Chapter 1

About the Selection of Problems in 2022

Remember that the complete description, Version 3.0.7, of the format (XCSP 3) used to represent combinatorial constrained problems can be found in [4]. For the 2022 competition, we have limited XCSP 3 to its kernel, called XCSP 3 -core [5]. This means that the scope of XCSP 3 is restricted to:

• integer variables,

• CSP and COP problems,

• a set of 21 popular (global) constraints for Standard tracks:

-generic constraints: intension and extension -language-based constraints: regular and mdd -comparison constraints: allDifferent, allEqual, ordered and lex -counting/summing constraints: sum, count, nValues and cardinality -connection constraints: maximum, minimum, element and channel -packing/scheduling constraints: noOverlap and cumulative circuit, instantiation and slide and a small set of constraints for Mini-solver tracks.

For the 2022 competition, 41 problems have been selected. They are succinctly presented in Table 1. 1. For each problem, the type of optimization is indicated (if any), as well as the involved constraints. At this point, do note that making a good selection of problems/instances is a difficult task. In our opinion, important criteria for a good selection are:

• the novelty of problems, avoiding constraint solvers to overfit already published problems;

• the diversity of constraints, trying to represent all of the most popular constraints (those from XCSP 3 -core) while paying attention to not over-representing some of them (in particular, second class citizens);

• the scaling up of problems.

Novelty. Many problems are new in 2022, with most of the models written in PyCSP 3 . Two problems have been submitted, in response to the call. Diversity. Of course, not all types of constraints are equally involved in the selected benchmark. In the next edition, we shall attempt to foster the representation of CP-representative global constraints such as cumulative and noOverlap, and possibly, to introduce a couple of new ones (e.g., binPacking).

Scaling up. It is always interesting to see how constraint solvers behave when the instances of a problem become harder and harder. This is what we call the scaling behavior of solvers.

For most of the problems in the 2022 competition, we have selected series of instances with regular increasing difficulty. It is important to note that assessing the difficulty of instances was determined with ACE, which is the main reason why ACE is off-competition (due to this strong bias).

Selection. This year, the selection of problems and instances has been performed by Christophe Lecoutre. As a consequence, the solver ACE was labelled off-competition.

CHAPTER 1. ABOUT THE SELECTION OF PROBLEMS IN 2022

Chapter 2

Problems and Models

In the next sections, you will find all models used for generating the XCSP 3 instances of the 2022 competition (for main CSP and COP tracks). Almost all models are written in PyCSP 3 [8], Version 2.0, officially released in December 2021; see https://pycsp.org/.

CSP

Aztec Diamond

Description. An Aztec diamond of order n consists of 2n centered rows of unit squares, of respective lengths 2, 4, . . . , 2n -2, 2n, 2n -2, . . . , 4, 2. An Aztec diamond of order n has exactly 2 (n * (n+1)/2) tilings by dominos. See wikipedia.org. Building a solution analytically may be easy. However, a CP model is interesting as one can easily add side constraints to form Aztec diamonds with some specific properties (although this is not the case here). return False if i < n -1 and (j < n -1 -i or j > n + i):

return False if i > n and (j < i -n or j > 3 * n -i -1):

return False return True def inner(i, j): return valid(i, j -1) and valid(i, j + 1) and valid(i -1, j) and valid(i + 1, j)

CHAPTER 2. PROBLEMS AND MODELS

all valid cells valid_cells = [(i, j) for i in range(2 * n) for j in range(2 * n) if valid(i, j)] # all inner cells, i.e., valid cells that are not situated on the border of the diamond inners = [(i, j) for i, j in valid_cells if inner(i, j)] # all border cells, i.e., valid cells that are situated on the border of the diamond borders = [(i, j) for i, j in valid_cells if not inner(i, j)] # x[i][j] is the position (0: left, 1: right, 2:top, 3: bottom) of the second part of the domino whose first part occupies the cell ar row i and column j x = VarArray(size=[2 * n, 2 * n], dom=lambda i, j: range(4) if valid(i, j) else None) satisfy(# constraining cells situated on the top left border [(x[i][j], x[i][j + 1], x[i + 1, j]) in {(1, 0, ANY), (3, ANY, 2)} for i, j in borders if not valid(i, j -1) and not valid(i -1, j)],

constraining cells situated on the top right border [(x[i][j], x[i][j -1], x[i + 1, j]) in {(0, 1, ANY), (3, ANY, 2)} for i, j in borders if not valid(i, j + 1) and not valid(i -1, j)],

constraining cells situated on the bottom left border [(x[i][j], x[i][j + 1], x[i -1, j]) in {(1, 0, ANY), (2, ANY, 3)} for i, j in borders if not valid(i, j -1) and not valid(i + 1, j)],

constraining cells situated on the bottom right border [(x[i][j], x[i][j -1], x[i -1, j]) in {(0, 1, ANY), (2, ANY, 3)} for i, j in borders if not valid(i, j + 1) and not valid(i + 1, j)],

constraining inner cells [(x[i][j], x[i][j -1], x[i, j + 1], x[i -1][j], x[i + 1][j]) in {(0, 1, ANY, ANY, ANY), (1, ANY, 0, ANY, ANY), (2, ANY, ANY, 3, ANY), (3, ANY, ANY, ANY, 2)} for i, j in inners])

The model involves a two-dimensional array of variable x, and several groups (lists) of starred table constraints (ANY is '*'). A series of 8 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python AztecDiamond.py -data=100

Blocked Queens

This is Problem 080 on CSPLib, called Blocked n-Queens Problem.

Description (excerpt from CSPLib). The blocked n-queens problem is a variant of n-queens which has been proven to be NP-complete as a decision problem and #P-complete as a counting problem. The blocked n-queens problem is a variant where, as well as n, the input contains a list of squares which are blocked. A solution to the problem is a solution to the n-Queens problem containing no queens on any of the blocked squares. Data. As an illustration of data specifying an instance of this problem, we have: { "n": 6, "blocks": [[0,2], [3,4], [5,1]] } A series of 400 instances (not in JSON format) can be found on CSPLib. They were used in ASP competitions. The problem was also the subject of the LP/CP programming contest at ICLP 2016.

Model. The PyCSP 3 model, in a file 'BlockedQueens.py', used for the competition is:

PyCSP 3 Model 2 from pycsp3 import * n, blocks = data # q[i]
is the column where is put the ith queen (at row i) q = VarArray(size=n, dom=range(n)) satisfy(# respecting blocks [q[i] != j for (i, j) in blocks],

no two queens on the same column AllDifferent(q), # no two queens on the same diagonal [abs(q[i] -q[j]) != abs(i -j) for i, j in combinations(n, 2)])

The model involves a global constraint AllDifferent and some unary and binary intensional constraints. A series of 8 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python BlockedQueens.py -data=28-1449787798 -dataparser=BlockedQueens_Parser.py where '28-1449787798' is a data file in Essence format and 'BlockedQueens Parser.py' is a parser (i.e., a Python file allowing us to load data that are not directly given in JSON format). Note that for saving data in JSON files, you can add the option '-dataexport'.

Car Sequencing

This is Problem 001 on CSPLib.

Description (excerpt from CSPLib).

A number of cars are to be produced; they are not identical, because different options are available as variants on the basic model. The assembly line has different stations which install the various options (air-conditioning, sun-roof, etc.). These stations have been designed to handle at most a certain percentage of the cars passing along the assembly line. Furthermore, the cars requiring a certain option must not be bunched together, otherwise the station will not be able to cope. Consequently, the cars must be arranged in a sequence so that the capacity of each station is never exceeded. For instance, if a particular station can only cope with at most half of the cars passing along the line, the sequence must be built so that at most 1 car in any 2 requires that option.

Data.

As an illustration of data specifying an instance of this problem, we have:

{

"carClasses": [{ "demand": 1, "options": [1, 0, 1, 1, 0] }, { "demand": 2, "options": [0, 1, 0, 0, 1] }, { "demand": 2, "options": [0, 1, 0, 1, 0] }, { "demand": 2, "options": [1, 1, 0, 0, 0] }], "optionLimits": [{ "num": 1, "den": 2 }, { "num": 2, "den": 3 }, { "num": 1, "den": 3 }, { "num": 2, "den": 5 }, { "num": 1, "den": 5 }] } Model. The PyCSP 3 model, in a file 'CarSequencing.py', used for the competition is: This model involves 2 arrays of variables and 4 types of constraints: Cardinality, Intension, Extension and Sum. Actually, depending on the chosen variant, either Extension constraints are posted, or binary Intension constraints are posted with predicates like c i = j ⇒ o i,k = v where v is the value (0 or 1) of the kth option of the jth class. The last group of constraints corresponds to redundant constraints. A series of 10 instances has been selected for the competition (8 for variant 'table '). For generating an XCSP 3 instance (file), you can execute for example:

PyCSP 3 Model 3
python CarSequencing.py -data=90-01 -dataparser=CarSequencing_Parser.py python CarSequencing.py -variant=table -data=90-01 -dataparser=CarSequencing_Parser.py where '90-01' is a data file and 'CarSequencing Parser.py' is a parser (i.e., a Python file allowing us to load data that are not directly given in JSON format). Note that when you omit to write '-variant=table', you get the main variant. Note that for saving data in JSON files, you can add the option '-dataexport'.

Costas Arrays

This is Problem 076 on CSPLib.

Description (excerpt from CSPLib).

A costas array is a pattern of n marks on an n × n grid, one mark per row and one per column, in which the n × (n -1)/2 vectors between the marks are all different. Such patterns are important as they provide a template for generating radar and sonar signals with ideal ambiguity functions.

CHAPTER 2. PROBLEMS AND MODELS

This model involves 1 array of variables and several constraints AllDifferent. A series of 10 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python CostasArray.py -data=20 2. 1.5 Crosswords (Satisfaction) This problem has already been used in previous XCSP competitions, because it notably permits to compare filtering algorithms on large table constraints.

Description. Given a grid with imposed black cells (spots) and a dictionary, the problem is to fulfill the grid with the words contained in the dictionary. Data. As an illustration of data specifying an instance of this problem, we have:

{ "spots": [[0,1,0,0,0], [0,0,0,0,0], [0,0,1,0,0], [0,0,0,0,0], [0,0,0,0,1]], "dict": "ogd2008" } Model. A model similar to the following one, in a file 'Crossword.py', was used in 2018: # For Hole, i and j are indexes (one of them being a slice) and r is the size Hole = namedtuple("Hole", "i j r") def build_hole(row, col, size, horizontal): sl = slice(col, col + size) return Hole(row, sl, size) if horizontal else Hole(sl, row, size) def find_holes(matrix, transposed): p, q = len(matrix), len(matrix

[0]) t = [] for i in range(p): start = -1 for j in range(q): if matrix[i][j] == 1:
if start != -1 and j -start >= 2: t.append(build_hole(i, start, j -start, not transposed)) start = -1 elif start == -1: start = j elif j == q -1 and q -start >= 2: t.append(build_hole(i, start, q -start, not transposed)) return t 2. 1. CSP holes = find_holes(spots, False) + find_holes(columns(spots), True) n, m, nHoles = len(spots), len(spots[0]), len(holes) # x[i][j] is the letter, number from 0 to 25, at row i and column j (when no spot) x = VarArray(size=[n, m], dom=lambda i, j: range(26) if spots[i][j] == 0 else None) satisfy(# fill the grid with words x[i, j] in words[r] for (i, j, r) in holes)

This model only involves 1 array of variables and 1 group of ordinary table constraints. For clarity, we use an auxiliary named tuple Hole. A series of 13 instances, with only blank grids, has been selected for the competition. Note that it is not possible to write x[i][j] when i is a slice; this must be x[i, j]. For generating an XCSP 3 instance (file), you can execute for example:

python Crossword.py -data=[vg-04-05,dict=ogd2008] -dataparser=Crossword_Parser.py
where 'vg-04-05' is a data file representing a grid, 'ogd2008' is the name of a dictionary file (we need to use 'dict=' as a prefix, otherwise the dictionary will be appended to the first file) and 'Crossword Parser.py' is a parser (i.e., a Python file allowing us to load data that are not directly given in JSON format). Note that for saving data in JSON files, you can add the option '-dataexport'.

Important: The series of instances, used for the 2022 competition comes from the 2018 competition, and compiling instances from the PyCSP 3 model above may produce slighlty different files.

Crypto

A series of 10 instances has been generated (independently of PyCSP 3), and submitted to the 2022 competition by Martin Mariusz Lester. This benchmark encodes 10 instances of breaking the weak stream cipher Crypto1. M. M. Lester generated the instances using the tool Grain of Salt (which produces CNF format SAT instances), then translated them into XCSP 3 instances. Martin picked instances that were relatively harder for MiniSAT to solve (2-4 minutes). He hypothesised that these instances would be hard for any XCSP 3 solver that does not use a SAT solver as the backend, with XCSP 3 solvers using more modern solvers faring best. Perhaps this benchmark is not very interesting from the perspective of using XCSP 3 as an intermediate language, as it is a translation back from a low-level language that loses all of the structure. Nonetheless, it may serve as a reminder that these kinds of encodings exist.

Diamond Free

This is Problem 050 on CSPLib, called Diamond-free Degree Sequences.

Description (excerpt from CSPLib). A diamond is a set of four vertices in a graph such that there are at least five edges between those vertices. Conversely, a graph is diamond-free if it has no diamond as an induced subgraph, i.e. for every set of four vertices the number of edges between those vertices is at most four.

) if i % 3 == 0})
s is the sum of all degrees s = Var(dom={i for i in range(n, n * (n -1) + 1) if i % 12 == 0}) satisfy(# ensuring the absence of diamond in the graph

[Sum(x[i][j], x[i][k], x[i][l], x[j][k], x[j][l], x[k][l]) <= 4 for i, j, k, l in combinations(n, 4)],
ensuring that the graph is undirected (symmetric)

[x[i][j] == x[j][i] for i, j in combinations(n, 2)], # computing node degrees [Sum(x[i]) == y[i] for i in range(n)],
computing the sum of node degrees Sum(y) == s, # tag(symmetry-breaking) [Decreasing(y), LexIncreasing(x)])

This model involves 2 arrays of variables, a stand-alone variable and 4 types of constraints: Sum, Intension, Decreasing and LexIncreasing. A series of 6 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python DiamondFree.py -data=40

Eternity

Eternity II is a famous edge-matching puzzle, released in July 2007 by TOMY, with a 2 million dollars prize for the first submitted solution; see, e.g., [3]. Here, we are interested in instances derived from the original problem by the BeCool team of the UCL ("Université Catholique de Louvain") who proposed them for the 2018 competition.

Description. On a board of size n×m, you have to put square tiles (pieces) that are described by four colors (one for each direction : top, right, bottom and left). All adjacent tiles on the board must have matching colors along their common edge. All edges must have color '0' on the border of the board.

Data.

As an illustration of data specifying an instance of this problem, we have: satisfy(# all pieces must be placed (only once) AllDifferent(x), # all pieces must be valid (i.e., must correspond to those given initially, # possibly after applying some rotation)

{ "n": 3, "m": 3,
[(x[i][j], t[i][j], l[i][j + 1], t[i + 1][j], l[i][j]
) in table for i in range(n) for j in range(m)],

putting special value 0 on borders [z == 0 for z in t

[0] + l[:, -1] + t[-1] + l[:, 0]])
This model involves 3 arrays of variables and 3 types of constraints: AllDifferent, Extension and Intension. A series of 10 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python Eternity.py -data=06-06 -dataparser=Eternity_Parser.py where '06-06' is a data file representing a puzzle and 'Eternity Parser.py' is a parser (i.e., a Python file allowing us to load data that are not directly given in JSON format). Note that for saving data in JSON files, you can add the option '-dataexport'.

