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Abstract. We show that the symbol of a bounded composition operator on
the Wiener algebra of Dirichlet series does not need to belong to this algebra.
Our example even gives an absolutely summing (hence compact) composition
operator.
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1 Introduction

In [3] (see also [5]), composition operators on the Wiener algebra A+ of all
absolutely convergent Dirichlet series were studied.

Recall that A+ is the space of all analytic maps f : C 0 → C which can be
written

f(s) =

∞
∑

n=1

ann
−s with ‖f‖A+ :=

∞
∑

n=1

|an| < +∞ ,

where, for θ ∈ R, we note C θ = {z ∈ C ; Re z > θ}. If φ : C 0 → C 0 is an
analytic function, the composition operator Cφ : A+ → A+ of symbol φ on this
space is defined as Cφ(f) = f ◦ φ. Gordon and Hedenmalm, for the Hilbert
space H 2, showed in [6] that such a symbol has necessarily the form

(1.1) φ(s) = c0 s+ ϕ(s) ,

where c0 ≥ 0 is an integer and ϕ is a convergent Dirichlet series with values in
C 0, that is ϕ : C 0 → C 0 is an analytic function which can be written ϕ(s) =
∑∞

n=1 cnn
−s for Re s large enough. Moreover, this Dirichlet series is uniformly

convergent in C ε for all ε > 0 ([13, pages 1625–1626 and Theorem 3.1]; see also
[12, Theorem 8.4.1, page 245]).

It is shown in [3, Theorem 2.3] that Cφ is bounded on A+ if and only if
supN≥1 ‖N−φ‖A+ < +∞, and that it is compact if and only if ‖N−φ‖A+ −→

N→∞
0.

Note that it is actually proved in [6, Theorem 4] that if N−φ is a Dirichlet series
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for allN ≥ 1, then φ as necessarily the form (1.1). Then ‖N−φ‖A+ = ‖N−ϕ‖A+ ,
so c0 plays no role, so we assume in the sequel that c0 = 0.

When X is a Banach space of analytic functions that contains the identity
map u : z 7→ z, and Cφ : X → X is a composition operator, then φ = Cφ(u)
belongs to X . For X = A+, it is not the case, so it is natural to ask if ϕ ∈ A+

when Cϕ : A+ → A+ is a bounded composition operator. The object of this
short note is to give a negative answer (Theorem 2.1).

Let us point out that it is proved in [3, Proposition 2.9] that ϕ ∈ A+ does
not suffice to have a bounded composition operator on A+; the symbol is even
a Dirichlet polynomial

ϕ(s) = c1 + crr
−s + cr2r

−2s

where r ≥ 2 is an integer and cr, cr2 > 0. For such a Dirichlet polynomial, it

is proved that Cϕ is not bounded if Re c1 <
(cr)

2

8 c
r2

and cr ≤ 4 cr2 (for example,

cr = 4, cr2 = 1 and Re c1 < 2).

2 Main result

Recall that ϕ : C 0 → C is a convergent Dirichlet series, if ϕ is analytic on
C 0 and we can write ϕ(s) =

∑∞

n=1 ann
−s for Re s large enough.

Theorem 2.1. There exists a convergent Dirichlet series ϕ inducing a bounded

composition operator Cϕ : A+ → A+, but such that ϕ /∈ A+. Moreover, ϕ ∈ H
p

for all p <∞ and Cϕ is compact and absolutely summing.

Let us recall the definition of the Hardy space H p of Dirichlet series, fol-
lowing [2]. That uses the Bohr representation of Dirichlet series. Let (pj)j≥1

be the increasing sequence of all the prime numbers (so p1 = 2, p2 = 3, p3 = 5,
and so on). If n = pα1

1 pα2

2 · · · pαr
r is the decomposition of the integer n in

prime factors, to the Dirichlet series ϕ(s) =
∑∞

n=1 ann
−s is associated the Tay-

lor series (∆ϕ)(z) =
∑

α
anz

α1

1 zα2

2 · · · zαr
r , where α = (α1, α2, . . . , αr, 0, 0, . . .).

Due to Kronecker’s theorem, ϕ is bounded if and only if ∆ϕ is bounded, and
‖ϕ‖∞ = ‖∆ϕ‖∞. The Hardy space H p is the space of all convergent Dirich-
let series ϕ for which ∆ϕ belongs to the Hardy space Hp(T∞), with the norm
‖ϕ‖H p = ‖∆ϕ‖Hp .

Note that A+ is isometrically isomorphic, by this map ∆, to the Wiener
algebra A+(T∞).

