
HAL Id: hal-03768129
https://univ-artois.hal.science/hal-03768129v1

Submitted on 2 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inverse Problems for Gradual Semantics
Nir Oren, Bruno Yun, Srdjan Vesic, Murilo Baptista

To cite this version:
Nir Oren, Bruno Yun, Srdjan Vesic, Murilo Baptista. Inverse Problems for Gradual Semantics. Thirty-
First International Joint Conference on Artificial Intelligence IJCAI-22, Jul 2022, Vienna, Austria.
pp.2719-2725, �10.24963/ijcai.2022/377�. �hal-03768129�

https://univ-artois.hal.science/hal-03768129v1
https://hal.archives-ouvertes.fr


Inverse Problems for Gradual Semantics

Nir Oren1∗ , Bruno Yun1 , Srdjan Vesic2 , Murilo Baptista1

1University of Aberdeen
2CNRS, Univ. Artois, CRIL, France

{n.oren,b.yun,murilo.baptista}@abdn.ac.uk, vesic@cril.fr

Abstract
Gradual semantics with abstract argumentation
provide each argument with a score reflecting
its acceptability.Many different gradual semantics
have been proposed in the literature, each follow-
ing different principles and producing different ar-
gument rankings. A sub-class of such semantics,
the so-called weighted semantics, takes, in addi-
tion to the graph structure, an initial set of weights
over the arguments as input, with these weights
affecting the resultant argument ranking. In this
work, we consider the inverse problem over such
weighted semantics. That is, given an argumen-
tation framework and a desired argument ranking,
we ask whether there exist initial weights such that
a particular semantics produces the given ranking.
The contribution of this paper are: (1) an algorithm
to answer this problem, (2) a characterisation of the
properties that a gradual semantics must satisfy for
the algorithm to operate, and (3) an empirical eval-
uation of the proposed algorithm.

1 Introduction
Abstract argumentation semantics aim to identify the justi-
fication status of arguments by considering interactions be-
tween arguments. Such semantics typically operate over a
directed graph, with nodes representing the (abstract) argu-
ments, and directed edges denoting the interactions between
them, e.g., attacks or supports among others. Standard ar-
gumentation semantics [Baroni et al., 2011; Dung, 1995;
Caminada et al., 2012] identify sets of arguments which are
considered justified (as well as unjustified and undecided). In
contrast, ranking-based semantics seek to assign a ranking (or
ordering) over arguments, with higher ranked arguments be-
ing considered more justified (or “less attacked”) than lower
ranked arguments. Such rankings are — in most ranking-
based semantics — determined by assigning numerical values
(called acceptability degrees) to all arguments, with the rank-
ing on arguments being computed based on the numerical or-
dering. Those ranking-based semantics are called gradual se-
mantics. Note that not all ranking-based semantics follow this
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numerical approach. For instance, the ranking on arguments
obtained from the burden-based or the discussion-based se-
mantics [Amgoud and Ben-Naim, 2013], are computed using
the lexicographical order on vectors of argument scores.

While some ranking-based semantics [Amgoud and Ben-
Naim, 2013; Bonzon et al., 2016; Delobelle, 2017; Amgoud
et al., 2016] only consider the structure of a standard Dung’s
argumentation framework, others take in one or more addi-
tional features, such as a set of initial weights for each argu-
ment [da Costa Pereira et al., 2011; Amgoud et al., 2022];
weights for attacks between arguments [Coste-Marquis et al.,
2012; Yun and Vesic, 2021]; a support relation [Mossakowski
and Neuhaus, 2018; Mossakowski and Neuhaus, 2016; Rago
et al., 2016]; or even set attacks [Yun et al., 2020]. In most
gradual semantics, the final acceptability degree of an argu-
ment then depends on a range of parameters. Here, we focus
on gradual semantics which take into account the structure of
the graph, the initial weights of arguments, and the peculiar-
ities of the semantics being used. Of course, the proposed
approach could easily be generalised to other settings.