Hadamard

This is Problem 084 on CSPLib, called 2cc Hadamard matrix Legendre pairs. Description. For every odd positive integer n (and m = (n-1)/2), the 2cc Hadamard matrix Legendre pairs are defined from m quadratic constraints and 2 linear constraints.

satisfy(Sum(x) == 1, Sum(y) == 1, # quadratic constraints [Sum(x[i] * x[(i + k) % n] for i in range(n)) + Sum(y[i] * y[(i + k) % n] for i in range(n)) == -2 for k in range(1, m + 1)])
This model involves 2 arrays of variables and several constraints Sum. A series of 10 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python Hadamard.py -data=23

Hidato

Description. Hidato, also known as Hidoku is a logic puzzle game invented by Gyora M. Benedek, an Israeli mathematician. The goal of Hidato is to fill the grid with consecutive numbers that connect horizontally, vertically, or diagonally. See wikipedia.org.

Data.

As an illustration of data specifying an instance of this problem, we have:

Knight Tour

Description. A knight's tour is a sequence of moves of a knight on a chessboard such that the knight visits every square exactly once. If the knight ends on a square that is one knight's move from the beginning square (so that it could tour the board again immediately, following the same path), the tour is closed (or re-entrant); otherwise, it is open. See wikipedia.org. This model involves 1 array of variables and 2 types of constraints: Circuit and Intension. A series of 10 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python KnightTour2.py -data=50 (2,20), (2,25), (3,7), (3,8), (3,9), (4,3), (4,4), (4,5), (5,4), (5,5) Model. The PyCSP 3 model, in a file 'Molnar.py', used for the competition is:

Molnar

PyCSP 3 Model
[i][j] == x[i][j] * x[i][j] for i in range(k) for j in range(k)], determinant(x) == 1, determinant(y) == 1, # tag(symmetryBreaking) LexIncreasing(x, matrix=True))
This model involves 2 arrays of variables and 3 types of constraints: Sum, LexIncreasing and Intension. A series of 10 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python Molnar.py -data= [4,5]

Number Partitioning

This is Problem 049 on CSPLib.

Description (excerpt from CSPLib). This problem consists in finding a partition of the set of numbers {1, 2, . . . , n} into two sets A and B such that:

• A and B have the same cardinality

• the sum of numbers in A is equal to the sum of numbers in B

• the sum of squares of numbers in A is equal to the sum of squares of numbers in B

There is no solution for n < 8.

satisfy(AllDifferent(x + y), # tag(power1) [Sum(x) == n * (n + 1) // 4, Sum(y) == n * (n + 1) // 4], # tag(power2) [Sum(x[i] * x[i] for i in range(n // 2)) == n * (n + 1) * (2 * n + 1) // 12, Sum(y[i] * y[i] for i in range(n // 2)) == n * (n + 1) * (2 * n + 1) // 12], # tag(symmetry-breaking) [x[0] == 1, Increasing(x, strict=True), Increasing(y, strict=True)])
This model involves 2 arrays of variables and 3 types of constraints: AllDifferent, Sum and Increasing. A series of 10 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python NumberPartitioning.py -data=50

(Nurse) Rostering

This problem was described by G. Pesant, C.-G. Quimper and A. Zanarini [11] Description. This problem was inspired by a rostering context. The objective is to schedule n employees over a span of n time periods. In each time period, n -1 tasks need to be accomplished and one employee out of the n has a break. The tasks are fully ordered 1 to n -1; for each employee the schedule has to respect the following rules:

• two consecutive time periods have to be assigned to either two consecutive tasks, in no matter which order i.e. (t, t + 1) or (t + 1, t), or to the same task i.e. (t, t);

• an employee can have a break after no matter which task;

• after a break an employee cannot perform the task that precedes the task prior to the break, i.e. (t, break, t -1) is not allowed.

The problem is modeled with one constraint Regular per row and one constraint Alldifferent per column. # q(1,i) means before break and just after reading i # q(2,i) means just after reading break (0) and i before # q(3,i) means after break and just after reading i q, rng = Automaton.q, range(1, n) t = [(q(0), 0, q(2, 0))] + [(q(2, 0), i, q(3, i)) for i in rng] t.extend((q(0), i, q(1, i)) for i in rng) # BE CAREFUL: rule made stricter below than Pesant's rule t.extend((q(1, i), j, q(1, j)) for i in rng for j in (i -1, i + 1) if 1 <= j < n) t.extend((q(1, i), 0, q(2, i)) for i in rng) # BE CAREFUL: rule made stricter below than Pesant's rule t.extend((q(2, i), j, q(3, j)) for i in rng for j in rng if abs(i -j) != 1) # BE CAREFUL: rule made stricter below than Pesant's rule t.extend((q(3, i), j, q(3, j)) for i in rng for j in (i -1, i + 1) if 1 <= j < n) return Automaton(start=q(0), final=[q(2, i) for i in rng] + [q(3, i) for i in rng], transitions=t)

A = automaton() # x[i][j]
is the task (or break) performed by the ith employee at time j

x = VarArray(size=[n, n], dom=range(n)) satisfy([x[i][j] == k for (i, j, k) in preset], [x[i][j] != k for (i, j, k) in forbidden], [x[i] in A for i in range(n)], [AllDifferent(x[:, j]) for j in range(n)])
This model involves 1 array of variables and 3 types of constraints: Regular, AllDifferent and Intension. A series of 10 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python Rostering.py -data=roster-5-00-02.dat -dataparser=Rostering_Parser.py where 'roster-5-00-02.dat' is a data file and 'Rostering Parser.py' is a parser (i.e., a Python file allowing us to load data that are not directly given in JSON format). Note that for saving data in JSON files, you can add the option '-dataexport'.

CHAPTER 2. PROBLEMS AND MODELS

Orthogonal Latin Squares

Description. A Latin square of order n is an n by n array filled with n different symbols (for example, values between 1 and n), each occurring exactly once in each row and exactly once in each column. Two latin squares of the same order n are orthogonal if each pair of elements in the same position occurs exactly once. The most easy way to see this is by concatenating elements in the same position and verify that no pair appears twice. There are orthogonal latin squares of any size except 1, 2, and 6. See wikipedia.org.

[(x[i][j], y[i][j], z[i * n + j]) in table for i in range(n) for j in range(n)], # tag(symmetry-breaking) [(x[0][j] == j, y[0][j] == j) for j in range(n)])
This model involves 3 arrays of variables and 3 types of constraints: AllDifferent, Extension and Intension. A series of 10 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python Ortholatin.py -data=10 2.1. CSP 25

PB (Pseudo-Boolean)

This problem has been already used in previous XCSP competitions.

Description. Pseudo-Boolean problems generalize SAT problems by allowing linear constraints and, possibly, a linear objective function.

Data.

As an illustration of data specifying an instance of this problem, we have:

{
"n": 144, "e": 704, "constraints": [{ "coeffs": [1,1,1,1,1], "nums": [1,17,33,49,81], "op": "=", "limit": 1 }, { "coeffs": [1,1,1,1,1], "nums": [2,18,34,50,82], "op": "=", "limit": 1 }, . This problem involves 1 array of variables and 1 type of constraints: Sum. A series of 11 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python PseudoBoolean.py -data=BeauxArts-K65.opb -dataparser=PseudoBoolean_Parser.py where 'BeauxArts-K65.opb' is a data file and 'PseudoBoolean Parser.py' is a parser (i.e., a Python file allowing us to load data that are not directly given in JSON format). Note that for saving data in JSON files, you can add the option '-dataexport'.

Quasigroup

This is Problem 003 on CSPLib, called Quasigroup Existence.

Description (excerpt from CSPLib). An order n quasigroup is a Latin square of size n. That is, a n×n multiplication table in which each element occurs once in every row and column. A quasigroup can be specified by a set and a binary multiplication operator, * defined over this set. Quasigroup existence problems determine the existence or non-existence of quasigroups of a given size with additional properties. For example: For each of these problems, we may additionally demand that the quasigroup is idempotent. That is, a * a = a for every element a.

ensuring idempotence tag(idempotence) [x[i][i] == i for i in range(n)]) if variant("base"): if subvariant("v3"): satisfy(x[x[i][j], x[j][i]] == i for i in range(n) for j in range(n)) elif subvariant("v5"): satisfy(x[x[x[j][i], j], j] == i for i in range(n) for j in range(n)) elif subvariant("v6"): satisfy(x[x[i][j], j] == x[i, x[i][j]] for i in range(n) for j in range(n)) elif ..

. # not considered for the competition

Three variants of the problem are described here, involving 1 array of variables and various forms of constraints Element. Note the presence of the tag 'idempotence', which easily allows us to activate or deactivate the associated constraints, at parsing time. A series of 3 × 5 instances has been generated, for problems QG3, QG5 and QG6.

For generating an XCSP 3 instance (file), you can execute for example:

python QuasiGroup.py -variant=base-v3 -data=10 python QuasiGroup.py -variant=base-v5 -data=10 python QuasiGroup.py -variant=base-v6 -data=10

Room Mate

Description (from Wikipedia). In mathematics, economics and computer science, the stableroommate problem is the problem of finding a stable matching for an even-sized set. A matching is a separation of the set into disjoint pairs ('roommates'). The matching is stable if there are no two elements which are not roommates and which both prefer each other to their roommate under the matching. This is distinct from the stable-marriage problem in that the stableroommates problem allows matches between any two elements, not just between classes of "men" and "women". See wikipedia.org.

Data.

As an illustration of data specifying an instance of this problem, we have:

[i][j] = k pref[i][k] = j rank[i][i] = len(preferences[i]) pref[i][len(preferences[i])] = i return pref, rank pref, rank = pref_rank() # x[i] is the value of k, meaning that j = pref[i][k] is the paired agent x = VarArray(size=n, dom=lambda i: range(len(preferences[i]))) satisfy((imply(x[i] > rank[i][k], x[k] < rank[k][i]), imply(x[i] == rank[i][k], x[k] == rank[k][i])) for i in range(n) for k in pref[i] if k != i)
This problem involves 1 array of variables and 1 type of constraints: Intension. A series of 6 instances has been selected for the competition (coming from the repository developed by Patrick Prosser). For generating an XCSP 3 instance (file), you can execute for example: python RoomMate.py -data=sr0400.txt -dataparser=RoomMate_Parser.py where 'sr0400.txt' is a data file and 'RoomMate Parser.py' is a parser (i.e., a Python file allowing us to load data that are not directly given in JSON format). Note that for saving data in JSON files, you can add the option '-dataexport'.

Solitaire Battleship

This is Problem 014 on CSPLib.

Description (excerpt from CSPLib). As an illustration, a specific fleet consists of one battleship (four grid squares in length), two cruisers (each three grid squares long), three three destroyers (each two squares long) and four submarines (one square each). The ships may be oriented horizontally or vertically, and no two ships will occupy adjacent grid squares, not even diagonally. The digits along the right side of and below the grid indicate the number of grid squares in the corresponding rows and columns that are occupied by vessels. In each of the puzzles, one or more 'shots' have been taken to start you off. These may show water (indicated by wavy lines), a complete submarine (a circle), or the middle (a square), or the end (a rounded-off square) of a longer vessel.

Data. As an illustration of data specifying an instance of this problem, we have:

{ "fleet":[{"size":4,"cnt":1}, {"size":3,"cnt":2}, {"size":2,"cnt":3}, {"size":1,"cnt":4}], "hints":[{"type":"c","row":7,"col":10},{"type":"w","row":1,"col":6}], "rowSums": def automaton(horizontal): q = Automaton.q # for building state names t = [(q(0), 0, q(0)), (q(0), neg if horizontal else pos, "qq"), ("qq", 0, q(0))] for i in pos: v = i if horizontal else -i t.append((q(0), v, q(i, 1))) t.extend((q(i, j), v, q(i, j + 1)) for j in range(1, i)) t.append((q(i, i), 0, q(0))) return Automaton(start=q(0), final=q(0), transitions=t) horizontal_automaton, vertical_automaton = automaton(True), automaton(False) # s[i][j] is 1 iff the cell at row i and col j is occupied by a ship segment s = VarArray(size=[n + 2, n + 2], dom={0, 1}) if c == 'w':

return s[i][j] == 0 if c in {'c', 'l', 'r', 't', 'b'}: return [s[i][j] == 1, s[i -1][j] == (1 if c == 'b' else 0), s[i + 1][j] == (1 if c == 't' else 0), s[i][j -1] == (1 if c == 'r' else 0), s[i][j + 1] == (1 if c == 'l' else 0)] if c == 'm': return [s[i][j] == 1, t[i][j] not in {-2, -1, 0, 1, 2}, (s[i -1][j], s[i + 1][j], s[i][j -1], s[i][j + 1]) in {(0, 0, 1, 1), (1, 1, 0, 0)}] satisfy(# no ship on borders [(s[0][k] == 0, s[-1][k] == 0, s[k][0] == 0, s[k][-1] == 0) for k in range(n + 2)],
respecting the specified row tallies [Sum(s[i + 1]) == k for i, k in enumerate(rowSums)],

respecting the specified column tallies [Sum(s[:, j + 1]) == k for j, k in enumerate(colSums)],

being careful about cells on diagonals

[(s[i][j], s[i -1][j -1], s[i -1][j + 1], s[i + 1][j -1], s[i + 1][j + 1]
) in {(0, ANY, ANY, ANY, ANY), (1, 0, 0, 0, 0)} for i in range(1, n + 1) for j in range(1, n + 1)],

tag(channeling) [iff(s[i][j] == 1, t[i][j] != 0) for i in range(n + 2) for j in range(n + 2)],
counting the number of occurrences of ship segments of each type where 'sb 13 13 5 1.dzn' is a data file and 'SolitaireBattleship ParserZ.py' is a parser (i.e., a Python file allowing us to load data that are not directly given in JSON format). Note that for saving data in JSON files, you can add the option '-dataexport'.

Cardinality(t[1:n + 1, 1:n + 1], occurrences={pos[i]: cp[i] for i in range(nTypes)} + {neg[i]: cn[i] for i in range(nTypes)}), #

Sports Scheduling

This is Problem 026 on CSPLib, called the Sports Tournament Scheduling.