Let us also recall that a bounded linear map u : X → Y between two Banach
spaces X and Y is r-summing (1 ≤ r < ∞) if there is a positive constant K
such that

( n
∑

k=1

‖u(xk)‖r
)1/r

≤ K sup
ξ∈BX∗

( n
∑

k=1

|ξ(xk)|r
)1/r

for all x1, . . . , xn ∈ X , n ≥ 1, and where BX∗ is the unit ball of X∗. For r = 1,
these operators are also said absolutely summing.

2



Proof of the theorem. We are going to take a symbol ϕ of the form ϕ(s) =
∑∞

k=1 ck 2
−ks = f(2−s), where f : D → C 0 is an analytic function such that

supN≥1 ‖N−f‖A+(D) < +∞, but f /∈ H∞.
Recall that A+ = A+(D) is the space of all analytic functions u : D → C

such that u(z) =
∑∞

n=0 anz
n, with ‖u‖A+(D) :=

∑∞
n=0 |an| < +∞.

We choose for f a conformal map sending the unit disk D onto the half-strip

R = {z ∈ C ; Re z > 1 and |Im z| < π} .

Explicitly, we take f = τ1 ◦ L ◦ h ◦ c ◦ T , where

T (z) =
1 + z

1− z
; c(z) = eiπ/4

√
z ;

h(z) =
iz + 1

z + i
; L(z) = −2 log z ;

and τ1(z) = z + 1. T maps the unit disk D onto the right-half plane; then c
sends the right-half plane onto the first quadrant; h the first quadrant onto the
right-half of D; L this right-half of D onto the half-strip {|Im z| < π,Re z > 0},
and finally the translation τ1 sends this half-strip onto the half-strip R.

This map is clearly not in H∞, but, for every β ∈ (0, π/2), there is a positive
constant Cβ such that R+Cβ is contained in the angular sector of vertex 0 and
of opening β; it follows (see [4, Theorem 3.2]) that f +Cβ ∈ Hp for all p < π/β;
so f ∈ Hp for all p <∞. We can also see that

f(eit) = α log | i− eit|+ g(t) ,

with g ∈ L∞ and α a constant, so that f ∈ HΨ1 , the Hardy-Orlicz space
attached to the Orlicz function Ψ1(x) = ex − 1, and

‖f‖p = O (p)

as p goes to infinity.
Since f /∈ H∞, we a fortiori have f /∈ A+, so ϕ /∈ A+. However ϕ ∈ H p for

all p <∞ since f ∈ Hp for these values of p.

We now have to show that N−ϕ ∈ A+, i.e. N−f ∈ A+, for all N ≥ 1. This
is clear for N = 1. For N ≥ 2, we have N−f = exp (−f logN), and the range
of f logN is the half-strip

RN = {z ∈ C ; Re z > logN and |Im z| < π logN} .

Under the exponential map e−z, ∂RN is transformed as follows:
1) the vertical segment [logN − iπ logN, logN + iπ logN ] is sent onto the

circle of center 0 and radius 1/N , browsed logN times;
2) the half-line {t logN + iπ logN ; t ≥ 1} is one-to-one mapped onto the

radius (0, e−iπ logN/N ];
3) the half-line {t logN − iπ logN ; t ≥ 1} is one-to-one mapped onto the

radius (0, eiπ logN/N ].
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Hence, if FN = N−f , we have

∫ 2π

0

|F ′
N (eit)| dt = 2

N
+ 2π

logN

N
< +∞ ,

so (N−f )′ ∈ H1. By Hardy’s inequality (see [4, Corollary page 48]), it follows
that N−f ∈ A+, and there exists a positive constant C such that ‖N−f‖A+ ≤
C logN/N . In particular, ‖N−ϕ‖A+ = ‖N−f‖A+ −→

N→∞
0, so Cϕ : A+ → A+ is

compact, by [3, Theorem 2.3].

To end the proof, remark that, writing uN (s) = N−s, we have

∞
∑

N=2

‖Cϕ(uN )‖2A+ =

∞
∑

N=2

‖N−ϕ‖2A+ ≤ C2
∞
∑

N=2

(logN)2

N2
< +∞ .

Hence, using the Cauchy-Schwarz inequality, we can define a bounded linear
operator S : ℓ2 → A+ by sending the N -th vector eN of the canonical basis of ℓ2
to N−ϕ, and we have the factorization Cϕ = ST , where T : A+ → ℓ2 is defined
by setting T (uN) = eN . But A+ is isometrically isomorphic to ℓ1, and the
canonical injection from ℓ1 to ℓ2 is 1-summing (this was first remarked by Pietsch
[10, § 1, Satz 10], and it is a particular case of the Grothendieck theorem). Let
us recall why that holds. To each (αk)k≥1 ∈ ℓ1, we associate the L∞ function
∑∞

k=1 akrk, where (rk)k≥1 is the sequence of the Rademacher functions on [0, 1];
the canonical injection from L∞(0, 1) into L1(0, 1) is absolutely summing (see
[11, top of page 11], or [1, Remark 8.2.9]) and, by Khintchin’s inequalities (see
[8, Chapitre 0, Théorème IV.1], or [9, Chapter 1, Theorem IV.1]), the L1-norm

of
∑∞

k=1 αkrk is equivalent to
(
∑∞

k=1 |αk|2
)1/2

.

