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Abstract 

Determining the association constant between a cyclodextrin and a guest molecule is an important task 

for various applications in various industrial and academic fields. However, such a task is time consuming, 

tedious and requires samples of both molecules. A significant number of association constants and 

relevant data is available from the literature. The availability of data makes the use of machine learning 

techniques to predict association constants possible. However, such data is mainly available from tables 

in articles or appendices. It is necessary to make them available in a computer friendly format and to 

curate them. Furthermore, the raw data need to be enriched with physicochemical information about 

each molecule and when such information does not allow to discriminate molecules, some additional data 

is needed. We present a dataset built from data gathered from the literature. The dataset contains both 

the original raw data from the articles and the enriched ones. We also provide the scripts used to curate 

and enrich the raw data.  
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Graphical abstract  
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Specifications Table  

Subject area Chemoinformatics, organic chemistry, supramolecular chemistry 

Compounds  Cyclodextrins (15 molecules) and selected guests (1767 molecules) 

Data category Association constants or Gibbs free energy for 1/1 cyclodextrin/guest 

inclusion complex 

Data acquisition format Extraction from publications and online databases 

Data type Raw and Structured Enriched Data 

Procedure Experimental association constants were extracted from various 

publications and values with large uncertainties were removed 

Data accessibility Data files URL: https://doi.org/10.5281/zenodo.7575539 

Script files URL: https://doi.org/10.5281/zenodo.7575579 
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1. Rationale  

 

Native cyclodextrins (CDs) are cyclic oligosaccharides consisting of six (α-CD), seven (β-CD), or eight (γ-CD) 

α-D-glucopyranose units and are industrially synthesized by enzymatic conversion of starch. CDs possess 

an outer hydrophilic surface and inner hydrophobic cavity. In this cavity, a guest can be included to form 

an inclusion complex. To vary their size and shape, native CDs can be modified by etherifying some or all 

hydroxyl groups by various substituents (R) (Figure 1).  

 

 

Fig. 1. Representation of an inclusion complex formation between a CD and a guest. 

These are referred to modified CDs. Due to their ability to form inclusion complexes, CDs have applications 

in various industrial and academical fields [1,2]. The affinity between a CD and a guest is quantified by the 

association constant (K). Its determination is generally performed using analytical techniques such as NMR 

[3], UV spectroscopy [4] , isothermal titration calorimetry [5] or others, which are time consuming, 

sometimes tedious and often requires samples of both molecules. In this context, the prediction of the 

association constant from physicochemical features is appealing. An interesting alternative is to use 

machine learning approaches. Indeed, the application of machine learning to chemistry has increased 
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significantly in recent years [6,7]. These methods are also becoming very popular for the determination 

of the CD/guest association constant [8–11]. Their first requirement is the availability of a quality dataset. 

However, in some publications, the dataset used is not publicly available, the experimental conditions are 

not presented or the data format not easily reusable for other machine learning studies. For example, (i) 

233 data are available but only for β-CD or sulfobutylether-β-CD [8] (ii) 1320 data are used including 8 

different CDs but the dataset is not available [9], (iii) 1654 data are available included 16 different CDs 

acquired from the Cyclodextrin knowledge base (8534 collected data) unfortunately no longer available 

[12] and (iv) 280 data are available from  the BindingDB community [11,13].  

In this data paper, we propose a curated dataset of association constants. The data come from different 

articles/sources from the years 1963 to 2021 [10,11,14–19]. For each CD/guest pair (stoichiometry 1/1), 

the values of association constant K (or Gibbs free energy ΔG with ΔG = -RTln(K)), pH, temperature (T), 

and the source of data are presented in the data files. 

 

Such data can hardly be used as is because machine learning models are often built using numerical data, 

which should discriminate the CD/guest pairs. Non numerical data such as a molecule name must be 

replaced by dedicated physicochemical properties. When such data is not sufficient to discriminate the 

molecules, additional properties must be provided. In our context, we provide abstract additional features 

inspired by the state of the art in text processing, i.e., Word2Vec [20]. We also made sure that molecules 

are always represented the same way independently of their representation in the original source. 