Description (excerpt from CSPLib).
The problem is to schedule a tournament of n teams over n -1 weeks, with each week divided into n/2 periods, and each period divided into two slots. The first team in each slot plays at home, whilst the second plays the first team away. A tournament must satisfy the following three constraints: every team plays once a week; every team plays at most twice in the same period over the tournament; every team plays every other team. This model involves 3 + 2 arrays of variables and 5 types of constraints: Cardinality, AllDifferent, Count (Exactly1), Extension and Intension. A series of 10 instances has been selected for the competition, for variant 'dummy'. For generating an XCSP 3 instance (file), you can execute for example: python SportScheduling.py -variant=dummy -data=10

Superpermutation

Description (from Wikipedia). In combinatorial mathematics, a superpermutation on n symbols is a string that contains each permutation of n symbols as a substring. While trivial superpermutations can simply be made up of every permutation listed together, superpermutations can also be shorter (except for the trivial case of n = 1) because overlap is allowed. For instance, in the case of n = 2, the superpermutation 1221 contains all possible permutations (12 and 21), but the shorter string 121 also contains both permutations. It has been shown that for 1 ≤ n ≤ 5, the smallest superpermutation on n symbols has length 1! + 2! + ... + n!. The first four smallest superpermutations have respective lengths 1, 3, 9, and 33, forming the strings 1, 121, 123121321, and 123412314231243121342132413214321. However, for n = 5, there are several smallest superpermutations having the length 153. See wikipedia.org. Two variants of the problem are described here, involving 2 arrays of variables and different types of constraints: AllDifferent, Element, Cardinality, Extension and Intension. A series of 2 × 3 instances has been generated.

For generating an XCSP 3 instance (file), you can execute for example:

python Superpermutation.py -data=5 python Superpermutation.py -variant=table -data=5

2.2 COP

Aircraft Landing

Description (from Choco Tutorial). Given a set of planes and runways, the objective is to minimize the total (weighted) deviation from the target landing time for each plane. There are costs associated with landing either earlier or later than a target landing time for each plane.

Each plane has to land on one of the runways within its predetermined time windows such that separation criteria between all pairs of planes are satisfied. See OR-Library.

Data.

As an illustration of data specifying an instance of this problem, we have:

{ "n": 10, "times": [{"earliest": 129, "target": 155, "latest": 559}, {"earliest": 195, "target": 258, "latest": 744}, ...], "costs": [{"early_penalty": 1000, "late_penalty": 1000}, {"early_penalty": 1000, "late_penalty": 1000}, . Two variants of the problem are described here (but only the variant 'table' is used for the competition), involving 3 arrays of variables and different types of constraints: AllDifferent, NoOverlap and Extension. A series of 13 instances (coming from OR-Library) has been selected.

For generating an XCSP 3 instance (file), you can execute for example:

python AircraftLanding.py -variant=table -data=airland01.txt -dataparser=AircraftLanding_Parser.py

where 'airland01.txt' is a data file and 'AircraftLanding Parser.py' is a parser (i.e., a Python file allowing us to load data that are not directly given in JSON format). Note that for saving data in JSON files, you can add the option '-dataexport'.

Clock Triplets

Description. Martin Gardner presented this problem:

Now for a curious little combinatorial puzzle involving the twelve numbers on the face of a clock. Can you rearrange the numbers (keeping them in a circle) so no triplet of adjacent numbers has a sum higher than 21? This is the smallest value that the highest sum of a triplet can have.

See f1compiler.com

The problem here is given in a general form.

Data.

Only two integers are required to specify a specific instance. Values of r and n used for the instances in the competition are:

(3,12), (5,15), (7,15), (7,20), (10,15), (10,20), (15,20), (15,30), (20,25), (20,35) # tag(symmetry-breaking)

[x[0] == 1, x[1] < x[-1]]) minimize(z)
This model involves 1 array of variables, a stand-alone variable, and 3 types of constraints: AllDifferent, Sum and intension. A series of 10 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python ClockTriplet.py -data= [7,20]

Coins Grid

Description. The problem, from Tony Hurlimann's working paper called 'A coin puzzle: SVOR-contest 2007', is defined as follows. In a quadratic grid (or a larger chessboard) with n × n cells, one should place c coins in such a way that the following conditions are fulfilled: 1. In each row exactly c coins must be placed. 2. In each column exactly c coins must be placed. 3. The sum of the quadratic horizontal distance from the main diagonal of all cells containing a coin must be as small as possible. 4. In each cell at most one coin can be placed.

The problem is initially illustrated with n = 31 and c = 14.

Data.

Only two integers are required to specify a specific instance. Values of n and c used for the instances in the competition are:

(8,4), (10,5), (12,6), (14,7), (16,8), (19,9), (22,10), (25,11), (28,12), [START_REF] Gent | Lazy explanations for constraint propagators[END_REF]14) Model. The PyCSP 3 model, in a file 'CoinsGrid.py', used for the competition is: This model involves 1 array of variables, and some constraints Sum. A series of 10 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python CoinsGrid.py -data= [START_REF] Gent | Lazy explanations for constraint propagators[END_REF]14]

CVRP

][c[i][0]] for i in range(nVehicles)) + Sum(distances[c[i][j]][c[i][j+1]] for i in range(nVehicles) for j in range(nSteps -1)) + Sum(distances[c[i][-1]][0] for i in range(nVehicles)))

This problem involves 2 arrays of variables and 5 types of constraints: AllDifferent, Cardinality, Sum, Decreasing and Intension. A series of 10 instances has been selected for the competition (coming from CVRPLIB). For generating an XCSP 3 instance (file), you can execute for example: python CVRP.py -data=A-n32-k5.json

Cyclic Bandwith

CHAPTER 2. PROBLEMS AND MODELS

Their aim was to find an arrangement on a cycle for a set of computers with a known communication pattern given by a graph, in such a way that every message sent can arrive at its destination in at most k steps. The CB problem arises also in other important application areas like VLSI designs, data structure representations, code design and interconnection networks for parallel computer systems. See E. Rodriguez-Tello's page. This problem involves 1 array of variables, 1 constraint AllDifferent and a complex objective expression. A series of 10 instances has been selected for the competition (coming from E. Rodriguez-Tello's page). For generating an XCSP 3 instance (file), you can execute for example: python CyclicBandwith.py -data=path100.rnd -dataparser=CyclicBandwith_Parser.py where 'path100.rnd' is a data file and 'CyclicBandwith Parser.py' is a parser (i.e., a Python file allowing us to load data that are not directly given in JSON format). Note that for saving data in JSON files, you can add the option '-dataexport'.

DC

A series of 26 instances linked to DC (Differential Cryptanalysis) has been generated (independently of the library PyCSP 3), and submitted to the 2022 competition by François Delobel. These instances have been generated with Tagada [9] and are about finding truncated differential features for symmetric encryption algorithms. More specifically, all instances consist in finding the smallest number of active S-boxes in a truncated differential characteristic (problem called Step1-opt in the CP paper). The encryption algorithms considered are Midori, Rijndael and Skinny. There are multiple instances for each cipher, with an increasing number r of rounds.

Echelon Stock

This is Problem 040 on CSPLib, called Distribution Problem with Wagner-Whitin Costs.

COP

Description (excerpt from CSPLib).

A basic distribution problem is described as follows. Given:

• a supply chain structure of stocking points divided into levels • a holding cost per unit of inventory at each stocking point, where it is assumed that a parent has lower holding cost than any of its children

• a procurement cost per stocking point (per order, not per unit of inventory received)

• a number of periods

• a demand for each leaf at each period find an optimal ordering policy: i.e. a decision as to how much to order at each stocking point at each time period that minimises cost. The Wagner-Whitin form of the problem assumes that the holding costs and procurement costs are constant, and that the demands are known for the entire planning horizon. Furthermore, the stocking points have no maximum capacity and the starting inventory is 0.

Data.

As an illustration of data specifying an instance of this problem, we have: This problem involves 2 arrays of variables, 2 types of constraints Sum and Intension, and a complex objective expression. A series of 10 instances has been selected for the competition (coming from CSPLib). For generating an XCSP 3 instance (file), you can execute for example: python EchelonStock2.py -data=A01.txt -dataparser=EchelonStock_Parser.py where 'A01.txt' is a data file and 'EchelonStock Parser.py' is a parser (i.e., a Python file allowing us to load data that are not directly given in JSON format). Note that for saving data in JSON files, you can add the option '-dataexport'.

{ "children": [[], [], [], [0, 1], [2
i][0] == x[i][0] -demands[i][0] for i in range(nLeaves)], [y[i][t] -Sum(y[i][t -1], x[i][t]) == -demands[i][t] for i in range(nLeaves) for t in range(1, nPeriods)], [y[i][0] == x[i][0] -Sum(x[j][0] for j in children[i]) for i in range(nLeaves, n)], [y[i][t] == y[i][t -1] + x[i][t] -Sum(x[j][t] for j in children[i]) for i in range(nLeaves, n) for t in range(1, nPeriods)], # IC2 [(x[i][t] == 0) | disjunction(x[j][t] > 0

COP

Filters

Description. This problem is about optimizing the scheduling of filter operations, commonly used in High-Level Synthesis. This problem/model has been originally written by Krzysztof Kuchcinski for the 2010, 2012, 2013 and 2016 Minizinc competitions. See also the models in JaCop.

Data.

As an illustration of data specifying an instance of this problem, we have: # r[i] is the (index of the) operator used for the ith operation r = VarArray(size=nOperations, dom=lambda i: range (This problem involves 2 arrays of variables and two types of constraints: NoOverlap and Intension. A series of 8 instances has been selected for the competition (coming from data generated by K. Kuchcinski who submitted them to several Minizinc competitions). For generating an XCSP 3 instance (file), you can execute for example: This model involves 3 and 5 arrays of variables (depending on the value of k) and several types of constraints: Count, Intension, LexIncreasing and Sum. A series of 15 instances has been selected for the competition (coming from data generated by T. Guns who submitted them to Minizinc competitions). For generating an XCSP 3 instance (file), you can execute for example:

python ItemsetMining.py -data=audiology-k2.dzn -dataparser=ItemsetMining_ParserZ.py where 'audiology-k2.dzn' is a data file and 'ItemsetMining ParserZ.py' is a parser (i.e., a Python file allowing us to load data that are not directly given in JSON format). Note that for saving data in JSON files, you can add the option '-dataexport'. The multi-agent pathfinding (MAPF) problem amounts to finding a plan for agents to move within a graph from their starting locations to their destinations, such that no agents collide with each other at any time. MAPF can be solved suboptimally in polynomial time [14], but finding an optimal solution is NP-hard for common optimization criteria See also [1].

Multi-Agent Path Finding

Nurse Rostering

This is a realistic employee shift scheduling Problem (see, for example, [10]).

Description. The description is rather complex. Hence, we refer the reader to: http://www.schedulingbenchmarks.org/nrp/.

Data. As an illustration of data specifying an instance of this problem, we have:

{ "nDays": 14, "shifts": [{ "id": "D", "length": 480, "forbiddenFollowingShifts": "null" }], "staffs": [{ "id": "A", "maxShifts": [14], "minTotalMinutes": 3360,"maxTotalMinutes": 4320, "minConsecutiveShifts": 2,"maxConsecutiveShifts": 5, "minConsecutiveDaysOff": 2, "maxWeekends": 1, "daysOff": [0], "onRequests": [{ "day": 2, "shift": "D", "weight": 2 }, { "day": 3, "shift": "D", "weight": 2}], "offRequests": "null" }, . ..], "covers": [[{ "requirement": 3, "weightIfUnder": 100, "weightIfOver": 1 }], [{ "requirement": 5, "weightIfUnder": 100, "weightIfOver": 1 }], . def automaton(k, for_shifts): # automaton_min_consecutive q = Automaton.q # for building state names range_off = range(nShifts -1, nShifts) # a range with only one value (off) range_others = range(nShifts -1) # a range with all other values r1, r2 = (range_off,range_others) if for_shifts else (range_others, range_off) t = [(q(0), r1, q(1)), (q(0), r2, q(k + 1)), (q(1), r1, q(k + 1))] t.extend((q(i), r2, q(i + 1)) for i in range(1, k + 1)) t.append((q(k + 1), range(nShifts), q(k + 1))) return Automaton(start=q(0), final=q(k + 1), transitions=t) This model involves 7 arrays of variables and 6 types of constraints: Regular, Slide, Count, Sum, Intension and Extension. A series of 20 instances has been selected from http://www.schedulingbenchmarks.org. For generating an XCSP 3 instance (file), you can execute for example:

x[d][p]
[p[i] != p[j] for i, j in combinations(range(nPatients), 2) if patients[i][0] != patients[j][0]], [w[k] == Sum(c * (p[i] == k) for i, (_, c) in enumerate(patients))
for k in range(nNurses)],

tag(symmetry-breaking) [p[z] == z for z in range(nZones)],

Increasing(w)) minimize(Sum(w[k] * w[k] for k in range(nNurses)))
This problem involves 2 arrays of variables and 3 types of constraints: Cardinality, Sum and Intension. A series of 12 instances has been selected for the competition (coming from data generated by P. Schaus). For generating an XCSP 3 instance (file), you can execute for example:

python NurseWorkload.py -data=2zones0.txt -dataparser=NursingWorkload_Parser.py where '2zones0.txt' is a data file and 'NursingWorkload ParserZ.py' is a parser (i.e., a Python file allowing us to load data that are not directly given in JSON format). Note that for saving data in JSON files, you can add the option '-dataexport'.

RCPSP

This is Problem 061 on CSPLib, called Resource-Constrained Project Scheduling Problem (RCPSP). See also PSPLIB.

Description (excerpt from CSPLib). The resource-constrained project scheduling problem is a classical well-known problem in operations research. A number of activities are to be scheduled. Each activity has a duration and cannot be interrupted. There are a set of precedence relations between pairs of activities which state that the second activity must start after the first has finished. There are a set of renewable resources. Each resource has a maximum capacity and at any given time slot no more than this amount can be in use. Each activity has a demand (possibly zero) on each resource. The dummy source and sink activities have zero demand on all resources. The problem is usually stated as an optimisation problem where the makespan (i.e. the completion time of the sink activity) is minimized.

Data. As an illustration of data specifying an instance of this problem, we have:

{ "horizon": 158, "resourceCapacities": [12,13,4,12], "jobs": [{ "duration": 0, "successors": [1, 2, 3], "requiredQuantities": [0, 0, 0, 0] }, { "duration": 8, "successors": [5,10,14], "requiredQuantities": [4, 0, 0, 0] }, ..., { "duration": 0, "successors": [], "requiredQuantities": [0, 0, 0, 0] }] } Model. The PyCSP 3 model, in a file 'Rcpsp.py', used for the competition is: This model involves 1 array of variables and 2 types of constraints: Cumulative and Intension. A series of 10 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python Rcpsp.py -data=j120-01-01.sm -dataparser=Rcpsp_Parser.py where 'j120-01-01.sm' is a data file and 'Rcpsp ParserZ.py' is a parser (i.e., a Python file allowing us to load data that are not directly given in JSON format). Note that for saving data in JSON files, you can add the option '-dataexport'.

RLFAP

When radio communication links are assigned the same or closely related frequencies, there is a potential for interference. Consider a radio communication network, defined by a set of radio links. The radio link frequency assignment problem [6] is to assign, from limited spectral resources, a frequency to each of these links in such a way that all the links may operate together without noticeable interference. Moreover, the assignment has to comply to certain regulations and physical constraints of the transmitters. Among all such assignments, one will naturally prefer those which make good use of the available spectrum, trying to save the spectral resources for a later extension of the network. As in 2018, do note that we consider here the original COP instances.

Description

The description is rather complex. Hence, we refer the reader to [6].

Data.