It follows that Cϕ is 1-summing.

Note that, since A+ ∼= ℓ1 has the Schur property, and since every q-summing
operator is weakly compact, every q-summing operator into A+ is compact.

A slight modification of the proof gives a variant of Theorem 2.1.

Theorem 2.2. For every p ∈ (1,∞), there exists a convergent Dirichlet series

ϕ such that ϕ ∈ H
q for all q < p, but ϕ /∈ H

p, and such that ϕ induces a

bounded composition operator Cϕ : A+ → A+. Moreover, Cϕ is compact and is

absolutely summing.

Proof. We replace the conformal map f of Theorem 2.1 by a conformal map
f from D onto the intersection of the angular sector {z ∈ C 0 ; | arg z| < π/2p}
with the half-plane C 1. We have f /∈ Hp though f ∈ Hq for all q < p (see [7,
top of page 237]). We set ϕ(s) = f(2−s) for Re s > 0. We have ϕ ∈ H q for all
q < p, but ϕ /∈ H p.

For all N ≥ 1, we have N−f ∈ A+. This is clear for N = 1. For N ≥ 2, let
β = π/2p and γ±(t) = exp(− e±iβt), with t ≥ logN/ cosβ, then the boundary
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of the range of FN = N−f is the union of γ+ and γ−, and of the circle of radius
1/N browsed (1/π) (tanβ) logN times. Since

∫ +∞

logN/ cosβ

|γ′±(t)| dt =
∫ +∞

logN/ cosβ

e−(cosβ)t dt =
1

cosβ

1

N
,

we get that
∫ 2π

0

|F ′
N (eit)| dt = 2

cosβ

1

N
+

tanβ

π

logN

N
< +∞ ,

so F ′
N ∈ H1 and FN = N−f ∈ A+.

Moreover, ‖N−ϕ‖A+ = ‖N−f‖A+ . logN/N −→
N→∞

0, so Cϕ is compact on

A+.

Since
∑∞

N=1 ‖N−ϕ‖2
A+ < +∞, we get, as in the proof of Theorem 2.1, that

Cϕ is 1-summing.

3 Another result

Let us remark that the example of [3, Proposition 2.9] quoted in the Intro-
duction is a Dirichlet polynomial ϕ such that N−ϕ ∈ A+ for all N ≥ 1, though
the associated composition operator Cϕ is not bounded from A+ into itself.

Theorem 3.1. For any non-negative number A ∈ R+, there exists a convergent

Dirichlet series ϕ such that ϕ(C 0) ⊆ CA, but such that, for any N ≥ 2, we have

N−ϕ /∈ A+.

In particular, the composition operator Cϕ is not bounded from A+ into

itself.

That will follow from the following result.

Lemma 3.2. Let N ≥ 2 and let ϕ : C 0 → C be an analytic function such that

N−ϕ ∈ A+. Then, for every a ∈ R, either ϕ(s) has a limit as s tends to ia, or

Reϕ(s) tends to +∞ as s tends to ia.

Proof. Since N−ϕ belongs to A+, it is continuous on C 0; hence it has limits
at every point ia ∈ iR. If this limit is 0, that means that Reϕ(s) −→

s→ia
+∞. If

not, we have lims→iaN
−ϕ(s) = c 6= 0. Therefore, if r < |c|, there is some open

disk V centered at ia such that N−ϕ(s) ∈ D(c, r) when s ∈ V . Let F be a
determination of the logarithm in D(c, r). Then

ψ(s) := F [N−ϕ(s)] −→
s→ia

F (c) .

Since
exp[−ϕ(s) logN ] = N−ϕ(s) = exp[ψ(s)] ,

there exists k = k(s) ∈ Z such that ψ(s) = −ϕ(s) logN + 2k(s)πi. But ϕ and
ψ are continuous on V ∩ C 0; it follows that k(s) is constant. Therefore

ϕ(s) = −ψ(s) + 2kπi −→
s→ia

−F (c) + 2kπi .
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Proof of Theorem 3.1. Let

ϕ(s) = A+ 1 + exp

(

− 1 + 2−s

1− 2−s

)

·

Then ϕ is a convergent Dirichlet series and maps C 0 into CA. However, N−ϕ /∈
A+ because ϕ does not have a limit as s goes to 0.
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