Rather than describing how an initial set of argument
weights map to a ranking on arguments via some semantics,
we instead consider the inverse problem. That is, given an
abstract argumentation framework and a desired ranking on
arguments, we seek to identify what initial weights should be
assigned to arguments so as to obtain the desired argument
ranking. We provide an algorithm for undertaking this task
for a set of well-known gradual semantics which satisfy some
basic properties, and evaluate the algorithm’s performance.

While we do not discuss the applications of our results, we
note that potential areas in which they can be used include
persuasion [Polberg and Hunter, 2018] and preference elici-
tation [Mahesar et al., 2018].

The remainder of this paper is structured as follows. In
Section 2, we give the needed background to understand our
approach. In Section 3, we describe our algorithm. Section
4 highlights the properties of the semantics over which the
algorithm operates. Our empirical evaluation is detailed in
Section 5, and we discuss potential applications of this work
as well as avenues for future research in Section 6.

2 Background
We begin this section by providing a brief overview of ab-
stract argumentation, as well as several gradual semantics.



Following this, we introduce the bisection method, a simple
technique for finding the roots of an equation which lies at
the heart of our approach.

2.1 Argumentation
We situate our approach in the context of abstract argumenta-
tion. Arguments are thus atomic entities which interact with
each other via an attack relationship. Such systems are en-
coded as directed graphs (c.f., [Dung, 1995]). Since our de-
parture point here involves assigning each argument an initial
weight, we instead consider weighted argumentation frame-
works (WAFs) [Dunne et al., 2011; Amgoud et al., 2017].

Definition 1 (WAF) A weighted argumentation framework
(WAF) is a triple F = ⟨A,D, w⟩, where A is a finite set
of arguments, D ⊆ A × A is a binary attack relation, and
w : A → [0, 1] is a weighting function assigning an initial
weight to each argument.

The set of attackers of an argument a ∈ A is denoted as
Att(a) = {b ∈ A | (b, a) ∈ D}.

A ranking-based semantics allows us to move from a WAF
to a ranking over arguments. While myriad semantics have
been proposed, we consider the gradual semantics described
in [Amgoud et al., 2022] due to this work’s recency and the
popularity of the semantics described therein. We note in ad-
vance that some of these semantics do not work with our ap-
proach, but we will use these to help explain the properties
of those semantics to which our approach applies. Further-
more, while [Bonzon et al., 2016] describes 13 ranking-based
semantics, only these gradual semantics allow for an initial
weight to be assigned to an argument.

Definition 2 (Gradual Semantics) A gradual semantics σ is
a function that associates to each weighted argumentation
graph F = ⟨A,D, w⟩, a scoring function σF : A → [0, 1]
that provides an acceptability degree to each argument. In
this paper, we consider the gradual semantics σx, for x ∈
{TB, IS,MB,CB,HC}, defined as follows.

• Trust-based semantics σTB [da Costa Pereira et al.,
2011] are defined so that the acceptability degree
of an argument a ∈ A is σF

TB(a) = TB∞(a),
where TBi(a) = 1

2 · TBi−1(a) +
1
2 · min(w(a), 1 −

max
b∈Att(a)

TBi−1(b)) and for all b ∈ A, TB0(b) = w(b).

• The iterative-schema semantics σIS [Gabbay and Ro-
drigues, 2015] is defined such that the acceptabil-
ity degree of an argument a ∈ A is σF

IS(a) =
IS∞(a), where ISi(a) = (1 − ISi−1(a)) ·
min( 12 , 1− max

b∈Att(a)
ISi−1(b))+ ISi−1(a) ·max( 12 , 1−

max
b∈Att(a)

ISi−1(b)) and for all b ∈ A, IS0(b) = w(b).