As an illustration of data specifying an instance of this problem, we have: { "number": 13, "domain": 1, "value": "null", "mobility": "null" }, { "number": 14, "domain": 1, "value": "null", "mobility": "null" }, ...], "ctrs":[{ "x": 13, "y": 14, "equality": true, "limit": 238, "weight": 0 }, { "x": 13, "y": 16, "equality": false, "limit": 186, "weight": 0 }, ...], "interferenceCosts": [0, 1000, 100, 10, 1], "mobilityCosts": [0, 0, 0, 0, 0] } Model. The PyCSP 3 model, in a file 'Rlfap.py', used for the competition is: • integer variables, including 0/1 (Boolean) variables,

• state-of-the-art table constraints, including ordinary, starred, and hybrid table constraints,

• popular global constraints (AllDifferent, Count, Element, Cardinality, Cumulative, etc.),

• search heuristics, as e.g., wdeg [2,9], last-conflict [6], BIVS [5], solution-saving [8],

• mono-criterion optimization ACE is derived from the constraint solver AbsCon that has been used as a research platform in our team at CRIL during many years. Many ideas and algorithms have been discarded from AbsCon, so as to get a constraint solver of reasonable size and understanding.

Important: ACE is not an official competitor for the 2022 XCSP 3 competition because I conducted the selection of instances. Note also that ACE is run with its default behaviour without any mechanism that could have been used to improve its performances (e.g., local search in a preprocessing step, use of several heuristics to improve diversification of search, etc.).

With the right classpath (after having cloned the code from Github), you can run the solver on any XCSP 3 [4, 1, 3] • on Github: https://github.com/xcsp3team/ace a run): for a sequence of bounds B 0 , B 1 , . . . , the solver forces a minimum gap between two successive bounds: B i+1 -B i ≥ 2 i . These gaps follow the exponential sequence: 1, 2, 4, 8, . . . (as indicated in the acronym where each letter is identified by its rank: A 1 B 2 D 4).

Important: ACE ABD is not an official competitor for the 2022 XCSP 3 competition because the original solver has been used to conduct the selection of instances.

You can run the solver on any XCSP 3 [2,6] Cyril Terrioux 1 1 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France {firstname.name}@univ-amu.fr

2 Effat University, Jeddah, Saudi Arabia hkanso@effatuniversity.edu.sa

(mini)BTD (Backtracking on Tree-Decomposition) is an open-source constraint solver which exploits the structure of CSP instances thanks to the notion of tree-decomposition [5]. It is written in C++ and implements the algorithm BTD-MAC+RST+Merge [3].

For the competition, we have made the following choices:

• The variable heuristic relies on Last Conflict [4] combined with a multi-armed bandit with 9 arms [1]. The i-th arm is based on CHS (for Conflict History Search [2]) with α = 0.1 * i and δ = 10 -4 . Note that the variable heuristic is only exploited for ordering the variables inside a cluster.

• lexico is used as value ordering heuristic.

• Generalized arc-consistency is enforced by a propagation-based system exploiting events.

• (mini)BTD relies on restarts performed according to a geometric restart policy based on the number of conflicts with an initial cutoff set to 50 and an increasing factor set to 1.05,

• The tree-decomposition is computed thanks to the heuristic H 5 -TD-WT [3].

• The first root cluster is the cluster having the maximum ratio number of constraints to its size minus one and then, at each restart, the selected root cluster is one which maximizes the sum of the weights of the constraints whose scope intersects the cluster.

(mini)BTD is able to handle all the constraints used in the competition.

Licence. (mini)BTD is licensed under the MIT License.

Code. The source code is available on Github: https://github.com/Terrioux/BTD-RBO.

Command line. (mini)BTD can be launched thanks to the following command line:

SOLVER TIMELIMIT BENCHNAME

where:

• SOLVER is the path to the executable BTD or miniBTD,

• TIMELIMIT is the number of seconds allowed for solving the instance,

• BENCHNAME is the name of the XML file representing the instance we want to solve.

Choco solver a free open-source Java library for CP Charles Prud'homme LS2N, IMT-Atlantique, Nantes, France, charles.prudhomme@imt-atlantique.fr Version 4.10.9 -Aug., 2022

Choco solver already has a long history : the first line of code was written in 1999 [11]. Since then, the code has been frequently re-engineered and released, up to version 4.0.8, the last current released [12]. It contains numerous variables, many (global) constraints and search procedures, to provide wide modeling perspectives.

Choco solver is used by the academy for teaching and research and by the industry to solve real-world problems, such as program verification, data center management, timetabling, scheduling and routing.

Several useful extra features are also available such as an extension that deals with graph variables, parsers to XCSP3 and FlatZinc or a minimalist profiler.

A Modeling API

Choco solver comes with the commonly used types of variables: integer vari-ables with either bounded domain or enumerated one, Boolean variables, set variables and graph variables. Views [13] but also arithmetical, relational and logical expressions are supported.

Up to 100 constraints -and more than 150 propagators-are provided : from classic ones, such as arithmetical constraints, to must-have global constraints, such as allDifferent or cumulative, and include less common even though useful ones, such as tree. One can pick some existing propagators to compose a new constraint or create its own one in a straightforward way by implementing a filtering algorithm and a satisfaction checker.

The library supports natively real variables and constraints also, and relies on Ibex [3] to solve the continuous part of the problem [4].

Resolution Toolbox

Choco solver has been carefully designed to offer wide range of resolution configurations and good resolution performances. Backtrackable primitives and structures are based on trailing. The propagation engine deals with seven priority levels and manage either fine or coarse grain events which enables to get efficient incremental constraint propagators.

The search algorithm relies on three components Propagate, Learn and Move depicted in [8]. Such a generic search algorithm is then instantiated to DFS, LNS [14], LDS [7], DDS [15] or HBFS [1].

The search process can also be greatly improved by various built-in search strategies such as Dom/WDeg [2] and CACD variant [16], ABS [10], Failurebased searches [9], BIVS [5], first-fail [6], etc., and by creating a problem-adapted search strategy.

One can solve a problem in many ways : checking satisfaction, finding one or all solutions, optimizing one or more objectives and solving on one or more thread, or simply propagating. The search process itself is observable and extensible.

The code and the dev team

Structurally, Choco solver is made of 573 Java classes which represents roughly 53k source code lines. The source code is hosted on GitHub under a BSD 4clause licence. The project is mainly developed and maintained by Charles Prud'homme and Jean-Guillaume Fages, they can count on attentive contributors. Tutorials, Javadoc and a user guide can be referred to, as long as a Google group. CoSoCo is a constraint solver written in C++.The main goal is to build a simple, but efficient constraint solver. Indeed, the main part of the solver contains less than 3,500 lines of code (including headers). CoSoCo will be available on github in september 2022. CoSoCo recognizes XCSP3 [2] by using the C++ parser that can be downloaded at https://github.com/xcsp3team/XCSP3-CPP-Parser. It can deal with all XCSP3 Core constraints. The part related to all constraint propagators contains around 5,500 lines of codes (including headers). This is the fourth participation of CoSoCo to XCSP competitions.

CoSoCo performs backtrack search, enforcing (generalized) arc consistency at each node (when possible). The main components are :

-dom/wdeg [1] as variable ordering heuristic; -lexico as value ordering heuristic; -lc(1), last-conflict reasoning with a collecting parameter k set to 1, as described in [4]; -a geometric restart policiy; -a variable-oriented propagation scheme [5], where a queue Q records all variables with recently reduced domains (see Chapter 4 in [3]). -The solution saving technque [6].

int main() { int32_t x; __CPROVER_assume(((x >= 1) && (x <= 10))); __CPROVER_printf("XCSP2C SOLUTION: x = %d", x); int32_t y; __CPROVER_assume(((y >= 1) && (y <= 100))); __CPROVER_printf("XCSP2C SOLUTION: y = %d", y); __CPROVER_assume((y == (x * x))); #ifndef TARGET assert(0); #endif } Implementation details. Exchequer is implemented as two Perl scripts: xcsp2c.pl performs the translation, while exchequer.pl is a wrapper that calls xcsp2c.pl and CBMC. Exchequer also uses XCSP3 Tools to validate solutions before returning them.

For constraint optimisation (COP) problems, Exchequer simply calls CBMC repeatedly, trying to find a solution incrementally better than the previous one each time. When a better solution cannot be found, we know this is the optimum. The actual value of the objective for each solution is calculated using XCSP3 Tools.

Usage. Download from https://gitlab.act.reading.ac.uk/ta918887/exchequer and run: perl DIR/tool/exchequer.pl --tmpdir=TMPDIR BENCHNAME where:

• DIR is the extracted release archive directory;

• BENCHNAME is the XML file encoding the XCSP3 instance;

• TMPDIR is the optional temporary directory to use.

If no temporary directory is given, Exchequer will use the directory containing the instance. In any case, it will write the following files: CP-based Belief propagation starts from a uniform distribution for each variable x (θ x (v) = 1/|D(x)| ∀v ∈ D(x)) which, as shown in Table 1, tries to converge to the true marginal distributions as iterations proceed. Each iteration adjusts a variable's marginals by taking the product of the local marginals computed at each constraint given the current marginals (this is where weighted counting comes in). For example the initial local marginals computed by each constraint (given uniform marginals) are shown in Table 2.

Entropy-based Branching

Because Belief Propagation allows us to approximate the marginal distribution for each variable of our model, we are also able to approximate the entropy of each variable. Entropy is a powerful expression of the knowledge we have about a variable: the lower its entropy, the more confident we are about which value it should take (e.g. a bound variable has zero entropy). Thus entropy is a powerful tool that we can exploit to make better branching decisions. We define the entropy H(x) of variable x as

H(x) = - v∈D(x) θ x (v)log(θ x (v))
Branching heuristic minEntropy [2] selects the variable with the lowest entropy and the value with the highest marginal.

We can extend the concept of entropy to the whole model as the mean normalized entropy of its variables:

H = x∈X H(x) log(|D(x)|)

|X|

The number of BP iterations we perform before each branching decision is decided dynamically based on how stable the model entropy has become [2].

Constraint Weights

In CP-based Belief Propagation by default all constraints are considered on an equal footing. However within a model the arity of constraints can vary significantly. A constraint with a considerably larger arity intuitively represents a larger part of the problem and thus should provide a more enlightened view of what a valid solution should be. We could therefore give more weight to the messages it sends. Let X denote the set of variables, C be the set of constraints, and X(c) the scope of constraint c. We define the weight of c as

w c = 1 + |X(c)| -min c ∈C |X(c)| |X| ,
which ranges between 1 and 2, and use it as an exponent on messages from constraints. A larger weight accentuates the extreme values among marginals.

Competition Entries

The two variants of our solver entered in this competition both branch according to minEntropy and stop BP iterations dynamically. They differ in that during BP one considers a constraint's weight as its arity.

Solver Engine

The solver engine relies on standard mechanisms, using a priority constraint queue and a domain event stack to implement the propagation procedure. Moreover, it supports dynamic type change for variables: domains are initially implemented using intervals or Boolean types whenever possible, and can be changed to (bit)sets during search when a propagator requires it. The backtracking mechanism is implemented using a trail in a standard way.

Propagators

Several classic global constraints are implemented, such as LexOrdering [4], bound consistency propagator for AllDifferent [10] and Gcc [9]. Moreover, less standard constraints were implemented within the context of research articles on constraint propagation, such as the AtMostSeqCard constraint for car-sequencing [12] or a VertexCover constraint [3] to reason about cliques, independant set or vertex covers. Search Strategy The search heuristic used for the XCSP3 competition is based on Last Conflict [8], using a variant of Weighted Degree [2] as default strategy: in the case of failure raised by a propagator of a global constraint, an explanation of the conflict is computed and only the weight of the variables participating in the conflict is incremented. This heuristic is fully described in [7]. Moreover, given the next variable x to branch on, the solver chooses the value that was assigned to x in the best solution found so far, if possible, or the minimum value in the domain of x otherwise.

Applications of Mistral

Mistral was used to implement a state-of-the-art method for disjunctive scheduling which improved several best known results on classic benchmarks [5]. More recently, some clause learning methods were implemented in Mistral, still improving the results on disjunctive scheduling [11] and car-sequencing problems [1]. These methods were not used within the context of the XCSP3 competition.

An XCSP3 Solver in Picat

Neng-Fa Zhou 1

CUNY Brooklyn College & Graduate Center

Abstract. This short paper gives an overview of the XCSP3 solver implemented in Picat. Picat provides several constraint modules, and the Picat XCSP3 solver uses the sat module. The XCSP3 solver mainly consists of a parser implemented in Picat, which converts constraints from XCSP3 format to Picat. The solver demonstrates the strengths of Picat, a logic-based language, in parsing, modeling, and encoding constraints into SAT. The solver submitted to the 2022 XCSP competition is based on the one that won the 2019 XCSP competition. The high performance of the solver also demonstrates the viability of using a SAT solver to solve general constraint satisfaction and optimization problems.

XCSP3

XCSP3 [1] is an XML-based domain specific language for describing constraint satisfaction and optimization problems (CSP). XCSP3 is positioned as an intermediate language for CSPs. It does not provide high-level constructs as seen in modeling languages. However, XCSP3 is significantly more complex than a canonical-form language, like FlatZinc [4]. A constraint can sometimes be described in either the standard format or simplified format. The advanced format, which is used by group and matrix constraints, allows more compact description of constraints.

Picat

Picat [10] is a simple, and yet powerful, logic-based multi-paradigm programming language. Picat is a Prolog-like rule-based language, in which predicates, functions, and actors are defined with pattern-matching rules. Picat incorporates many declarative language features for better productivity of software development, including explicit non-determinism, explicit unification, functions, list comprehensions, constraints, and tabling. Picat also provides imperative language constructs, such as assignments and loops, for programming everyday things. Picat provides facilities for solving combinatorial search problems, including a common interface with CP, SAT, MIP, and SMT solvers, tabling for dynamic programming, and a module for planning. Picat uses, in the XCSP3 solver, the SAT module, which generally performs better than the CP, MIP, and SMT modules on competition benchmarks.

Parsing

The availability of different formats in XCSP3 makes it a challenge to parse the XCSP3 language. A parser implemented in C++ by the XCSP3 designers has more than 10,000 lines of code. The entire Picat implementation of XCSP3 has about 2,000 lines of code, two-thirds of which is devoted to parsing and syntaxdirected translation. As illustrated in the following example, Picat is well suited to parsing. The parser follows the framework for translating context-free grammar into Prolog [5]: a non-terminal is encoded as a predicate that takes an input string (Si) and an output string (So), and when the predicate succeeds, the difference Si-So constitutes a string that matches the nonterminal. Unlike in Prolog, patternmatching rules in Picat are fully indexed, which facilitates selecting right rules based on look-ahead tokens.

Modeling

It is well known that loops and list comprehensions are a necessity for modeling CSPs. The following Picat example illustrates the convenience of these language constructs for modeling. The allDifferentMatrix(Matrix) constraint takes a matrix that is represented as a two-dimensional array, and posts an all different constraint for each row and each column of the matrix.

SAT Encoding

Picat adopts the log encoding [2] for domain variables. While log encoding had been perceived to be unsuited to arithmetic constraints due to its hindrance to propagation [3], we have shown that log encoding can be made competitive with optimizations [8]. There are hundreds of optimizations implemented in Picat, and they are described easily as pattern-matching rules in Picat. We have also shown that, with specialization, the binary adder encoding is not only compact, but also generally more efficient than BDD encodings for PB constraints [9]. Picat adopts specialized decomposition algorithms for some of the global constraints, such as the circuit and reachability constraints [6,7].