However, using structured data is not enough to produce a high-quality predictor. Indeed, some values 

from the datasets may be erroneous for various reasons (experimentation, reporting, data collection, 

etc.). We made our best to detect and fix such erroneous values.   
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2. Procedure  

2.1 Software environment 

The dataset was built using scripts in python version 3.8.8. The raw data contained in PDF articles or data 

appendices were collected thanks to the Camelot library1 version 0.8. In some sources, the data were 

provided as Structure Data Format2 files. The RDKit library3  version 2021.03.5 could read that format. The 

data in the Binding database were shared on web pages and the Requests library4 version 2.26.0 was used 

to extract them automatically. The cheminformatics libraries PubChemPy5 version 1.0.4 and RDKit were 

used to retrieve or compute physicochemical properties. The Pandas library6 version 1.3.4 and NumPy7 

version 1.20.3 were used for tabular data manipulation, to save the data in a structured form and to 

ensure reproducibility in the development of the machine learning algorithms. 

2.2 Dataset preparation 

The basic data retrieved from the literature are the CD name, the guest molecule name, the value of 

association constant (or the Gibbs free energy) and when provided its error margin. Additionally, one can 

find the experimental conditions (generally pH and temperature). When pH and/or temperature were not 

reported, their values were set to pH=7 and/or T=25 °C. The final dataset contains 1767 guest molecules 

and 15 CDs (3 natives and 12 modified). The proportions of each CD are shown in figure 2A. The nature 

and the distribution of each CD are gathered in the Table 1. The values of Gibbs free energy for CD/guest 

inclusion complex were comprised in the range of -0.65 to -30.70 kJ/mol with a mean of -13.37 kJ/mol, as 

shown in figure 2B. The stoichiometry of CD/guest inclusion complex is 1/1. The guest molecules contain 

a large amount of structurally diverse organic compounds.  

 

 

1 https://camelot-py.readthedocs.io/ 

2 http://biotech.fyicenter.com/resource/sdf_format.html 

3 https://www.rdkit.org/ 

4 https://requests.readthedocs.io/ 

5 https://pubchempy.readthedocs.io 

6 https://pandas.pydata.org/ 

7 https://numpy.org/ 

https://camelot-py.readthedocs.io/
http://biotech.fyicenter.com/resource/sdf_format.html
https://www.rdkit.org/
https://requests.readthedocs.io/
https://pubchempy.readthedocs.io/
https://pandas.pydata.org/
https://numpy.org/
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Fig. 2. (A) The distribution of data for each CD, the pie chart with a large radius shows the total data 

distribution in the raw data file. In the pie chart with a small radius, the light-colored parts show the 

eliminated data, and the dark parts show the data distribution in the final file. (B) The distribution of the 

association constant between CDs and guest molecules. 

 

Table 1 

Distribution of the various CDs in the dataset 

α-CD series β-CD series γ-CD series 

Name 
 

Number 
of  

Data 
Name 

 

Number 
of  

Data 
Name 

 

Number 
of  

Data 

α-CD 1117 β-CD 1434 γ-CD 338 
trimethyl-α-CD 8 hydroxypropyl-β-CD 190 hydroxypropyl-γ-CD 5 

hydroxypropyl-α-CD 3 sulfobutylether-β-CD 135   
   methyl β-CD 82   
   dimethyl-β-CD 47   
   carboxymethyl-β-CD 42   
   acetyl-β-CD 19   
   trimethyl-β-CD 18   
   β-CD sulfate 16   
    succinyl-β-CD 5    
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The main issue is to correctly identify the molecules. They are identified in articles using a name from a 

given taxonomy. Sometimes, the name itself was not sufficient to identify the molecule. In a publication 

[15], not only the name (as neutral form) but also its charge values are needed to identify the guest 

molecule. For example, 4-aminobenzoic acid data is shared in more than one data with charge value as 0, 

-1 and +1. With the nomenclature of the International Union of Pure and Applied Chemistry (IUPAC), these 

three molecules should be named differently from each other. For this reason, a manual inspection step 

was required when the charge associated with the molecule name did not match the charge available in 

the article.  For instance, the IUPAC name of 4-aminobenzoic acid with charges 0, -1 and +1 are 

respectively 4-aminobenzoic acid, 4-aminobenzoate and (4-carboxyphenyl)azanium.  