• The weighted max-based semantics σMB [Amgoud et
al., 2022] is defined such that the acceptability de-
gree of an argument a ∈ A is σF

MB(a) = MB∞(a),
where MBi(a) = w(a)

1+ max
b∈Att(a)

MBi−1(b)
and for all b ∈

A,MB0(b) = w(b) .

a0

a1

a2 a3

Figure 1: Graphical representation of a WAF

a0 a1 a2 a3 Argument ranking
σF
TB 0.43 0.39 0.50 0.30 a3 ≺ a1 ≺ a0 ≺ a2

σF
IS 1.00 0.50 0.00 1.00 a2 ≺ a1 ≺ a0 ≃ a3

σF
MB 0.43 0.30 0.58 0.30 a1 ≃ a3 ≺ a0 ≺ a2

σF
HC 0.43 0.30 0.38 0.30 a1 ≃ a3 ≺ a2 ≺ a0

σF
CB 0.43 0.18 0.17 0.30 a2 ≺ a1 ≺ a3 ≺ a0

Table 1: Acceptability degrees of the arguments from Figure 1

• The weighted card-based semantics σCB [Amgoud et
al., 2022] is defined such that the acceptability de-
gree of an argument a ∈ A is σF

CB(a) = CB∞(a)

where CBi(a) = w(a)

1+|Att∗(a)|+

∑
b∈Att∗(a)

CBi−1(b)

|Att∗(a)|

, for all

b ∈ A, CB0(b) = w(b), and Att∗(a) = {b ∈ Att(a) |
w(b) > 0} if Att∗(a) ̸= ∅ and w(a) otherwise.

• The weighted h-categorizer semantics σHC[Amgoud et
al., 2022] is defined such that the acceptability de-
gree of an argument a ∈ A is σF

HC(a) = HC∞(a)

where HCi(a) = w(a)
1+

∑
b∈Att(a)

HCi−1(b)
and for all b ∈

A, HC0(b) = w(b) .

With the exception of σIS , the ranking on arguments is
obtained from the acceptability degree assigned to them. For
σIS , the semantics returns those arguments whose acceptabil-
ity degree is set to 1. As usual, for every a, b ∈ A, we write
a ≻ b iff a ⪰ b and b ̸⪰ a, a ⪯ b iff a ̸≻ b, a ≺ b iff a ̸⪰ b,
and a ≃ b iff a ⪯ b and a ⪰ b.

Example 1 Let F = ⟨A,D, w⟩ be a WAF, where A =
{a0, a1, a2, a3},D = {(a0, a2), (a1, a1), (a1, a2), (a2, a2),
(a3, a2)}, w(a0) = 0.43, w(a1) = 0.39, w(a2) = 0.92, and
w(a3) = 0.3. The WAF is represented in Figure 1 and the
acceptability degrees for the gradual semantics of Definition
2 are shown in Table 1.

We note that the semantics described above are able to op-
erate on cyclic graphs. Semantics such as DF-Quad [Rago et
al., 2016], while popular, are designed to operate on acyclic
graphs only, and we therefore ignore them in this work.

2.2 The Bisection Method
The algorithm we describe in Section 3 requires us to find
the roots of a continuous function. While many techniques
for doing so exist [Dekker, 1969; Brent, 2013; Verbeke and
Cools, 1995], the bisection method is easily understood and
numerically stable, and is therefore used in our experiments,
though more advanced methods could also be used.



Algorithm 1 The bisection method.
function BISECT(f, α, β, ϵ)

µ← α+β
2

if |f(µ)| < ϵ then return µ
if f(µ) > 0 then return BISECT(f, µ, β, ϵ)
else return BISECT(f, α, µ, ϵ)

end function

Algorithm 1 details the bisection method. As input, the
method takes in a function f , a tolerance ϵ, and upper and
lower bound values (α and β respectively), such that f(β) <
0 < f(α). A single iteration of the algorithm identifies
the midpoint µ = (α + β)/2. If f(µ) > 0, α is set to
µ; if f(µ) < 0, β is set to µ, tightening the upper and
lower bounds. The process then repeats until the absolute
value of the image of the midpoint is sufficiently small, i.e.,
|f((α + β)/2)| < ϵ. Note that one can choose to also stop
when the distance between α and β is small. The number
of iterations required to achieve an error ϵ is bounded by
⌈log2((| α − β |)/ϵ)⌉. Note that for the bisection method to
work correctly and return a unique root, the function f must
be continuous and monotonic in the interval [α, β].