SAT Solving

Picat uses the kissat SAT solver. 1 For a satisfibility problem, Picat calls the SAT solver, and converts the SAT solution to a solution for the decision variables if the problem is satisfiable. For an optimization problem, Picat uses a branchand-bound algorithm to find the best solution, and calls the SAT solver each time a domain bound of the objective variable is narrowed. The kissat generally outperforms the Maple solver, which is used in the Picat XCSP3 solver submitted to the 2019 competition.

Introduction

toulbar2 is an open-source C++ solver for cost function networks (CFN). It is available at https://github.com/ toulbar2/toulbar2, with an MIT license and a documentation describing its interfaces with C++ and python.

The constraints and objective function are factorized in local functions on discrete variables. Each function returns a cost for any assignment of its variables. Constraints are represented as functions with costs in {0, ⊤} where ⊤ is an upper bound cost associated with forbidden assignments. toulbar2 looks for a non-forbidden assignment of all variables that minimizes the sum of all functions.

Using on the fly translation, toulbar2 can also directly solve optimization problems on other graphical models such as Maximum probability Explanation on Bayesian networks, and Maximum A Posteriori on Markov random fields [10]. It can also read partial weighted MaxSAT problems, (quadratic) pseudo-Boolean optimization problems as well as constrained satisfaction and optimization problems (COP in XCSP3 format).

toulbar2 provides and uses by default an anytime hybrid best-first branch-and-bound algorithm (HBFS) [1] that tries to quickly provide good solutions together with an upper bound on the gap between the cost of each solution and the (unknown) optimal cost. Thus, even when it is unable to prove optimality, it will bound the quality of the solution provided. It can also apply a variable neighborhood search algorithm exploiting a problem decomposition (UDGVNS) [15]. Both algorithms are complete (if enough CPU-time is given) and they can be run in parallel using OpenMPI [3,15]. The variable ordering heuristic is dom/wdeg [4] combined with last conflict [12]. The value ordering heuristic exploits the last solution found if any [8] or else EDAC existential value [7]. EDAC is also used as soft local consistency during search to provide lower bounds and prune forbidden values [5]. A weaker relaxed version is used for pseudo-Boolean linear constraints [13]. Variable elimination is performed during search and restricted to variables with at most two neighbors [11]. More preprocessing techniques such as cost function decomposition [9] are done before search and pruning by dominance is also applied during search [6].

Beyond the service of providing optimal solutions, toulbar2 can also find a sequence of diverse solutions [16] or exhaustively enumerate solutions below a cost threshold and perform guaranteed approximate weighted counting of solutions. For stochastic graphical models, this means that toulbar2 will compute the partition function (or the normalizing constant). These problems being #P-complete, toulbar2 runtimes can quickly increase on such problems.

toulbar2 was originally developped by Toulouse (INRAE, MIAT) and Barcelona (UPC, IIIA-CSIC) teams, hence the name of the solver. Additional contributions by:

• Caen University, France (GREYC) and University of Oran, Algeria for (parallel) variable neighborhood search methods [15] ;

• The Chinese University of Hong Kong and Caen University, France (GREYC) for global cost functions [2] ;

• Marseille University, France (LSIS) for tree decomposition heuristics ;

• Ecole des Ponts ParisTech, France (CERMICS/LIGM) for INCOP local search solver [14] ;

• Artois University, France (CRIL) for the XCSP3 format reader of CSP and COP instances.

XCSP'2022 Competition Configuration Settings

For the XCSP'2022 competition, we used the following settings:

• For COP sequential and mini COP tracks, HBFS [1] was used with default settings ; command line: DIR/toulbar2 -time=TIMELIMIT -seed=RANDOMSEED -v=-1 BENCHNAME

• For COP parallel track, parallel HBFS [3] was used with the available number of cores and MPI compilation settings ; command line: mpirun -n NBCORE DIR/toulbar2mpi -time=TIMELIMIT -seed=RANDOMSEED -v=-1 BENCHNAME

• For COP fast track, UDGVNS [15] was used with a min-fill problem decomposition heuristic and merging clusters with their parent cluster if the ratio of separator variables is greater than 0.

Results

In this chapter, rankings for the various tracks of the XCSP 3 Competition 2022 are given. Importantly, remember that you can find all detailed results, including all traces of solvers at http://www.cril.univ-artois.fr/XCSP22/.

Context

Remember that the tracks of the competition are given by Table 4. Also, note that:

• the cluster was provided by CRIL and is composed of nodes with two quad-cores (Intel Xeon CPU E5-2637 v4 @ 3.50GHz, each equipped with 64 GiB RAM).

• Hyperthreading was disabled.

• Each solver was allocated a CPU and 64 GiB of RAM, independently from the tracks.

• Timeouts were set accordingly to the tracks through the tool runsolver: • The selection of instances for the Standard tracks was composed of 200 CSP instances and 250 COP instances.

• The selection of instances for the Mini-solver tracks was composed of 150 CSP instances and 158 COP instances.

About Scoring. The number of points won by a solver S is decided as follows:

• for CSP, this is the number of times S is able to solve an instance, i.e., to decide the satisfiability of an instance (either exhibiting a solution, or indicating that the instance is unsatisfiable)

• for COP, this is, roughly speaking, the number of times S gives the best known result, compared to its competitors. More specifically, for each instance I:

-if I is unsatisfiable, 1 point is won by S if S indicates that the instance I is unsatisfiable, 0 otherwise, -if S provides a solution whose bound is less good than another one (found by another competiting solver), 0 point is won by S,

-if S provides an optimal solution, while indicating that it is indeed the optimality, 1 point is won by S,

-if S provides (a solution with) the best found bound among all competitors, this being possibly shared by some other solver(s), while indicating no information about optimality: 1 point is won by S if no other solver proved that this bound was optimal, 0.5 otherwise.

Off-competition Solvers. Some solvers were run while not officially entering the competition: we call them off-competition solvers. ACE is one of them because its author (C. Lecoutre) conducted the selection of instances, which is a very strong bias (ACE ABD was also considered as being off-competition of the main tracks to avoid any suspected collusion). Also, when two variants (by the same competiting team) of a same solver compete in a same track, only the best one is ranked (and the second one considered as being off-competition). This is why Fun-sCOP-glue was considered as off-competition in the CSP track.

Data . PyCSP 3

 .3 Only one integer is required to specify a specific instance. Values of n used for the competition are: 25, 50, 75, 100, 150, 200, 250, 300 Model. The PyCSP 3 model, in a file 'AztecDiamond.py', used for the competition is: Model 1 from pycsp3 import * n = data # order of the Aztec diamond def valid(i, j): if i < 0 or i >= n * 2 or j < 0 or j >= n * 2:

 from pycsp3 import * classes, limits = data demands = [demand for demand, _ in classes] nCars, nClasses, nOptions = sum(demands), len(classes), len(limits) # c[i] is the class of the ith assembled car c = VarArray(size=nCars, dom=range(nClasses)) # o[i][k] is 1 if the ith assembled car has option k o = VarArray(size=[nCars, nOptions], dom={0, 1})

Data . PyCSP 3

 .3 Only one integer is required to specify a specific instance. Values of n used for the instances in the competition are: 15, 16, 17, 18, 19, 20, 22, 24, 26, 28 Model. The PyCSP 3 model, in a file 'CostasArray.py', used for the competition is: Model 4 from pycsp3 import * n = data # x[i] is the row where is put the ith mark (on the ith column) x = VarArray(size=n, dom=range(n)) satisfy(# all marks are on different rows (and columns) AllDifferent(x), # all displacement vectors between the marks must be different [AllDifferent(x[i] -x[i + d] for i in range(n -d)) for d in range(1, n -1)])

PyCSP 3

 3 Model 5 from pycsp3 import * spots, dict_name = data # loading words of the dictionary words = dict() for line in open(dict_name): code = alphabet_positions(line.strip().lower()) words.setdefault(len(code), []).append(code)

Data . PyCSP 3

 .3 Only one integer is required to specify a specific instance. Values of n used for the instances in the competition are: 30, 40, 50, 60, 70, 80 CHAPTER 2. PROBLEMS AND MODELS Model. The PyCSP 3 model, in a file 'DiamondFree.py', used for the competition is: Model 6 from pycsp3 import * n = data # x is the adjacency matrix x = VarArray(size=[n, n], dom=lambda i, j: {0, 1} if i != j else {0}) # y[i] is the degree of the ith node y = VarArray(size=n, dom={i for i in range(1, n

PyCSP 3

 3 The PyCSP 3 model, in a file 'Eternity.py', used for the competition is: Model 7 from pycsp3 import * n, m, pieces = data assert n * m == len(pieces), "badly formed data" max_value = max(max(piece) for piece in pieces) # max possible value on pieces table = {(i, piece[r % 4], piece[(r + 1) % 4], piece[(r + 2) % 4], piece[(r + 3) % 4]) for i, piece in enumerate(pieces) for r in range(4)} # x[i][j] is the index of the piece at row i and column j x = VarArray(size=[n, m], dom=range(n * m)) # t[i][j] is the value at the top of the piece at row i and column j t = VarArray(size=[n + 1, m], dom=range(max_value + 1)) # l[i][j] is the value at the left of the piece at row i and column j l = VarArray(size=[n, m + 1], dom=range(max_value + 1))

Data . PyCSP 3

 .3 Only one integer is required to specify a specific instance. Values of n used for the instances in the competition are: 17, 19, 21, 23, 25, 27, 29, 31, 35, 41 Model. The PyCSP 3 model, in a file 'Hadamard.py', used for the competition is: Model 8 from pycsp3 import * n = data assert n % 2 == 1 m = (n -1) // 2 # x[i] is the ith value of the first sequence x = VarArray(size=n, dom={-1, 1}) # y[i] is the ith value of the second sequence y = VarArray(size=n, dom={-1, 1})

PyCSP 3

 3 25, 0, 0, 12]] } Model. The PyCSP 3 model, in a file 'Hidato.py', used for the competition is: Model 9 from pycsp3 import * n, m, clues = data # clues are given by strictly positive values # x[i][j] is the value in the grid at row i and column j x = VarArray(size=[n, m], dom=range(1, n * m + 1))

Data . PyCSP 3

 .3 Only one integer is required to specify a specific instance. Values of n used for the instances in the competition are: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 Model. The PyCSP 3 model, in a file 'KnightTour2.py', used for the competition is: Model 10 from pycsp3 import * n = data def domain_x(i): r, c = i // n, i % n t = [(r -2, c -1), (r -2, c + 1), (r -1, c -2), (r -1, c + 2), (r + 1, c -2), (r + 1, c + 2), (r + 2, c -1), (r + 2, c + 1)] return {k * n + l for (k, l) in t if 0 <= k < n and 0 <= l < n} # x[i] is the cell number that comes in the tour (by the knight) after cell i x = VarArray(size=n * n, dom=domain_x) satisfy(# the knights form a circuit (tour) Circuit(x), # the first move is set tag(symmetry-breaking) x[0] == n + 2)

 This is Problem 035 on CSPLib. Description (excerpt from CSPLib). The problem (in this variant) is to construct a k × k matrix M with values strictly greater than 1 such that both the determinant of M and the determinant of M when squared values are considered are equal to 1 The solutions to this problem are significant in classifying certain types of topological spaces. Data. Only two integers are required to specify a specific instance. Values of k and d used for the instances in the competition are:

Data .

 . Only one integer is required to specify a specific instance. Values of n used for the instances in the competition are: 20, 50, 80, 110, 140, 170, 200, 230, 260, 290 Model. The PyCSP 3 model, in a file 'NumberPartitioning.py', used for the competition is:

CHAPTER 2 .

 2 PROBLEMS AND MODELS PyCSP 3 Model 12 from pycsp3 import * n = data assert n % 2 == 0, "The value of n must be even" # x[i] is the ith value of the first set x = VarArray(size=n // 2, dom=range(1, n + 1)) # y[i] is the ith value of the second set y = VarArray(size=n // 2, dom=range(1, n + 1))

2. 1 PyCSP 3

 13 . CSP Data. As an illustration of data specifying an instance of this problem, we have: { "preset": [[7, 5, 8], [7, 0, 8], [3, 5, 5], [0, 5, 4], [1, 7, 7]], "forbidden": [] } Model. The PyCSP 3 model, in a file 'Rostering.py', used for the competition is: Model 13 from pycsp3 import * n = 10 preset, forbidden = data def automaton():

Data .

 . Only one integer is required to specify a specific instance. Values of n used for the instances in the competition are: 5, 6, 7, 8, 9, 10, 11, 12, 15, 20 Model. The PyCSP 3 model, in a file 'Ortholatin.py', used for the competition is: PyCSP 3 Model 14 from pycsp3 import * n = data # x is the first Latin square x = VarArray(size=[n, n], dom=range(n)) # y is the second Latin square y = VarArray(size=[n, n], dom=range(n)) # z is the matrix used to control orthogonality z = VarArray(size=[n * n], dom=range(n * n))

PyCSP 3

 3 ..], "objective": null } Model. The PyCSP 3 model, in a file 'PseudoBoolean.py', used for the competition is: Model 15 from pycsp3 import * n, e, constraints, objective = data x = VarArray(size=n, dom={0, 1}) satisfy(# respecting each linear constraint Sum(x[nums] * coeffs, condition=(op, limit)) for (coeffs, nums, op, limit) in constraints)

•

 QG3: quasigroups for which (a * b) * (b * a) = a • QG5: quasigroups for which ((b * a) * b) * b = a • QG6: quasigroups for which (a * b) * b = a * (a * b)

Data .

 . Only one integer is required to specify a specific instance. Values of n used for the instances in the competition are: • 8, 9, 10, 11, 16 for variant base-v3 • 8, 9, 10, 11, 16 for variant base-v5 • 8, 9, 10, 11, 16 for variant base-v6 Model. The PyCSP 3 model, in a file 'QuasiGroup.py', used for the competition is: PyCSP 3 Model 16 from pycsp3 import * n = data # x[i][j] is the value at row i and column j of the quasi-group x = VarArray(size=[n, n], dom=range(n)) satisfy(# ensuring a Latin square AllDifferent(x, matrix=True),

 { "preferences": [[3,4,2,6,5], [6,5,4,1,3], [2,4,5,1,6], [5,2,3,6,1], [3,1,2,4,6], [5,1,3,4,2]] } Model. The PyCSP 3 model, in a file 'RoomMate.py', used for the competition is: PyCSP 3 Model 17 from pycsp3 import * preferences = data n = len(preferences) def pref_rank(): pref = [[0] * n for _ in range(n)] # pref[i][k] = j <-> guy i has guy j as kth choice rank = [[0] * n for _ in range(n)] # rank[i][j] = k <-> guy i ranks guy j as kth choice for i in range(n): for k in range(len(preferences[i])): j = preferences[i][k] -1 # because we start at 0 rank

 [2,4,3,3,2,4,1,1,0,0], "colSums":[0,5,0,2,2,3,1,3,2,2] } Model. The PyCSP 3 model, in a file 'SolitaireBattleship.py', used for the competition is: PyCSP 3 Model 18 from pycsp3 import * fleet, hints, rowSums, colSums = data surfaces = [ship.size * ship.cnt for ship in fleet] maxSurf = max(surfaces) pos, neg = [ship.size for ship in fleet], [-ship.size for ship in fleet] n, nTypes = len(colSums), len(pos)

2. 1

 1 . CSP 29 # t[i][j] is 0 iff the cell at row i and col j is unoccupied, the type (size) of the ship fragment otherwise, when positive, the ship is put horizontally, vertically otherwise t = VarArray(size=[n + 2, n + 2], dom=set(neg) | {0} | set(pos)) # cp[i] is the number of positive ship segments of type i cp = VarArray(size=nTypes, dom=range(maxSurf + 1)) # cn[i] is the number of negative ship segments of type i cn = VarArray(size=nTypes, dom=lambda i: {0} if fleet[i].size == 1 else range(maxSurf + 1)) def hint_ctr(c, i, j):

Data .

