 1.02% (299 units)
for 6MajMin-15MajMin, 6E-15MajMin, and 6MajMin-15E.

Conversely, when the worst scenario WS occurs, it generates losses if the planned solution has been performed
considering an optimistic attitude (with low degrees of � and �). These losses decrease considerably by reinforcing
the constraints by assuming high possibility and necessity degrees � and �, to attain 0 losses when � = � = 1. Besides,
we denote that the average losses when suppliers do not collaborate (Config. III) is more important than the case where
they collaborate (Config. IV). On one hand, these results demonstrate that fuzzy planning allows better handling of
unforeseen changes. Especially when bad situations occur and the decision-maker adopts a realistic attitude (not too
optimistic) fuzzy optimization can be seen as a good solution to avoid considerable losses. On the other hand, the
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Figure 8: Best and Worst scenarios vs Reference scenario (Config.III and Config. IV)

tests prove that collaboration is always profitable for suppliers. Furthermore, considering both collaboration and fuzzy
planning, the obtained solutions may be robust and more advantageous.

6. Conclusion
This paper can be seen as a first attempt to truck to door assignment in shared cross-docks. In addition to the savings

that may be done in the installation phase of a shared cross-dock, our idea is to prove that resources’ sharing allows
to improve the service’s quality and reduce costs (especially penalty costs). When everything goes well, as expected,
collaboration could prove to be cost-effective and a mutually beneficial solution. However, we can never predict future
events with certainty in real-world situations. In fact, unforeseen changes may considerably affect the planned solution
and engender additional costs and economical losses. To cope with such circumstances, we consider an uncertain
transfer time and propose a fuzzy chance constrained model to deal with this issue. Our experiments confirm that
uncertainty handling better copes with unexpected changes especially when decision-maker is rather realistic (not too
pessimistic neither too optimistic). Besides, it illustrates that collaboration provides further economic gain.

As future work, we may first consider the experiments on large scale instances. In such cases, it is not possible to
obtain optimal solutions in a reasonable time. So, it is more appropriate to consider meta-heuristic methods such as
(genetic algorithm, tabu search, ...) in order to come up with good trade-offs between computational time and quality
of solutions. Later, we can address the problem of cost-sharing and try to find the most appropriate method (50%/50%,
Shepley, etc.) that ensures a fair distribution of saving costs.
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7. Appendix

D-T dist.
Instances

03-06 03-09 03-12 04-06 04-09 04-12 05-09 05-12 05-15 06-09 06-12 06-15

Config. I

E-E 0.022 0.068 0.102 - - - - - - 29.866 272.84 278.05
E-MajMin 0.012 0.060 0.110 - - - - - - 33.610 82.698 162.48
MajMin-E - - - 0.290 0.936 3.292 3.234 9.546 56.956 34.776 153.740 220.920
MajMin-MajMin - - - 0.488 1.544 3.188 5.912 13.454 63.834 30.316 153.890 603.670

Config. II

E-E 0.928 17.408 20.536 - - - - - - 257.390 1297.900 3884.400
E-MajMin 0.916 15.644 57.458 - - - - - - 440.330 1392.200 4204.800
MajMin-E - - - 4.522 49.102 116.300 141.640 591.080 7016.400 325.76 1309.100 4636.500
MajMin-MajMin - - - 4.098 48.968 101.360 121.730 277.690 3120.200 502.320 1571.600 4042.900

D-T dist.= Distribution of Docks and Trucks between suppliers

Table 2
Average CPU time, in seconds, for deterministic cases (Config. I & Config. II) according to the size of the problem

Costs
Instances

03-06 03-09 03-12 04-06 04-09 04-12 05-09 05-12 05-15 06-09 06-12 06-15

Config. I

RC 0 0 0 0 0 0 0 0 0 0 0 0
PC 798 4430 6035.5 175 1373 7009.5 2761 5989 9083.5 3597 5634.3 9150
OC 4043 8372.5 12646 4622.5 9627.5 15705 10163 15566 18971 8230.8 18291 25099
TC 4841 12803 18681 4797.5 11001 22714 12924 21555 28054 11828 23925 34249