3 The Inverse Problem
Our aim in this work is to identify a set of initial weights
to obtain some desired final ranking on arguments. More
formally, we take as input: (1) an unweighted argumenta-
tion framework ⟨A,D⟩, (2) a gradual semantics σ, and (3)
a desired preference relation ⪰⊂ A × A. Our aim is to
find a weighting function w such that in the resultant WAF
F = ⟨A,D, w⟩, for all a, b ∈ A, σF (a) ≥ σF (b) iff a ⪰ b.

In Sections 3.2 and 3.3, we describe a two phase algorithm
to identify an appropriate weighting function. In phase 1, we
identify an achievable acceptability degree for an argument,
taking into account the desired ranking on arguments. In
phase 2, we undertake a search — using the bisection method
— for the initial weights necessary to achieve this desired ac-
ceptability degree. We begin however by considering several
special cases of the inverse problem.

3.1 Special Cases
We begin by considering the trust-based semantics. If w(a) <
0.5 for all a ∈ A, then σF

TB(a) = w(a), making the in-
verse problem trivial to solve in this case. While such a
solution satisfies the inverse problem, it is at odds with the
intuition behind trust based semantics as described in [da
Costa Pereira et al., 2011]. In cases where, for all a ∈ A,
w(a) ≥ 0.5, the presence of cycles can mean that no solu-
tion exists for the inverse problem under the σTB semantics.
As an example of this, consider the standard 3-cycle WAF:
⟨{a, b, c}, {(a, b), (b, c), (c, a)}, w⟩. If w(a), w(b), w(c) ≥
0.5, the acceptability degrees of all arguments will be 0.5.

Turning to the σIS semantics, we observe that it was de-
signed to have acceptability degrees converge to either 1,
0.5, or 0. This means that the inverse problem is not al-
ways applicable to this semantics as it can only accommo-
date three levels of acceptability. Moreover, there are rank-
ings which cannot be achieved, e.g. consider the simple

WAF: ⟨{a, b}, {(a, b)}, w⟩, it is not possible to get a ≺ b
as σF

IS(a) = 1 and σF
IS(b) = 0, for any weighting w.

Finally, consider a fully connected graph. We can easily
prove the following proposition, which makes the solving the
inverse problem on such graphs trivial.

Proposition 1 For a fully connected WAF F = ⟨A,D, w⟩,
semantics σ ∈ {σMB , σCB , σHC} and any arguments a, b ∈
A, σF (a) ≥ σF (b) iff w(a) ≥ w(b).

Given these special cases, in the remainder of the paper we
consider only σMB , σCB and σHC . We can trivially solve the
inverse problem for fully connected graphs as all the seman-
tics will converge quickly, even in the presence of a signifi-
cant number of arguments and edges.

3.2 Phase 1: Computing Acceptability Degrees
We partition the set of arguments A into a sequence of non-
empty sets of arguments [Ar0, . . . , Arn] such that for any
a, b ∈ Ari, 0 ≤ i ≤ n, a ≃ b, and for any a ∈ Ari, b ∈ Arj
where 0 ≤ i < j ≤ n, a ≻ b. Now consider an argument
a ∈ Ar0. For each semantics, we can reason as follows.

• σMB : Assume that a is attacked by an argument with
acceptability degree 1. If w(a) = 1, its acceptability
degree can be at most 0.5.

• σCB : Assume that a is attacked by n other arguments
with degree 1. Then its acceptability degree can be at
most 1/(2 + n). If a is the most attacked argument in
Ar0, then all other arguments in Ar0 will have an ac-
ceptability degree equal to or greater than this value.

• σHC : Assume that a is attacked by n other arguments
with degree 1. Then its acceptability degree can be at
most 1/(1 + n). If a is the most attacked argument in
Ar0, then all other arguments will have an acceptability
degree equal or greater to this value.