 . Only one integer is required to specify a specific instance. Values of n used for the instances in the competition are: 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 Model. The PyCSP 3 model, in a file 'SportsScheduling.py', used for the competition is: PyCSP 3 Model 19 from pycsp3 import * nTeams = data nWeeks, nPeriods, nMatches = nTeams -1, nTeams // 2, (nTeams -1) * nTeams // 2 def match_number(t1, t2): return nMatches -((nTeams -t1) * (nTeams -t1 -1)) // 2 + (t2 -t1 -1)

CHAPTER 2 .

 2 PROBLEMS AND MODELS Data. Only one integer is required to specify a specific instance. Values of n used for the instances in the competition are: • 3, 4, 5 for main variant • 3, 4, 5 for variant 'table'

Model . PyCSP 3

 .3 The PyCSP 3 model, in a file 'Superpermutation.py', used for the competition is: Model 20 from pycsp3 import * n = data m = sum(factorial(i) for i in range(1, n + 1)) # the length of the sequence assert 2 <= n <= 5, "for the moment, the model is valid for n between 2 and 5" permutations = list(permutations(list(range(1, n + 1)))) nPermutations = len(permutations) # x[i] is the ith value of the sequence x = VarArray(size=m, dom=range(1, n + 1)) if not variant(): # p[j] is the index in the sequence of the first value of the jth permutation p = VarArray(size=nPermutations, dom=range(m)) satisfy(# all permutations start at different indexes tag(redundant-constraints) AllDifferent(p), # ensuring that each permutation occurs in the sequence [x[p[j] + k] == permutations[j][k] for k in range(n) for j in range(nPermutations)]) elif variant("table"): nPatterns = m -n + 1 # a pattern is a possible subsequence of length n gap = nPatterns -nPermutations # the gap corresponds to the flexibility we have

PyCSP 3

 3 3, 15, 15, 15, 15, 15, 15, 15, 15],[3, 99999, 15, 15, 15, 15, 15, 15, 15, 15], ...] } Model. The PyCSP 3 model, in a file 'AircraftLanding.py', used for the competition is: Model 21 from pycsp3 import * nPlanes, times, costs, separations = data earliest, target, latest = zip(*times) early_penalties, late_penalties = zip(*costs) # x[i] is the landing time of the ith plane x = VarArray(size=nPlanes, dom=lambda i: range(earliest[i], latest[i] + 1)) # e[i] is the earliness of the ith plane e = VarArray(size=nPlanes, dom=lambda i: range(target[i] -earliest[i] + 1))

PyCSP 3

 3 The PyCSP 3 model, in a file 'ClockTriplet.py', used for the competition is: Model 22 from pycsp3 import * r, n = data # x[i] is the ith number in the circle x = VarArray(size=n, dom=range(1, n + 1)) # z is the minimal value such that any (circular) subsequence of x of size r is <= z z = Var(range(sum(n -v for v in range(r)) + 1)) satisfy(# a permutation is required AllDifferent(x), # any subsequence of size r must be less than or equal to z [Sum(x[j] for j in [(i + k) % n for k in range(r)]) <= z for i in range(n)],

CHAPTER 2 . 3

 23 PROBLEMS AND MODELS PyCSP Model 23 from pycsp3 import * n, c = data # x[i][j] is 1 if a coin is placed at row i and column j x = VarArray(size=[n, n], dom={0, 1}) satisfy([Sum(x[i]) == c for i in range(n)], [Sum(x[:, j]) == c for j in range(n)]) minimize(Sum(x[i][j] * abs(i -j) ** 2 for i in range(n) for j in range(n)))

PyCSP 3

 3 Model 24 from pycsp3 import * nNodes, capacity, demands, distances = data nVehicles = nNodes // 4 # hard coding, which can be at least used for Set A (Augerat, 1995) def max_tour(): t = sorted(demands) i, s = 1, 0 while i < nNodes and s < capacity: s += t[i] i += 1 return i -2 nSteps = max_tour() # c[i][j] is the jth customer (step) during the tour of the ith vehicle c = VarArray(size=[nVehicles, nSteps], dom=range(nNodes)) # d[i][j] is the demand of the jth customer during the tour of the ith vehicle d = VarArray(size=[nVehicles, nSteps], dom=demands) satisfy(AllDifferent(c, excepting=0), # ensuring that all demands are satisfied Cardinality(c, occurrences={0: nVehicles * nSteps -nNodes + 1} + {i: 1 for i in range(1, nNodes)}), # no holes permitted during tours [(c[i][j] != 0) | (c[i][j+1] == 0) for i in range(nVehicles) for j in range(nSteps -1)], # computing the collected demands [demands[c[i][j]] == d[i][j] for i in range(nVehicles) for j in range(nSteps)], # not exceeding the capacity of each vehicle [Sum(d[i]) <= capacity for i in range(nVehicles)], # tag(symmetry-breaking) Decreasing(c[:, 0])) minimize(# minimizing the total traveled distance by vehicles Sum(distances[0

Description .

 . The Cyclic Bandwidth problem is a graph embedding problem. It was first stated by Leung et al. in 1984 in relation with the design of a ring interconnection network.

Data .

 . As an illustration of data specifying an instance of this problem, we have: { "n": 104, "edges": [[30, 101], [101, 43], ...] } Model. The PyCSP 3 model, in a file 'CyclicBandwith.py', used for the competition is: PyCSP 3 Model 25 from pycsp3 import * n, edges = data # x[i] is the label of the ith node x = VarArray(size=n, dom=range(n)) (abs(x[i] -x[j]), n -abs(x[i] -x[j])) for i, j in edges))

],[3, 4]], "hcosts": [3, 3, 3, 2, 2, 1], "pcosts": [1000, 1000, 1000, 1000, 1000, 1000], "demands": [[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100], [50, 200, 50, 50, 200, 250, 250, 100, 150, 150, 50, 200], [250, 50, 350, 50, 250, 50, 250, 50, 350, 100, 50, 50]] } Model. The PyCSP 3 model, in a file 'EchelonStock2.py', used for the competition is: PyCSP 3 Model 26 from pycsp3 import * children, hcosts, pcosts, demands = data n, nPeriods, nLeaves = len(children), len(demands[0]), len(demands) # below, some simplifications gcd = reduce(gcd, {v for row in demands for v in row}) demands = [[row[t] // gcd for t in range(nPeriods)] for row in demands] hcosts = [hcosts[i] * gcd for i in range(n)]

PyCSP 3

 3 : [40, 41, 42, 43, 44, 45, 46, 47], "add": [0, 1, 2, 3, 4, ...], "dependencies": [[8, 16, 17], [8, 19, 20], ...] } Model. The PyCSP 3 model, in a file 'Filters.py', used for the competition is: Model 27 from pycsp3 import * d_add, d_mul, n_add, n_mul, last, add, dependencies = data nOperations = len(dependencies) d = [d_add if i in add else d_mul for i in range(nOperations)] mul = [i for i in range(nOperations) if i not in add] # t[i] is the starting time of the ith operation t = VarArray(size=nOperations, dom=range(101))

Description . A

 . model for the following problem has been originally written by Neng-Fa Zhou in Picat (and translated to Minizinc by Hakan Kjellerstrand for the 2017 Minizinc competition).

CHAPTER 2 .PyCSP 3

 23 PROBLEMS AND MODELSData. As an illustration of data specifying an instance of this problem, we have: { "agents": [[104, 31], [60, 56], [125, 211], ...], "horizon": 113, "neighbors": [[0, 15], [1, 17, 2], [2, 18, 1, 3], ...] } Model. The PyCSP 3 model, in file 'MultiAgentPathFinding.py', used for the competition is: Model 29 from pycsp3 import * agents, horizon, neighbors, = data src, dst = zip(*agents) nAgents, nNodes = len(agents), len(neighbors) if variant("

PyCSP 3

 3 Model. The PyCSP 3 model, in a file 'NurseRostering.py', used for the competition is: Model 30 from pycsp3 import * nDays, shifts, staffs, covers = data if shifts[-1].id != "_off": # if not present, we add first a dummy 'off' shift shifts.append(shifts[0].__class__("_off", 0, None)) # with a named tuple of the same class off = len(shifts) -1 # value for _off lengths = [shift.length for shift in shifts] nWeeks, nShifts, nStaffs = nDays // 7, len(shifts), len(staffs) on_r = [[next((r for r in staff.onRequests if r.

 (nDays -kmax[p])], # minimum consecutive worked shifts [x[i: i + kmin[p] + 1, p] in automaton(kmin[p], True) for p in range(nStaffs) for i in range(nDays -kmin[p])], # managing off days on schedule ends [(imply(x[0][p] != off, x[i][p] != off), imply(x[-1][p] != off, x[-1 -i][p] != off)) for p in range(nStaffs) if kmin[p] > 1 for i in range(1, kmin[p])], # minimum consecutive days off [x[i: i + kday[p] + 1, p] in automaton(kday[p], False) for p in range(nStaffs) for i in range(nDays -kday[p])], # cost of not satisfying on requests [iff(x[d][p] == sp[on_r[p][d].shift], cn[p][d] == 0) for p in range(nStaffs) for d in range(nDays) if on_r[p][d]], # cost of not satisfying off requests [iff(x[d][p] == sp[off_r[p][d].shift], cf[p][d] != 0) for p in range(nStaffs) for d in range(nDays) if off_r[p][d]], # cost of under or over covering [(np[d][s], cc[d][s]) in enumerate(costs(d, s)) for d in range(nDays) for s in range(nShifts)]) minimize(Sum(cn) + Sum(cf) + Sum(cc))

PyCSP 3

 3 Model 32 from pycsp3 import * horizon, capacities, jobs = data nJobs = len(jobs) # s[i] is the starting time of the ith job s = VarArray(size=nJobs, dom=lambda i: {0} if i == 0 else range(horizon)) satisfy(# precedence constraints [s[i] + duration <= s[j] for i, (duration, successors, _) in enumerate(jobs) for j in successors], # resource constraints [Cumulative(tasks=[(s[i], duration, quantities[k]) for i, (duration, _, quantities) in enumerate(jobs) if quantities[k] > 0]) <= capacity for k, capacity in enumerate(capacities)])

PyCSP 3

 3 Model 33 from pycsp3 import * domains, variables, constraints, interferenceCosts, mobilityCosts = data n = len(variables) # f[i] is the frequency of the ith radio link f = VarArray(size=n, dom=lambda i: domains[variables[i].domain]) satisfy(# managing pre-assigned frequencies [f[i] == v for i, (_, v, mob) in enumerate(variables) if v and not (variant("max") and mob)],# hard constraints on radio-links [expr(op, abs(f[i] -f[j]), k) for (i, j, op, k, wgt) in constraints if not (variant("max") and wgt)]) if variant("span"): sum of violation costs Sum(ift(f[i] == v, 0, mobilityCosts[mob]) for i, (_, v, mob) in enumerate(variables) if v and mob) + Sum(ift(expr(op, abs(f[i] -f[j]), k), 0, interferenceCosts[wgt]) for (i, j, op, k, wgt) in constraints if wgt)) ACE A Generic Constraint Solver Christophe Lecoutre CRIL, University of Artois & CNRS Lens, France lecoutre@cril.fr Version 2.0.1 -May 23, 2022 ACE (AbsCon Essence) is an open-source constraint solver, developed in Java. ACE focuses on:

 instance (file) by executing: java ace <xcsp3_file> [options] with: • <xcsp3 file>: an XCSP 3 file representing a CSP or COP instance • [options]: possible options to be used when running the solver Of course, for generating XCSP 3 instances, just write and compile models with the Python library PyCSP 3 [7]. See http://pycsp.org/ Licence. ACE is licensed under the MIT License Code. ACE code is available

 instance (file) by executing: java -jar ACE-ABD.jar <xcsp3_file>[options] with:• <xcsp3 file>: an XCSP 3 file representing a COP instance • [options]: possible options to be used when running the solver Licence. ACE is licensed under the MIT License Code. ACE (not ACE ABD) code is available • on Github: https://github.com/xcsp3team/ace BTD and miniBTD A Tree-decomposition based Approach Mohamed Sami Cherif 1 Djamal Habet 1 Philippe Jégou 1 Hélène Kanso 2

 , UMR 8188 Université d'Artois, F-62307 Lens France audemard@cril.fr

•

 a .c file encoding the instance; • a .log file recording the output from CBMC; • a .sol.xml file containing the solution. Licence. Exchequer, CaDiCaL and XCSP3 Tools are distributed under the MIT License. CBMC is distributed under a BSD-style 4-clause licence.

%

 E -> T E' ex(Si,So) => term(Si,S1), ex_prime(S1,So). % E' -> + T E' | -T E' | e ex_prime(['+'|Si],So) => term(Si,S1), ex_prime(S1,So). ex_prime(['-'|Si],So) =>term(Si,S1), ex_prime(S1,So). ex_prime(Si,So) => So = Si.

 post_constr(allDifferentMatrix(Matrix)) => NRows = len(Matrix), NCols = len(Matrix[1]), foreach (I in 1..NRows) all_different(Matrix[I]) end, foreach (J in 1..NCols) all_different([Matrix[I,J] : I in 1..NRows]) end.

7 ;

 7 command line: DIR/toulbar2 -time=TIMELIMIT -seed=RANDOMSEED -v=-1 BENCHNAME -vns -O=-

-

 sequential solvers in the fast COP track were allocated 4 min of CPU time and 12 min of Wall Clock time, -other sequential solvers were allocated 40 min of CPU time and 120 min of Wall Clock time, -parallel solvers were allocated 160 min of CPU time and 120 min of Wall Clock time.

6

 CHAPTER 1. ABOUT THE SELECTION OF PROBLEMS IN 2022

	CSP Problems		Global Constraints (including extension)
	Aztec Diamond		extension (*)
	Blocked Queens		allDifferent
	Car Sequencing		cardinality, extension, sum
	Costas Arrays		allDifferent
	Crosswords		extension
	Crypto		extension (*)
	Diamond Free		lex, sum
	Eternity		allDifferent, extension
	Hadamard		sum
	Hidato		allDifferent, extension (*)
	Knight Tour		circuit
	Molnar		lex, sum
	Number Partitioning		allDifferent, sum
	Rostering		allDifferent, regular
	Ortho. Latin Squares		allDifferent, extension
	Pseudo-Boolean		sum
	Quasigroup		allDifferent, element
	Room Mate		
	Solitaire Batleship		cardinality, count, extension, regular, sum
	Sports Scheduling		allDifferent, cardinality, count, extension
	Superpermutation		allDifferent, element
	COP Problems	Optimization	Global Constraints (including extension)
	Aircraft Landing	min EXPR	allDifferent, extension, noOverlap
	Clock Triplets	min VAR	allDifferent, sum
	Coins Grid	min SUM	sum
	CVRP	min SUM	allDifferent, cardinality, element, sum
	Cyclic Bandwith	min MAXIMUM	allDifferent
	DC	min SUM	extension, sum
	Echelon Stock	min SUM	sum
	Filters	min MAXIMUM	noOverlap
	Itemset Mining	max SUM	count, lex, sum
	Multi-Agent Path Finding	min MAXIMUM	allDifferent, extension
		min SUM	
	Nurse Rostering	min SUM	count, extension, regular, slide, sum
	Nursing Workload	min SUM	cardinality, sum
	RCPSP	min VAR	cumulative
	RLFAP	min MAXIMUM	
		min N VALUES	
		min SUM	
	Spot5	min SUM	extension
	TAL	min SUM	count, extension
	Triangular	max SUM	sum
	Warehouse	min SUM	count, element
	War or Peace	min SUM	sum

Table 1 .