2.3 Molecular descriptors 

The raw data have then been enriched with physicochemical properties. In earlier stages, all 

physicochemical properties were retrieved from the PubChem database [21]. It has subsequently been 

found that after PubChem’s weekly updates, the properties retrieved for some molecules could be 

updated. Therefore, we limited the usage of PubChem for the retrieval of two information only: the 

PubChem CID (Compound ID) and the IsomericSMILES [22] value. The first information is the unique 

identifier for a molecule in PubChem database. It is to the best of our knowledge the most practical way 

to uniquely identify a molecule. The SMILES (Simplified Molecular Input Line Entry System) notation of a 

molecule is used to describe the structure and chemical bonds of that molecule. IsomericSMILES contains 

the isotopism and stereochemistry information of the molecule. However, those SMILES are not 

canonical, i.e., several IsomericSMILES can represent the same molecule. As such, we use the RDKit library 

to normalize the IsomericSMILES, i.e., to always represent a given molecule with the same 

IsomericSMILES. 

For each host-guest pair, 7 features for the host molecule and 9 features for the guest molecule are 

computed by RDKit. Among them, 7 features are common: Topological Polar Surface Area (TPSA), 

Molecular Weight (MW), Complexity, Charge, HBondDonorCount (HBDC), HBondAcceptorCount (HPAC), 

HeavyAtomCount (HAC). TPSA is an estimate of the area (in Å2) which is polar [23]. MW is the sum of all 

atomic weights of the constituent atoms in a compound (in g/mol). The complexity rating of a compound 

is a rough estimate of how complicated the structure is, seen from the point of view of both the elements 

contained and the displayed structural features including symmetry [24,25]. Charge represents the total 

charge of the molecule. HBDC and HPAC denote respectively the count of hydrogen bond donors and the 
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count of hydrogen bond acceptors. HAC is the number of atoms (heavy atoms) other than hydrogen 

atoms. The two following features are used only for guest molecules. The partition coefficient (logP) of a 

compound defines the ratio of its solubility in two immiscible solvents (octanol : water) and MolLogP is 

estimated by a property-based method [26]. The aromatic proportion (AP) is calculated by dividing the 

number of all aromatic atoms in a molecule by the number of all heavy atoms.  For example, Table 2 shows 

the features generated by RDKit for some molecules. 

Table 2 

The features generated by RDKit for 7 different molecules 

Guest IsomericSMILES TPSA 

(Å2) 

MW 

(g/mol) 

Complexity Charge HBD

C 

HBA

C 

HAC Mol 

LogP 

AP 

acetonitrile CC#N 23 41 24 0 0 1 3 0.53 0 

hexylamine1  CCCCCC[NH3+] 27 102 23 1 1 0 7 0.81 0 

isobutyric acid CC(C)C(=O)O 37 88 56 0 1 1 6 0.73 0 

(1R,2S)-

ephedrine1 

C[NH2+][C@@H](C)[C@H](O)C1=CC=CC

=C1 

36 166 222 1 2 1 12 0.30 0.5 

(1S,2R)-

ephedrine1 

C[NH2+][C@H](C)[C@@H](O)C1=CC=CC

=C1 

36 166 222 1 2 1 12 0.30 0.5 

(1R,2R)-

pseudoephedri

ne1 

C[NH2+][C@H](C)[C@H](O)C1=CC=CC=C

1 

36 166 222 1 2 1 12 0.30 0.5 

(1S,2S)-

pseudoephedri

ne1 

C[NH2+][C@@H](C)[C@@H](O)C1=CC=C

C=C1 

36 166 222 1 2 1 12 0.30 0.5 

1ammonium form 

As can be seen in Table 2, the numerical properties produced from the 4 ephedrine and pseudoephedrine 

stereoisomers are the same. However, the values of the association constant with β-CD are different: -