We refer to the aforementioned values as the minimal up-
per bounds for the arguments in Ar0, as this is the lowest
value we are guaranteed to be able to achieve (with the cor-
responding semantics) if the arguments in Ar0 have an initial
weight of 1. Similarly, the maximal upper bound for argu-
ments in Ar0 is 1, achievable if all attackers of arguments in
Ar0 have an acceptability degree of 0. The idea is to make
sure that all the arguments from Ar0 have acceptability de-
gree in the interval [mup, 1], where mup is the minimal up-
per bound corresponding to the semantics in question, e.g. all
the arguments from Ar0 are within [ 1

1+n , 1] for σHC .
Now, consider Ar1. If the maximal upper bound of the ac-

ceptability degree of these arguments is lower than the mini-
mal upper bound for the arguments in Ar0, then we will com-
ply with our desired ranking on arguments. To achieve this,
we set the initial weights of arguments in Ar1 to (just be-
low) the minimal upper bound of Ar0. We can repeat this,
computing initial weights, and concomitant maximal upper
bounds for Ari by considering the minimal upper bounds of
Ari−1. Algorithm 2 describes this process. Note that a small
constant ζ is added to the denominator in all cases to ensure
that the minimal upper bound is still reduced for the special
case where all arguments in some Ari are unattacked.



Algorithm 2 Computing arguments’ minimal upper bounds
function COMPUTEBOUNDS([], , )

return {}
end function

function COMPUTEBOUNDS([Ar0, . . . , Arn],max, σ)
switch σ do

case σMB : min← max/(1 +max+ ζ)

case σHC : min← max/(1+ max
a∈Ar0

|Att(a)|+ ζ)

case σCB : min← max/(2 + max
a∈Ar0

|Att(a)|+ ζ)

return {(Ar0,min)}∪ COMPUTE-
BOUNDS([Ar1, . . . , Arn],min, σ)
end function

function COMPUTEBOUNDS([Ar0, . . . , Arn], σ)
return COMPUTEBOUNDS([Ar0, . . . , Arn], 1, σ)

end function

3.3 Phase 2: Finding the Initial Weights
Having identified appropriate minimum upper bounds for all
Ar0 to Arn, we now turn our attention to finding initial
weights for each argument in these sets so as to have that
argument’s acceptability degree equal to the corresponding
set’s minimum upper bound. By doing this, we obtain our
desired ranking on arguments.

Our approach to achieving this involves picking an argu-
ment and modifying its initial weight (using the bisection
method), causing it to approach its minimum upper bound
value. We then pick another argument and repeat this pro-
cess, until all arguments reach their desired values. There are
several choices we must consider, and optimisations possible,
when instantiating this approach. The most obvious choices
we face revolve around selecting an argument for modifica-
tion, and the decision of how much to modify the selected
argument by. Myriad strategies for argument selection are
possible, and in this work we consider 5 simple strategies:

S1 : Select more preferred arguments for modification first.
The rationale here is that such arguments have higher
acceptability degrees, and fixing their values will cause
fewer perturbations in the remainder of the process.

S2 : Select less preferred arguments for modification first.
Such arguments, with their small degree, would have lit-
tle influence on the network.

S3 : Select arguments further from their target degree first.
By selecting arguments with the largest error first, we
may perturb the network less.

S4 : Select arguments nearest their target degree first. These,
due to needing only minor perturbations, would have
minimal effect on the rest of the argumentation system.

S5 : Pick arguments at random. This is the baseline strategy.

Observe that additional strategies can be used, e.g. pick-
ing arguments with most, or fewest attackers, or which attack
most or fewest arguments, first. We leave consideration of
such strategies to future work.

The bisection method is only guaranteed to work for a
function with a single variable, and selecting an appropriate
strategy is therefore critical to our algorithm’s success. As
discussed in Section 5, some of these strategies work much
better than others, but we are unable to provide an analytical
proof of correctness for any of the strategies.