Config. II

RC 25.2 74.7 106.8 50.75 149.1 198.1 94.4 148.8 224 136.58 198 256.5
PC 798 3988 4821 175 871 4847 1706 2863 4909 814 1579 3775
OC 3825 8394 12672 4332 9000 15472 9701 15949 19896 8415.3 18631 25407
TC 4648.2 12457 17600 4557.8 10020 20517 11501 18961 25029 9365.8 20408 29439

RC = rental cost, PC = penalty cost, OP = operational cost, TC = Total (economic) cost

Table 3
Average optimal costs for deterministic cases (Config. I & Config. II) according to the size of the problem

Variation of � and �
D-T dist. � = 0 � = 1

� = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 � = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Config. III

6E-15E 353 367 401 399 386 409 457 478 459 442 217 285 671 642 686 492 446 513 588 590
6E-15MajMin 920 844 447 539 389 425 400 344 343 460 409 482 384 343 460 409 442 552 497 567
6MajMin-15E 526 520 522 520 511 472 465 535 551 498 352 386 410 522 519 412 486 452 657 688
6MajMin-15MajMin 747 746 661 637 570 613 641 580 638 626 1018 1032 740 813 751 746 663 746 713 663

Config. IV

6E-15E 4022 3725 3720 3671 4088 3812 4528 5202 4912 5481 5588 5215 5080 5117 5412 5435 5485 5623 5839 6105
6E-15MajMin 5203 5294 4317 4403 4582 4500 4742 5180 4977 4871 4914 4781 4853 5021 4987 5230 5135 5190 5386 5591
6MajMin-15E 5342 5195 5673 5661 4764 4945 4916 5238 5154 5429 6366 5834 5628 5446 6168 6398 5932 5902 6091 6121
6MajMin-15MajMin 5203 5117 5582 5294 4903 4997 4614 4977 5071 5119 4914 5481 5673 6168 6158 5915 5926 6009 5872 5798

D-T dist.= Distribution of Docks and Trucks between suppliers

Table 4
Average CPU time, in seconds, for fuzzy instances (Config.III and Config. IV) of 6-15 group of instances
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Variation of � and �
Costs � = 0 � = 1

� = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 � = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Config. III

RC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PC 8970 8970 8970 9150 9150 9150 9150 9150 9150 9150 9150 9150 9400 9400 9440 9556 9556 9796 9796 9796
OC 25198 25198 25198 25094 25094 25094 25094 25094 25094 25099 25099 25099 24912 24912 24896 24849 24849 24710 24710 24710
TC 34168 34168 34168 34244 34244 34244 34244 34244 34244 34249 34249 34249 34313 34313 34337 34405 34405 34506 34506 34506

Config. IV

RC 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 232 232 256.5 256.5 256.5 256.5
PC 3775 3775 3775 3775 3775 3775 3775 3775 3775 3775 3775 3775 3775 3775 3741 3741 3895 4185 4185 4185
OC 25407 25407 25407 25407 25407 25407 25407 25407 25407 25407 25407 25407 25417 25422 25540 25540 25379 25292 25292 25292
TC 29439 29439 29439 29439 29439 29439 29439 29439 29439 29439 29439 29439 29449 29454 29513 29513 29531 29734 29734 29734

RC = rental cost, PC = penalty cost, OP = operational cost, TC = Total (economic) cost

Table 5
Optimal cost values for fuzzy cases (Config.III and Config. IV) of 6-15 group of instances with regards to � and �

Cost value
D-T dist. Rental cost Penalty cost Operational cost Total cost

PS BS WS PS BS WS PS BS WS PS BS WS

Config. I

6E-15E 0 0 0 5256 4966 6052 26671 26787 26153 31927 31753 32205
6E-15MajMin 0 0 0 7931 7821 9119 25875 25935 25234 33806 33756 34353
6MajMin-15E 0 0 0 9735 9735 10804 24603 24603 24070 34338 34338 34874
6MajMin-15MajMin 0 0 0 13678 13678 15332 23247 23247 22188 36925 36925 37520

Config. II

6E-15E 229.5 229.5 229.5 3775 3775 4290 25401 25401 25189 29405.5 29405.5 29708.5
6E-15MajMin 252.9 252.9 252.9 3775 3775 4450 25409 25409 25133 29436.9 29436.9 29835.9
6MajMin-15E 260.1 260.1 260.1 3775 3775 4450 25409 25409 25133 29444.1 29444.1 29843.1
6MajMin-15MajMin 283.5 283.5 283.5 3775 3775 4450 25409 25409 25133 29467.5 29467.5 29866.5

D-T dist.= Distribution of Docks and Trucks between suppliers
PS = planned scenario, BS = best scenario, WS = worst scenario

Table 6
Cost values for Best and Worst scenarios vs Reference scenario (Config.I and Config. II) of 6-15 group of instances

First Author et al.: Preprint submitted to Elsevier Page 21 of 24



T
D
A

in
shared

cross-docks
Variation of � and �

Sc Cost � = 0 � = 1

� = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 � = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Config.III

BS

RC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PC 8970 8970 8970 9078 9078 9078 9078 9078 9078 9050 9050 9050 9203 9203 9203 9203 9203 9286 9286 9286
OC 25198 25198 25198 25123 25123 25123 25123 25123 25123 25143 25143 25143 25058 25058 25058 25078 25078 25044 25044 25044
TC 34168 34168 34168 34200 34200 34200 34200 34200 34200 34193 34193 34193 34261 34261 34261 34280 34280 34330 34330 34330

PS

RC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PC 8970 8970 8970 9150 9150 9150 9150 9150 9150 9150 9150 9150 9400 9400 9440 9556 9556 9796 9796 9796
OC 25198 25198 25198 25094 25094 25094 25094 25094 25094 25099 25099 25099 24912 24912 24896 24849 24849 24710 24710 24710
TC 34168 34168 34168 34244 34244 34244 34244 34244 34244 34249 34249 34249 34313 34313 34337 34405 34405 34506 34506 34506

WS

RC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PC 9923.75 9923.75 9923.75 10098.5 10098.5 10222.25 10222.25 10222.25 10222.25 10066.77 10326.75 10326.75 10105 10105 10105 10025.25 10025.25 9796.25 9796.25 9796.25
OC 24669.25 24669.25 24669.25 24521.5 24521.5 24460.5 24460.5 24460.5 24460.5 24581.38 24411.25 24411.25 24582 24582 24582 24643.5 24643.5 24709.5 24709.5 24709.5
TC 34593 34593 34593 34620 34620 34682.75 34682.75 34682.75 34682.75 34648.15 34738 34738 34687 34687 34687 34668.75 34668.75 34505.75 34505.75 34505.75

Config.IV

BS

RC 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 232 232 256.5 256.5 256.5 256.5
PC 3775 3775 3775 3775 3775 3775 3775 377 5 3775 3775 3775 3775 3775 3775 3701 3701 3775 3775 3775 3775
OC 25407 25407 25407 25407 25407 25407 25407 25407 25407 25407 25407 25407 25407 25417 25422 25563 25563 25427 25427 25427
TC 29439 29439 29439 29439 29439 29439 29439 29439 29439 29439 29439 29439 29449 29454 29495 29495 29459 29459 29459 29459