10.8, -10.6, -10.5, -11.3 kJ/mol, respectively, in the same conditions (pH = 6.9 and temperature is 24.9°C) 

[13]. RDKit and PubChem are not capable of generating/calculating specific physico-chemical properties 

such as melting points, boiling points, or optical activity to discriminate these molecules. The only way to 

discriminate these molecules is to check the IsomericSMILES property. 

Unfortunately, machine learning algorithms often require numerical data. Therefore, it is needed to 

translate the textual IsomericSMILES property into some numerical properties. The word2vec[20] 

approach is commonly used to project textual values into a vector space (a tuple of numerical values). 

Word2vec was designed to convert words from a text into vectors in such a way that words with similar 
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semantics in the text have close spatial positions. We designed a similar approach that we called Iso2vec, 

which aims at representing molecules as vectors in such a way that similar molecules have close spatial 

positions. In this approach, not published yet, the words are the different characters of the 

IsomericSMILES (such as ‘C’, ‘O’, ‘N’, ‘H’, ‘1’, ‘2’, ‘3’, etc. but also ‘(‘, ‘)’, ‘#’, ‘=’, ‘[‘, ‘]’, ‘+’ and ‘@’), and the 

text corresponds to the IsomericSMILES itself. Iso2vec produces a vector of 10 numerical values for each 

molecule's IsomericSMILES representation.   

Iso2vec just like word2vec is a prediction-based model. Therefore, the vector returned by this model for 

each molecule is a prediction, and this prediction depends on the data the model was trained on. The 

number of dimensions needed to represent the words or molecules depends on the training data as well. 

The training data for building Iso2vec consists of the 1789 IsomericSMILES values of both host and guest 

molecules in the dataset.  

Table 3 shows the vectors produced by Iso2vec for the molecules in Table 2. 

Table 3 

Vectors generated by Iso2vec for the molecules from Table 2. 

IsomericSMILES 0 1 2 3 4 5 6 7 8 9 

CC#N -0.27 -0.29 -0.48 0.78 0.43 -0.34 0.27 0.22 0.36 -0.16 

CCCCCC[NH3+] -0.26 0.36 -0.08 0.99 1.46 0.13 0.88 1.49 1.95 0.04 

CC(C)C(=O)O 0.63 0.00 -0.9 1.03 0.61 -0.26 1.01 1.12 1.16 -0.03 

C[NH2+][C@@H](C)[C@H](O)C1=CC=CC=C1 0.28 -0.22 -0.11 0.39 -0.05 -0.06 0.09 0.12 0.08 -0.08 

C[NH2+][C@H](C)[C@@H](O)C1=CC=CC=C1 0.27 -0.22 -0.11 0.38 -0.06 -0.06 0.09 0.14 0.1 -0.08 

C[NH2+][C@H](C)[C@H](O)C1=CC=CC=C1 0.28 -0.24 -0.11 0.35 -0.1 -0.07 0.09 0.14 0.1 -0.06 

C[NH2+][C@@H](C)[C@@H](O)C1=CC=CC=C1 0.28 -0.20 -0.12 0.42 -0.02 -0.05 0.09 0.12 0.08 -0.09 

In Table 3, the vectors produced for (1R,2S)-ephedrine, (1S,2R)-ephedrine, (1R,2R)-pseudoephedrine, and 

(1S,2S)-pseudoephedrine molecules are close to each other, but different. Those new numerical values 

allow us to distinguish the four molecules while the previous numerical values could not. 

We finally obtain for each pair of CD and guest molecules, on top of the 6 original values: 2 identifiers, 

7+9 physicochemical properties, and 10*2 numerical values thanks to Iso2vec. This forms a total of 44 

properties, among which 40 consist in numerical values, making them directly usable with most machine 

learning approaches. 