With regards to how much we should modify a selected
argument, we could do so until it is within some tolerance ϵ of
its acceptability degree, or until a certain number of iterations
of the bisection method have been carried out. The rationale
behind the second approach is that it allows us to respond
to changes in acceptability degrees of other arguments due
to our modifications more rapidly than if we modify only a
single argument at a time.

If d is the desired acceptability degree for an argument a,
then we can use the bisection method to find a new initial
weight wa for a such that |σF (a) − d| ≤ ϵ where σF (a) is
the acceptability degree of a in the WAF where the weight of
a is now wa. To apply the bisection method we need to also
identify an initial upper and lower bound. While we can use
the values 1 and 0 for this, we can also identify tighter bounds,
leading to a small improvement in performance. First, con-
sider the lower bound α passed to the bisection method. Since
our denominator is at least 1, we can set α to the minimal up-
per bound. For β, assume we wish to achieve a minimal upper
bound of m(a) for argument a, which has n attackers. Now
consider σMB , and assume that the strongest attacker has ac-
ceptability degree 1. We have that m(a) = w(a)/(2+ ζ) and
so can set β to min{(2 + ζ) ·m(a), 1}. Using this idea, for
σHC , we can set β to min{m(a) · (1 + n + ζ), 1}, and for
σCB to min{(2 + n+ ζ) ·m(a), 1}.

From a practical point of view, observe that the target ac-
ceptability degree computed in Phase 1 may be very small.
The stopping condition of our bisection method should there-
fore use a relative error |(α+β)/2−m(a)|/m(a) < ϵ rather
than an absolute error. Since we evaluate acceptability de-
grees as part of the bisection method, we can also terminate
our algorithm early if the acceptability degrees returned in
the evaluation match our desired ranking, even if they have
not yet converged to the desired minimum upper bound.

4 Properties
We now examine properties of our approach and the underly-
ing semantics, identifying necessary conditions over the latter
which are needed for the former to work. Given the itera-
tive nature of the underlying semantics, proving that some
of these properties hold is difficult, and in Section 5, we
carry out an empirical evaluation which strongly suggests that
the σMB , σHC and σCB semantics respect these properties.
Properties which we are able to demonstrate are identified
as propositions, with associated proofs in the supplementary
material, while those we are unable to analytically demon-
strate are labelled as conjectures.

The first property we consider involves the weights ob-
tained in Phase 1 (Section 3.2). We need to demonstrate that
the computed weights are achievable. While we can easily
demonstrate that the computed weight is achievable in isola-
tion, doing so for the entire system is more difficult.



Conjecture 1 (Weighting Validity) For any unweighted ar-
gumentation graph ⟨A,D⟩ and σ ∈ {σMB , σHC , σCB},
there is a weighting function w such that for all 0 ≤ i ≤ n,
for all a ∈ Ari, σF (a) is equal to its minimum upper bound
(as computed by Algorithm 2), where F = ⟨A,D, w⟩.

In Phase 2, for the bisection method to operate, we must
demonstrate that our semantics is continuous (otherwise we
may be unable to converge to a solution); and that these
changes are (strongly) monotonic (as otherwise we may have
any number of solutions). Thus, our solution satisfies unique-
ness (though uniqueness does not imply monotonicity).

Property 1 (Uniqueness) Given two WAFs F =
⟨A,D, w⟩,F ′ = ⟨A,D, w′⟩ and some a ∈ A such that
w(a) ̸= w′(a) and for all b ̸= a ∈ A, w(b) = w′(b). It holds
that σF (a) ̸= σF ′

(a), for σ ∈ {σMB , σCB , σHC}.
Property 2 (Continuity) A gradual semantics σ satisfies
continuity iff for any WAF F = ⟨{a1, a2, . . . , an},D, w⟩,
XF = (σF (a1), σ

F (a2), . . . , σ
F (an)), we can find F ′ =

⟨{a1, a2, . . . , an},D, w′⟩ (with unbounded weights) such
that there is at least one a ∈ A s.t. w(a) ̸= w′(a) and
|XF ′ − XF | < δ for any positive δ. We say that σ satis-
fies bounded continuity iff it satisfies continuity and the initial
weights for F ′ are restricted to [0, 1].