 1 1: Selected Problems for the main tracks of the 2022 Competition. VAR/EXPR means that a variable/expression must be optimized. For RLFAP and Multi-agent Path Finding, the

type of objective differs depending on instances. When extension is followed by (*), it means that short tables are involved.

generating an XCSP 3 instance (file), you can execute for example: python Hidato.py -variant=table -data=p1.json or with an empty grid of size 10 × 10:

	satisfy(
	# all values must be different
	AllDifferent(x),
	# respecting clues
	[x[i][j] == clues[i][j] for i in range(n) for j in range(m) if clues and clues[i][j] > 0]
)
	if variant('table'):
	def table(i, j):
	corners = {(0, 0), (0, m -1), (n -1, 0), (n -1, m -1)}
	r = 3 if (i, j) in corners else 5 if i in (0, n -1) or j in (0, m -1) else 8
	return [(v, *[v + 1 if l == k else ANY for l in range(r)]) for v in range(1, n * m)
	for k in range(r)]
	+ [(n * m, *[ANY] * r)]
	satisfy(
	# ensuring adjacent consecutive numbers
	(x[i][j], x.around(i, j)) in table(i, j) for i in range(n) for j in range(m)
)
	else: # variant not considered for the competition
	...
	This model involves 1 array of variables and 3 types of constraints: AllDifferent, Extension
	and Intension. A series of 9 instances (with variant 'table') has been selected for the compe-
	tition. For python Hidato.py -variant=table -data=[10,10,null]

 11

	return [t[0][i] * sub if i % 2 == 0 else -(t[0][i] * sub) for i in range(len(t))
	for sub in subterms[i]]
	def determinant(t):
	terms = det_terms(t)
	# we extract coeffs from terms for posting a simpler Sum constraint later
	terms = [(term.sons[0], -1) if term.type == TypeNode.NEG else (term, 1) for term in terms]
	return [t for t, _ in terms] * [c for _, c in terms]
	# x[i][j] is the value of the matrix at row i and column j
	x = VarArray(size=[k, k], dom=range(2, d + 1))
	# y[i][j] is the square of the value of the matrix x at row i and column j
	y = VarArray(size=[k, k], dom=range(4, d * d + 1))
	satisfy(
	# computing y
	[y
	from pycsp3 import *
	from pycsp3.classes.entities import TypeNode
	k, d = data
	def det_terms(t):
	if len(t) == 2:
	return [t[0][0] * t[1][1], -(t[0][1] * t[1][0])]
	subterms = [det_terms([[v for j, v in enumerate(row) if j != i] for row in t[1:]])
	for i in range(len(t))]

table = {

 =

(i, j, i * n + j) for i in range(n) for j in range(n)} satisfy(# ensuring that x is a Latin square AllDifferent(x, matrix=True), # ensuring that y is a Latin square AllDifferent(y, matrix=True), # ensuring that values on diagonals are different tag(diagonals) [AllDifferent(t) for t in [diagonal_down(x), diagonal_up(x), diagonal_down(y), diagonal_up(y)]], # ensuring orthogonality of x and y through z AllDifferent(z), # computing z from x and y

 This problem involves 4 arrays of variables and 5 types of constraints: Sum, Extension, CHAPTER 2. PROBLEMS AND MODELS Cardinality, Regular and Intension. A series of 8 instances has been selected for the competition (coming from Minizinc repository). For generating an XCSP 3 instance (file), you can execute for example:

	python SolitaireBattleship.py -data=sb_13_13_5_1.dzn
	-dataparser=SolitaireBattleship_ParserZ.py
	ensuring the right number of occurrences of ship segments of each type
	[cp[i] + cn[i] == surfaces[i] for i in range(nTypes)],
	# ensuring row connectedness of ship segments
	[t[i + 1] in horizontal_automaton for i in range(n)],
	# ensuring column connectedness of ship segments
	[t[:, j + 1] in vertical_automaton for j in range(n)],
	# tag(clues)

[hint_ctr(c, i, j)

for (c, i, j) in hints] if hints else None)

table =

 =

	a permutation
	y = VarArray(size=nPatterns, dom=range(-1, nPermutations))
	satisfy(
	# identifying each pattern (subsequence of n values)
	[(y[i], x[i:i + n]) in table for i in range(nPatterns)],
	# ensuring that each permutation occurs in the sequence
	Cardinality(y, occurrences={-1: range(gap + 1)}
	+ {i: range(1, gap + 1) for i in range(nPermutations)})
)
	satisfy(
	# setting the first permutation tag(symmetry-breaking)
	[x[i] == i + 1 for i in range(n)],

[(i, *t) for i, t in enumerate(permutations)] table.extend((-1, *(v if k in (i, j) else ANY for k in range(n))) for v in range(n) for i, j in combinations(n, 2)) # y[i] is the index of the permutation x[i:i+n] or -1 if this is not # constraining a palindrome tag(palindrome) [x[i] == x[-1 -i] for i in range(m // 2)])

 This is Problem 086 on CSPLib, called Capacitated Vehicle Routing Problem.Description. The capacitated vehicle routing problem (CVRP) is a VRP in which vehicleswith limited carrying capacity need to pick up or deliver items at various locations. The items have a quantity, such as weight or volume, and the vehicles have a maximum capacity that they can carry. See CVRPLIB.Data.As an illustration of data specifying an instance of this problem, we have:Model. The PyCSP 3 model, in a file 'CVRP.py', used for the competition is:

	{
	"n": 32,
	"capacity": 100,
	"demands": [0,19,...],
	"distances":[
	[0,35,...],
	[35,0,...],
	...
]
	}

table ") : table = [

 ":= (i, v) for i, t in enumerate(neighbors) for v in t] # x[t][a] is the node where is the agent a at time t x = VarArray(size=[horizon + 1, nAgents], dom=range(nNodes))This problem involves 2 arrays of variables and 3 types of constraints: AllDifferent, Extension and Intension. A series of 2 × 10 instances has been selected for the competition2.2. COP(coming from data gently given by N.-F. Zhou). For generating an XCSP 3 instance (file), you can execute for example: Python file allowing us to load data that are not directly given in JSON format). Note that for saving data in JSON files, you can add the option '-dataexport'.

	python MultiAgentPathFinding.py -variant=table -data=g16_p10_a05.pi
	-dataparser=MultiAgentPathFinding_ParserPicat.py
	python MultiAgentPathFinding.py -variant=table-mks -data=g16_p10_a05.pi
	-dataparser=MultiAgentPathFinding_ParserPicat.py
	where 'g16 p10 a05.pi' is a data file and 'MultiAgentPathFinding ParserPicat.py' is a parser
	(i.e., a
	# e[a] is the time when the agent a arrives at its destination
	e = VarArray(size=nAgents, dom=range(horizon + 1))
	satisfy(
	# agents must occupy different node at any time
	[AllDifferent(x[t]) for t in range(horizon + 1)],
	# agents at their destinations stays there
	[(x[t][a] != dst[a]) | (x[t + 1][a] == dst[a]) for t in range(horizon)
	for a in range(nAgents)],
	# agents can only move to connected nodes
	[(x[t][a], x[t + 1][a]) in table for t in range(horizon) for a in range(nAgents)],
	# setting agents at their initial positions
	[x[0][a] == src[a] for a in range(nAgents)],
	# setting agents at their final positions
	[x[-1][a] == dst[a] for a in range(nAgents)],
	# computing end times of agents
	[(e[a] == t + 1) == ((x[t][a] != dst[a]) & (x[t + 1][a] == dst[a]))
	for t in range(horizon) for a in range(nAgents)]
)
	if subvariant("mks"):
	minimize(
	Maximum(e)
)
	else:
	minimize(
	Sum(e) + nAgents
)

 day == day), None) if staff.onRequests else None for day in range(nDays)] for staff in staffs] off_r = [[next((r for r in staff.offRequests if r.day == day), None) if staff.offRequests else None for day in range(nDays)] for staff in staffs] # kmin, kmax, kday for minConsecutiveShifts, maxConsecutiveShifts, minConsecutiveDaysOff _, maxShifts, minTimes, maxTimes, kmin, kmax, kday, maxWeekends, daysOff, _, _ = zip(*staffs)

sp = {shifts[i].id: i for i in range(nShifts)} # position of shifts in the list 'shifts' table = {(sp[s1.id], sp[s2]) for s1 in shifts if s1.forbiddenFollowingShifts for s2 in s1.forbiddenFollowingShifts} # rotation def costs(day, shift): if shift == off: return [0] * (nStaffs + 1) r, wu, wo = covers[day][shift] return [abs(r -i) * (wu if i <= r else wo) for i in range(nStaffs + 1)]

Table 2 :

 2 The Glasgow Constraint Solver is an open source constraint programming solver, developed in C++20. Currently it supports only integer variables, a few global constraints (all different, count, element, integer linear inequalities, table, min / max, n value), and simple backtracking with smallest domain first as a variable-ordering heuristic. It is not particularly optimised for performance. However, it has one unusual feature: it can produce proof logs for any problem that it can solve, allowing for independent verification of its results[1]. Initial local marginals computed by each constraint. The superscript refers to the constraint whereas the subscript refers to the variable. Notice e.g. how constraints ii and iii initially give opposing beliefs for variable d.

	The Glasgow Constraint Solver
	Ciaran McCreesh
	University of Glasgow, Glasgow, Scotland
	ciaran.mccreesh@glasgow.ac.uk
	Version of June 22nd, 2022
	Licence. The Glasgow Constraint Solver is licensed under the MIT License

Abstract

 The code of MiniCPBP is available at https://github.com/PesantGilles/MiniCPBPMistral is an open source constraint programming library written in C++ and available on GitHub. It implements a modelling API, however, it can also read instance files in XCSP3 1 or FlatZinc format. Moreover, it is fully interfaced with Numberjack[6] which provides a Python API for modelling and solving combinatorial optimization problems using several back-end solvers.

	Mistral
	Mistral IS a Terrific Recursive Acronym for a Library
	Emmanuel Hebrard
	LAAS-CNRS, Université de Toulouse
	August 2022

Table 4 .

 4 1 and Table 4.2. 1: Standard Tracks.

	Problem	Goal	Exploration Timeout
	CSP	one solution	sequential	40 minutes
	COP	best solution	sequential	40 minutes
	fast COP best solution	sequential	4 minutes
	// COP	best solution	parallel	40 minutes
	Problem	Goal	Exploration Timeout
	MiniCSP	one solution	sequential	40 minutes
	MiniCOP best solution	sequential	40 minutes

Table 4 .

 4 2: Mini-Solver Tracks.

https://github.com/xcsp3team/XCSP3-Java-Tools

http://www.xcsp.org/specifications

Using Gilles Audemard's parser.1

https://github.com/arminbiere/kissat

Acknowledgements

This work has been supported by the project CPER DATA from the "Hauts-de-France" Region.

Acknowledgements

This work has been supported by the project CPER DATA from the "Hauts-de-France" Region.

Acknowledgements

This work would not have taken place without Christophe Lecoutre. I would like to thank him very warmly for his support.

Acknowledgements

This work has been supported by a Royal Academy of Engineering research fellowship.

Acknowledgements

A part of this work has been supported by the project CPER DATA from the "Hauts-de-France" Region. A part of this work was supported by the KIWI project of the "Nouvelle-Aquitaine" Region.

Acknowledgements

toulbar2 has been partly funded by the French Agence Nationale de la Recherche (projects STAL-DEC-OPT from 2006 to 2008, ANR-10-BLA-0214 Ficolofo from 2011 to 2014, and ANR-16-CE40-0028 DemoGraph from 2017 to 2021) and a PHC PROCORE project number 28680VH (from 2013 to 2015). It is currently supported by ANITI ANR-19-P3IA-0004.

Code and documentation. Source code, installation instructions, and instructions on how to solve problems and verify solutions are all available on Github: https://github.com/ciaranm/glasgowconstraint-solver.

CHAPTER 2. PROBLEMS AND MODELS

python Filters.py -data=dct_1_1.dzn -dataparser=Filters_ParserZ.py where 'dct 1 1.dzn' is a data file and 'Filters ParserZ.py' is a parser (i.e., a Python file allowing us to load data that are not directly given in JSON format). Note that for saving data in JSON files, you can add the option '-dataexport'.

Itemset Mining

Description. A model for the following problem has been originally written by Tias Guns for the 2011, 2012 and 2013 Minizinc competitions. A traditional task in machine learning is the task of concept learning. Given a dataset of positive and negative examples, the aim is here to find a formula in disjunctive normal form which characterizes the positive examples as accurately as possible. In this challenge this task is modeled as a discrete constraint optimization problem; the aim is to find a formula which is as accurate as possible.

The model is based on the link between DNF formulas and pattern sets in the data mining literature. It represents the formula as a set of itemsets, and imposes constraints on both the itemsets and the set of itemsets. It is based on the 'Constraint Programming for Itemset Mining' framework called CP4IM. See also [7]. Data. As an illustration of data specifying a toy instance of this problem, we have: { "nItems": 7, "pos": [[1,3], [2,4,6]], "neg": [[0, 2, 5], [1,2,6], [2,3,5], "k": 2 } Model. The PyCSP 3 model, in a file 'ItemsetMining.py', used for the competition is: where '01' is a data file and 'NurseRostering Parser.py' is a parser (i.e., a Python file allowing us to load data that are not directly given in JSON format). Note that for saving data in JSON files, you can add the option '-dataexport'.

Important:

The series of instances, used for the 2022 competition comes from the 2018 competition, and compiling instances from the PyCSP 3 model above may produce slighlty different files.

Nursing Workload

This is Problem 069 on CSPLib, called Balanced Nursing Workload Problem.

Description (excerpt from CSPLib). Given a set of patients distributed in a number of hospital zones and an available nursing staff, one must assign a nurse to each patient in such a way that the work is distributed evenly between nurses. Each patient is assigned an acuity level corresponding to the amount of care he requires; the workload of a nurse is defined as the sum of the acuities of the patients he cares for. A nurse can only work in one zone and there are retrictions both on the number of patients assigned to a nurse and on the corresponding workload. We balance the workloads by minimizing their standard deviation.

Data.