10 
 

3. Data, value and validation  

 

The PDF files are processed as images. For this reason, dividing the tables into columns or even recognizing 

some values in the tables could be difficult. For example, the value "4,4•-Dibromobiphenyl" in a PDF table 

[15] has been recognized as "4,4N-Dibromobiphenyl" by our script and the query to PubChem would 

return "4,4'-Dibromobiphenyl". In such case, the data is ignored. In another PDF file [16], the tables were 

not correctly read and therefore the values of temperature, K and ΔG values were mixed. Such errors and 

similar ones have been fixed manually. 

There are several cases for which the data correctly gathered from various sources could not be included 

in the dataset. 

First, the extracted values that are significantly different from the rest of the collected data are called 

outliers. The original articles from which the outlier values have been observed were checked and either 

validated or discarded. In some articles, the captions of some tables mention that some values may be 

erroneous. For example, take α-CD and indole pair for which ΔG is -44.3 ± 0.3 kJ/mol (log K = 7.8 ± 0.1) 

under normal conditions. This value is considered an outlier. Indeed, in the original article [27] where this 

data was gathered, there is a note “possible systematic errors in the calculations at values of log K > 5”. 

Such proven outliers were removed from the dataset.  

Second, the same CD-guest pair can be found in several sources. If the association constant (or Gibbs free 

energy) is the same, only one occurrence of the pair is used with the original reference. If the different 

sources do not agree on a value, the one with the most accurate technique is selected. Remaining 

occurrences are discarded. 

Third, in accordance with [11], only the data from Binding DB with pH values between 6.9 and 7.4 and 

temperature values between 14.5 and 30.1°C were included [13]. 

Fourth, some data were obtained in other solvents than H2O [16]. In this case, these values were not used 

because incomparable with the others. 

Furthermore, on data retrieved from [15], the guest molecule may be adjusted at the light of the charge 

(e.g., acetic acid with charge -1 actually means acetate). In that case, the name of the guest molecule is 
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unchanged to facilitate later data extraction checking but the CID is updated to the correct molecule. 

When the charged molecule could not be found on PubChem (no CID), we generated the IsomericSMILES 

manually from the uncharged molecule IsomericSMILES. 

To summarize, the total data in the raw data file was equal to 3754 CD-guest pairs (the pie chart with a 

large radius; figure 2A). After having eliminated some data as described above, the curated final dataset 

file contains 3459 CD-guest pairs (the pie chart with a small radius, the light-colored parts show the 

eliminated data, and the dark parts show the data distribution in the final file; figure 2B). So 92% of the 

original data were retained. Finally, for most guest molecules, their name was used to retrieve from 

PubChem an IsomericSMILES and a PubChem identifier (CID). Such CID was used from time to time to 

check that the name, IsomericSMILES and CID still match (since the database evolves, the name evolves, 

and such condition may not always hold). We removed from the dataset the CD-guest pairs for which such 

property did not hold. 

The data files (raw data and final enriched data) and the script files are available at URL 

https://doi.org/10.5281/zenodo.7575539 and https://doi.org/10.5281/zenodo.7575579, respectively. 

The dataset is released under the Open Data Commons Open Database License v1.0. The script files are 

released under the BSD 3-Clause. 

To conclude, this curated dataset can be used to find existing or predict new association constant between 

a CD and a guest. Machine learning based prediction is of great interest because no analytical method, no 

toxic solvent or no sample are necessary. This database is easily accessible under a universal format. This 

database could interest chemists, analytical researchers or pharmaceuticals, but also machine learning 

specialists because it becomes yet another benchmark for them. The ultimate goal would be that this 

database serves as a basis for an enriched database collaboratively maintained by all research groups with 

knowledge of association constant values between various cyclodextrin and guest pairs. 

 

 

 

 

https://doi.org/10.5281/zenodo.7575539
https://doi.org/10.5281/zenodo.7575579
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