PS

RC 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 232 232 256.5 256.5 256.5 256.5
PC 3775 3775 3775 3775 3775 3775 3775 3775 3775 3775 3775 3775 3775 3775 3728 3728 3895 4185 4185 4185
OC 25407 25407 25407 25407 25407 25407 25407 25407 25407 25407 25407 25407 25417 25422 25548 25548 25379 25292 25292 25292
TC 29439 29439 29439 29439 29439 29439 29439 29439 29439 29439 29439 29439 29449 29454 29507 29507 29531 29734 29734 29734

WS

RC 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 256.5 252.04 256.5 256.5 256.5 256.5 231.975 231.975 256.5 256.5 256.5 256.5
PC 4410 4410 4410 4410 4410 4410 4410 4410 4410 4247.25 4410 4410 4297.5 4241.25 4105.5 4105.5 4185 4185 4185 4185
OC 25147 25147 25147 25147 25147 25147 25147 25147 25147 25265.88 25147 25147 25219.5 25255.75 25420.25 25420.25 25292 25292 25292 25292
TC 29813.5 29813.5 29813.5 29813.5 29813.5 29813.5 29813.5 29813.5 29813.5 29765.17 29813.5 29813.5 29773.5 29753.5 29757.725 29757.725 29733.5 29733.5 29733.5 29733.5

RC = rental cost, PC = penalty cost, OP = operational cost, TC = Total (economic) cost
Sc: scenario, BS: best scenario, PS: planned scenario, WS: worst scenario

Table 7
Best and Worst scenarios vs Reference scenario (Config.III and Config. IV)

First
A
uthor

et
al.:

Preprintsubm
itted

to
Elsevier

P
age

22
of

24



TDA in shared cross-docks

References
Acar, K., Yalcin, A., Yankov, D., 2012. Robust door assignment in less-than-truckload terminals. Computers & Industrial Engineering 63, 729–738.
Agustina, D., Lee, C., Piplani, R., 2010. A review: Mathematical modles for cross docking planning. International Journal of Engineering Business

Management 2, 13.
Allaoui, H., Guo, Y., Sarkis, J., 2019. Decision support for collaboration planning in sustainable supply chains. Journal of Cleaner Production 229,

761 – 774.
Alpan, G., Larbi, R., Penz, B., 2011. A bounded dynamic programming approach to schedule operations in a cross docking platform. Computers

& Industrial Engineering 60, 385–396.
Apte, U.M., Viswanathan, S., 2000. Effective cross docking for improving distribution efficiencies. International Journal of Logistics 3, 291–302.
Ardakani, A.A., Fei, J., 2020. A systematic literature review on uncertainties in cross-docking operations. Modern Supply Chain Research and

Applications 2, 2–22.
Badea, A., Prostean, G., Goncalves, G., Allaoui, H., 2014. Assessing risk factors in collaborative supply chain with the analytic hierarchy process

(ahp). Procedia-Social and Behavioral Sciences 124, 114–123.
Baniamerian, A., Bashiri, M., Tavakkoli-Moghaddam, R., 2019. Modified variable neighborhood search and genetic algorithm for profitable

heterogeneous vehicle routing problem with cross-docking. Applied Soft Computing 75, 441–460.
Boysen, N., Fliedner, M., 2010. Cross dock scheduling: Classification, literature review and research agenda. Omega 38, 413 – 422.
Bozer, Y.A., Carlo, H.J., 2008. Optimizing inbound and outbound door assignments in less-than-truckload crossdocks. IIE Transactions 40, 1007–

1018.
Brown, A.M., 2003. Improving the efficiency of hub operations in a less-than-truckload distribution network, in: IIE Annual Conference. Proceed-

ings, Institute of Industrial and Systems Engineers (IISE). p. 1.
Chen, F., Song, K., 2009. Minimizing makespan in two-stage hybrid cross docking scheduling problem. Computers & Operations Research 36,

2066–2073.
Cohen, Y., Keren, B., 2009. Trailer to door assignment in a synchronous cross-dock operation. Int. J. Logistics Systems and Management Int. J.

