Equivariant Graph Neural Network for Crystalline Materials - Université d'Artois Access content directly
Conference Papers Year : 2022

Equivariant Graph Neural Network for Crystalline Materials

Abstract

Materials generation is an essential task in material science that aims to discover new materials. While most of the existing models have shown interesting results in simulation, they struggle to produce new original and stable materials. This paper discusses the salient properties required for material generation and studies the difficulties related to material pattern repetition, which impacts the stability of the generated structures.
Fichier principal
Vignette du fichier
invited1.pdf (1.01 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Licence : CC BY - Attribution

Dates and versions

hal-04037916 , version 1 (01-12-2023)

Licence

Attribution

Identifiers

  • HAL Id : hal-04037916 , version 1

Cite

Astrid Klipfel, Zied Bouraoui, Yaël Frégier, Adlane Sayede. Equivariant Graph Neural Network for Crystalline Materials. 1st International Workshop on Spatio-Temporal Reasoning and Learning, Jul 2022, JeJu, South Korea. ⟨hal-04037916⟩
82 View
11 Download

Share

Gmail Facebook X LinkedIn More