As an illustration of data specifying an instance of this problem, we have:

CHAPTER 2. PROBLEMS AND MODELS

The model involves 1 array of variables, many constraints Intension and an objective that varies according to the chosen variant. Note that expr allows us to build an expression (constraint) with an operator given as first parameter (possibly, a string). The complete series of 25 instances, 11 CELAR (scen) and 14 GRAPH, has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python Rlfap.py -variant=span -data=Rlfap-span-graph-03.json python Rlfap.py -variant=card -data=Rlfap-card-graph-01.json python Rlfap.py -variant=max -data=Rlfap-max-graph-05.json

Spot5

Description. A model for the following problem has been originally written by Simon de Givry for the 2014 and 2015 Minizinc competitions. The problem is roughly described (by Simon) as follows:

• given a set S of photographs which can be taken the next day from at least one of the three instruments, w.r.t. the satellite trajectory;

• given, for each photograph, a weight expressing its importance;

• given a set of imperative constraints: non overlapping and minimal transition time between two successive photographs on the sameinstrument, limitation on the instantaneous data flow through the satellite telemetry and on the recording capacity on board; find an admissible subset S of S (imperative constraints met) which maximizes the sum of the weights of the photographs in S'. See also [2].

Data. As an illustration, the structure of the data specifying an instance of this problem is:

{ "domains": ..., "costs": ..., "f2x": ..., "f2y": ..., "nTuples2": ..., "offsets2": ..., "t2": ..., "f3x": ..., "f3y": ..., "f3z": ..., "nTuples3": ..., "offsets3": ..., "t3": ... } Model. The PyCSP 3 model, in a file 'Spot5.py', used for the competition is: # ternary constraints

This problem involves 1 array of variables and 1 type of constraints: Extension. A series of 10 instances has been selected for the competition (coming from data generated by S. de Givry for Minizinc competitions). For generating an XCSP 3 instance (file), you can execute for example: python Spot5.py -data=0412.json

TAL

TAL is a problem of natural language processing. The series of instances, used for the 2022 competition comes from the 2018 competition. The model has not been converted in PyCSP 3 .

Triangular

Description. This problem, taken from Daily Telegraph and Sunday Times, is to find, for an equilateral triangular grid of size n (length of a side), the maximum number of nodes that can be selected without having all selected corners of any equilateral triangle of any size or orientation. It was also used in Minizinc Competitions (2015 and 2019).

Data.

Only one integer is required to specify a specific instance. Values of n used for the instances in the competition are: 10,15,20,22,25,28,30,32,35,38 Model. The PyCSP 3 model, in a file 'Triangular.py', used for the competition is:

This problem involves 1 array of variables and 1 type of constraints: Sum. A series of 10 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python Triangular.py -data=25

Warehouse

This is Problem 034 on CSPLib, called Warehouse Location Problem.

Description (from CSPLib). In the Warehouse Location problem (WLP), a company considers opening warehouses at some candidate locations in order to supply its existing stores. Each possible warehouse has the same maintenance cost, and a capacity designating the maximum number of stores that it can supply. Each store must be supplied by exactly one open warehouse. The supply cost to a store depends on the warehouse. The objective is to determine which warehouses to open, and which of these warehouses should supply the various stores, such that the sum of the maintenance and supply costs is minimized.

Data.

As an illustration of data specifying an instance of this problem, we have: where 'Warehouse Random.py' is a generator of instances, using specified values. Note that for saving data in JSON files, you can add the option '-dataexport'.

War or Peace

Description. Problem based on information from hakank.org. There are n countries. Each pair of two countries is either at war or has a peace treaty. Each pair of two countries that has a common enemy has a peace treaty. What is the minimum number of peace treaties? Data. Only one integer is required to specify a specific instance. Values of n used for the instances in the competition are:

minimizing the number of peace treaties Sum(x))

This problem involves 1 array of variables and complex forms of constraints. A series of 10 instances has been selected for the competition. For generating an XCSP 3 instance (file), you can execute for example: python WarOrPeace.py -data=10 python WarOrPeace.py -variant=or -data=10

Chapter 3

Solvers

In this chapter, we introduce the solvers and teams having participated to the XCSP 3 Competition 2022.

• ACE (Christophe Lecoutre)

• ACE ABD (extension of ACE by Thibault Falque and Hughes Wattez)

• BTD, miniBTD (Mohamed Sami Cherif, Djamal Habet, Philippe Jégou, Hélène Kanso, Cyril Terrioux)

• Choco (Charles Prud'homme and Jean-Guillaume Fages)

• CoSoCo (Gilles Audemard)

• Exchequer (Martin Mariusz Lester)

• Fun-sCOP (Takehide Soh, Daniel Le Berre, Hidetomo Nabeshima, Mutsunori Banbara, Naoyuki Tamura)

• Glasgow (Ciaran McCreesh)

• MiniCPBP (Gilles Pesant and Auguste Burlats)

• Mistral (Emmanuel Hebrard and Mohamed Siala)

• Nacre (Gaël Glorian)

• Picat (Neng-Fa Zhou)

• RBO, miniRBO (Mohamed Sami Cherif, Djamal Habet, Cyril Terrioux)

• Sat4j-CSP-PB (extension of Sat4j by Thibault Falque and Romain Wallon)

• toulbar2 (David Allouche et al.)

ACE ABD An unofficial ACE extension with Agressive Bound Descent

Thibault Falque 1,2 , Hugues Wattez • integer variables, including 0/1 (Boolean) variables,

• state-of-the-art table constraints, including ordinary, starred, and hybrid table constraints,

• popular global constraints (AllDifferent, Count, Element, Cardinality, Cumulative, etc.),

• search heuristics, as e.g., wdeg [1,8], last-conflict [5], BIVS [3], solution-saving [7],

• mono-criterion optimization • aggressive bound descent [4] ACE ABD is derived from the open-source constraint solver ACE. This is an unofficial version of ACE composed, in particular, of an aggressive bound descent policy [4]. With the ABD policy enabled, new bounds are modified exponentially as long as the searching algorithm is successful (into The solver works by translating an XCSP3 instance into a C program, which violates an assertion only if the values of the variables in the program give a solution to the instance. Then it uses the bounded model-checker CBMC [2] to attempt to verify absence of assertion violations. If CBMC finds an assertion violation, it reports back a counterexample trace, which Exchequer turns into an instance solution. If it finds no assertion violation, Exchequer reports that the instance is unsatisfiable.

CBMC itself works by translating a C program into a giant SAT instance, which it solves using a SAT solver. For the competition, we have used a version of CBMC built with the more modern SAT solver CaDiCaL [1] instead of the default MiniSat. This is slower on some easy problems, but tends to be faster on harder ones.

It is unlikely that Exchequer's approach will ever be better than a direct encoding in SAT. It was written primarily to demonstrate that its approach is feasible, and to see how much worse it is.

Exchequer's translation is quite naive. It can easily generate very large C files, for example, if the instance contains a large extension constraint that is used as a template. In this case, even if the instance is solved, most of the time is spent by CBMC generating the SAT instance, not running the SAT solver.

Encoding example. Consider the following XCSP3 example: <instance format="XCSP3" type="CSP"> <variables> <var id="x"> 1..10 </var> <var id="y"> 1..100 </var> </variables> <constraints> <intension> eq(y,mul(x,x)) </intension> </constraints> </instance> Exchequer produces the following C encoding (with boilerplate header code omitted):

Fun-sCOP

XCSP3 Competition 2022

Takehide Soh 1 , Daniel Le Berre 2 , Hidetomo Nabeshima 3 , Mutsunori Banbara 4 , and Naoyuki Tamura 1

1 Kobe University, Japan, {soh@lion.,tamura@}kobe-u.ac.jp 2 CRIL-CNRS, Université d'Artois, France, leberre@cril.fr 3 University of Yamanashi, Japan, nabesima@yamanashi.ac.jp

4 Nagoya University, Japan, banbara@nagoya-u.jp

Overview

Fun-sCOP is a SAT-based constraint programming system written in Scala, which aims to be a re-implementation of Sugar [5] written in Java. Compared to the previous version named scop, Fun-sCOP equips the hybrid encoding integrating the order and log encodings [3]. The following figure shows the framework of Fun-sCOP. We explain each part of this framework in the remaining of this paper. Parsing is done by using the official tool XCSP3-Java-Tools 5 . Fun-sCOP accepts constraints in the XCSP3-core language 6 . Normalizations are executed as follows:

-Global Constraints are decomposed into intensional constraints. We use extra pigeon hole constraints [5] for alldifferent constraints. -Extensional constraints are translated into intensional constraints by using a variant of multi-valued decision diagrams. This is a difference to ones in Sugar. -Intensional Constraints are normalized to be in the form of a conjunction of disjunctions of linear comparisons ∑ i a i x i ≥ k where a i 's are integer coefficients, x i 's are integer variables and k is an integer constant. Tseitin transformation is used to avoid the combinatorial explosion.

Propagations and Encoding Methods

Constraint propagations are executed to the normalized CSP (clausal CSP, i.e., in the form of CNF over linear comparisons ∑ i a i x i ≥ k) to remove redundant values, variables, and linear comparisons. It is done by using an AC3 like algorithm.

Encoding methods are as follows:

-Order Encoding [7,6] is an encoding method using propositional variables p x≥d 's meaning x ≥ d for each domain value d of each integer variable x. To encode linear comparisons, Algorithm 1 of the literature [6] is used in Fun-sCOP.

-Hybrid Encoding [3] is an encoding method integrating the order and log encodings without channeling constraints. In the hybrid encoding, each variable is encoded by either the order encoding or the log encoding, and each constraint is encoded according to its variables' encoding. The degree of hybridization can be controlled by classifying the order-encoded and log-encoded variables. Fun-sCOP uses the criterion domain product to classify variables as same as in [3].

SAT Solvers

GlueMiniSat [2] is used for the order encoding. It is a winning solver in the SAT solver competitions, and the submitted version of GlueMiniSat uses a special propagator for the axiom clauses of the order encoding.

CaDiCaL 7 is used for the hybrid encoding. It is also a winning solver in the recent SAT solver competitions, and shows a good performance in our preliminary evaluation.

MiniCPBP A Constraint Solver Propagating Beliefs

Gilles Pesant, Auguste Burlats

Polytechnique Montréal Canada {gilles.pesant, auguste.burlats}@polymtl.ca

June 2022

MiniCPBP is an open-source constraint solver used as a research platform by our team. It is developed in Java on top of MiniCP [3] and extends constraint propagation with belief propagation [4]. Among other things, it can use this extra information to guide search [1]. MiniCPBP features:

• integer variables, including 0/1 (Boolean) variables;

• many simple constraints (Abs, Or, Maximum, Minimum, =, =, ≤, ×) and, in most cases, their reification;

• several common global constraints (Element, Sum, AllDifferent, Cardinality, Table, Regular, Among/AtLeast/AtMost/Exactly, Circuit, Disjunctive, Cumulative);

• dedicated weighted counting algorithms for most of these constraints in order to propagate beliefs;

• novel branching heuristics exploiting the propagated beliefs about variable-value assignments (e.g. minEntropy, maxMarginal, maxMarginalStrength).

CP-based Belief Propagation

MiniCPBP implements a generalization of constraint propagation which, instead of simply propagating unsupported variable-value assignments, propagates beliefs about each possible variable-value assignment in the form of (marginal) probability distributions over each variable's domain. Such propagation is organized as synchronized message passing (iterated belief propagation). We illustrate this on a small example taken from [4]. Consider variables a, b, c and d with identical domains {1, 2, 3, 4}, and the following constraints : Nacre [3,4] is a constraint solver written in C++. The main purpose of this solver is to experiment nogood recording (with a clause reasoning engine) in Constraint Programming (CP). In particular, the data structures of the solver have been carefully designed to play around nogoods and clauses.

Usage. You can compile and run Nacre using the following lines: cd core && make -j ./nacre_mini_release <xcsp3_file> method [options] with:

• <xcsp3 file>: a xcp3 file representing a CSP instance

• method: the method to use for solving the CSP instance. Possible values are:

--complete: Simple complete search --incng: Complete search with Increasing Nogoods [6] --nld: Complete search with Negative last-decision nogoods [5] --ca: Hybrid solving with conflict analysis, SAT-based lazy explanations [1,2] • [options]: possible options to be used when running the solver (e.g. -l100 for Luby sequence where every terms is multiplied by 100 as restart policy; -cm for competition verbose mode)

Nacre is enlisted in the Minitrack -CSP ; line used for the competition:

./nacre_mini_release BENCHNAME -ca -l100 -cm Licence. Nacre is licensed under the GNU General Public License v3.0.

Code. Nacre code is available online at github.com/gglorian/Nacre 1 .

1 New official Nacre repository, forked from previous competition sources.

RBO and miniRBO

Mohamed Sami Cherif Djamal Habet For the competition, we have made the following choices:

• The variable heuristic relies on Last Conflict [4] combined with a multi-armed bandit with 9 arms [1]. The i-th arm is based on CHS (for Conflict History Search [2]) with α = 0.1 * i and δ = 10 -4 .

• Solution-saving [5] combined with lexico is used as value ordering heuristic.

• Generalized arc-consistency is enforced by a propagation-based system exploiting events.

• (mini)RBO relies on restarts performed according to a geometric restart policy based on the number of conflicts with an initial cutoff set to 50 and an increasing factor set to 1.05, (mini)RBO is able to handle all the constraints and objective functions used in the competition.

Licence. (mini)RBO is licensed under the MIT License.

Code. The source code is available on Github: https://github.com/Terrioux/BTD-RBO.

Command line. (mini)RBO can be launched thanks to the following command line:

SOLVER TIMELIMIT BENCHNAME

where:

• SOLVER is the path to the executable BTD or miniBTD,

• TIMELIMIT is the number of seconds allowed for solving the instance,

• BENCHNAME is the name of the XML file representing the instance we want to solve.

Sat4j-CSP-PB A Pseudo-Boolean-Based Constraint Solver

Thibault Falque 1 Description of the solving approach Sat4j-CSP-PB encodes the constraints it receives as pseudo-Boolean (PB) constraints of the form n i=1 α i ℓ i △ δ, where n is a positive integer, the weights (or coefficients) α i and the degree δ are integers, ℓ i are literals and △∈ {<, ≤, =, ≥, >}. This allows to exploit the reasoning power of PB solvers based on the cutting planes proof system [2,3,5].

For some constraints, using a PB encoding is particularly convenient as it is more natural and more succinct than the clausal encodings that would be used by regular SAT solvers. This is particularly the case for the following constraints:

As PB solvers are extensions of SAT solvers, we can also use clausal encodings for other constraints to encode, even though this often prevents PB solvers to benefit from the full inference power of the cutting planes proof system.

There are however some constraints that are not supported yet, and will lead the solver to output s UNSUPPORTED if one of the following features appears in the input instance: • sat4j-resolution, which implements a resolution-based conflict analysis (PB constraints are lazily encoded as clauses during conflict analysis), • sat4j-cp, which implements a cutting-planes-based conflict analysis, • sat4j-rs, which implements a conflict analysis à la RoundingSat [1], and • sat4j-both, which uses a portfolio of sat4j-cp and sat4j-resolution.

3 Running Sat4j-CSP-PB Sat4j-CSP-PB is written in Java 11 and uses the Jigsaw modular system. Java 11 is thus required to compile and execute this solver. To compile Sat4j-CSP-PB, you may run the following command at the root of the project:

./gradlew csp Then, you will be able to run the solver using the wrapper bash script provided along with the solver:

./exec/sat4j-csp.sh

Code

The source code of Sat4j-CSP-PB is available on OW2's GitLab.