Logistics Systems and Management 5, 574–590.
Darvishi, F., Yaghin, R.G., Sadeghi, A., 2020. Integrated fabric procurement and multi-site apparel production planning with cross-docking: A

hybrid fuzzy-robust stochastic programming approach. Applied Soft Computing , 106267.
Dubois, D., Prade, H., 2012. Possibility theory: an approach to computerized processing of uncertainty. Springer Science & Business Media.
Ertek, G., 2011. Cross-Docking Insights from a Third-Party Logistics Firm in Turkey.
Farrokh, M., Azar, A., Jandaghi, G., Ahmadi, E., 2017. A novel robust fuzzy stochastic programming for closed loop supply chain network design

under hybrid uncertainty. Fuzzy Sets and Systems 341.
Fatthi, W.N.A.W.A., 2016. A mixed integer programming model for solving real-time truck-to-door assignment and scheduling problem at cross

docking warehouse.
Forger, G., 1995. Ups starts world’s premiere cross-docking operations. Modern Material Handling 36, 36–38.
Gelareh, S., Glover, F., Guemri, O., Hanafi, S., Nduwayo, P., Todosijević, R., 2020. A comparative study of formulations for a cross-dock door

assignment problem. Omega 91, 102015.
Ghomi, V., 2019. Cross-Docking: A Proven LTL Technique to Help Suppliers Minimize Products’ Unit Costs Delivered to the Final Customers.

Ph.D. thesis. University of Mississippi.
Gonzalez-Feliu, J., Morana, J., 2011. Collaborative transportation sharing: from theory to practice via a case study from france, in: Technologies

for supporting reasoning communities and collaborative decision making: Cooperative approaches. IGI Global, pp. 252–271.
Graham, R., Lawler, E., Lenstra, J., Kan, A., 1979. Optimization and approximation in deterministic sequencing and scheduling: a survey, in:

Hammer, P., Johnson, E., Korte, B. (Eds.), Discrete Optimization II. Elsevier. volume 5 of Annals of Discrete Mathematics, pp. 287 – 326.
Gue, K.R., 2007. Warehouses without inventory. International Commerce Review: ECR Journal 7, 124–132.
Guignard, M., Hahn, P.M., Pessoa, A.A., da Silva, D.C., 2012. Algorithms for the cross-dock door assignment problem, in: Proceedings of the

fourth international workshop on model-based metaheuristics, pp. 145–162.
Inuiguchi, M., Ramık, J., 2000. Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with

stochastic programming in portfolio selection problem. Fuzzy sets and systems 111, 3–28.
Ladier, A.L., Alpan, G., 2014. Cross-docking operations planning. Ph.D. thesis. University of Grenoble.
Ladier, A.L., Alpan, G., 2016. Cross-docking operations: Current research versus industry practice. Omega 62, 145 – 162.
Lim, A., Ma, H., Miao, Z., 2006a. Truck dock assignment problem with operational time constraint within crossdocks, in: Ali, M., Dapoigny, R.

(Eds.), Advances in Applied Artificial Intelligence, Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 262–271.
Lim, A., Ma, H., Miao, Z., 2006b. Truck dock assignment problem with time windows and capacity constraint in transshipment network through

crossdocks, pp. 688–697.
Makaci, M., Reaidy, P., Evrard-Samuel, K., Botta-Genoulaz, V., Monteiro, T., 2017. Pooledwarehousemanagement: An empirical study. Computers

& Industrial Engineering 112, 526–536.
Miao, Z., Cai, S., Xu, D., 2014. Applying an adaptive tabu search algorithm to optimize truck-dock assignment in the crossdock management

system. Expert Systems with Applications 41, 16 – 22.
Miao, Z., Lim, A., Ma, H., 2009. Truck dock assignment problem with operational time constraint within crossdocks. European Journal of

Operational Research 192, 105 – 115.
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