Property 3 (Strong Monotonicity) A gradual semantics σ
satisfies strong monotonicity iff for any two WAFs F =
⟨A,D, w⟩,F ′ = ⟨A,D, w′⟩ for which there is some a ∈ A
such that w(a) = w′(a) + δ, δ > 0 and for all b ∈ A \
{a}, w(b) = w′(b), it holds that σF (a) > σF ′

(a).

This in turn yields the following proposition.

Proposition 2 A gradual semantics σ which does not satisfy
strong monotonicity or bounded continuity could have multi-
ple, or no solutions to the inverse problem. In other words,
both are necessary conditions for a unique solution for the
inverse problem to exist.

We conjecture that σMB , σHC and σCB meet these condi-
tions. We are unable to demonstrate strong monotonicity and
bounded continuity though we show uniqueness and continu-
ity for them in our supplementary material). The empirical
evaluation suggests our approach operates successfully.

Proposition 3 The gradual semantics σ satisfies continuity
and uniqueness, for σ ∈ {σMB , σHC , σCB} .

Conjecture 2 The gradual semantics σ satisfies
strong monotonicity and bounded continuity for
σ ∈ {σMB , σHC , σCB} .

5 Evaluation
We evaluated each of the strategies discussed in Section
3.3 over directed scale-free, small world (Erdos-Renyi), and
complete graphs of different sizes (number of arguments)1.
As part of our evaluation, we ran 10, 100 and 2000 itera-
tions of the bisection method for each argument before using

1Source code for our algorithm and evaluation can be found on
GitHub at https://github.com/jhudsy/numerical inverse.

ζ 1
Graph Size 10, 20, . . . , 150
Runs per graph size 15
Erdos-Renyi probability 0.1,0.3,0.5,0.7
Maximum relative error 0.001
Bisection method iterations 10,100,2000
Bisection method ϵ 0.001
Maximum bisection method calls 1000

Table 2: Parameters used in our evaluation

a strategy to pick the next desired argument. Table 2 describes
the remaining parameters used in our evaluation.

We created a simple target preference ordering for our ex-
periments, randomly placing each argument within the graph
into one of 5 levels of preference. This meant that in all cases,
at least some arguments had equal desired preference levels.

Our experiments evaluated the runtime of the different
strategies, the number of times the bisection method was
invoked, and the number of times the total iterations re-
quired exceeded the permitted maximum number of itera-
tions. Given the number of dimensions across which our eval-
uation took place, we present only a subset of our results here;
full results can be found in the supplementary material.

Our main criterion for evaluation revolves around the num-
ber of times the bisection method was called by our approach.
As shown in Figure 2, which is representative of the results
for most graph topologies, our runtime grows in a super-linear
manner, due — as shown in [Amgoud et al., 2022] — to the
increased time taken to evaluate a semantics on larger graphs.
The number of bisection method iterations is shown in Fig-
ure 2 for our different semantics and graph types when se-
lecting the next argument based on largest relative error. This
value grows linearly (with a gradient between 1 and 2 depend-
ing on topology and semantics) for all semantics considered
(R2 > 0.99 for all cases). Arguments are thus only recom-
puted at most twice before our approach converges. These
results not only demonstrate the feasibility of our approach
for large argumentation graphs, but also highlight the effec-
tiveness of this specific argument selection strategy. We also
note that there is little variance in our results for CB. We be-
lieve that this is due to the extra |Att| term in the semantics;
this term overwhelms the term which depends on other argu-
ments’ final degrees, making the result more dependent on the
topology of the graph than in the case of the other semantics.

Due to space,we omit several detailed results. In summary,
(a) from all argument selection strategies, only selecting ar-
guments from largest to smallest relative error resulted in al-
ways finding a solution to the inverse problem; (b) Allowing
for partial convergence (via fewer iterations per argument be-
fore moving to the next one) decreased performance, often
failing to find a solution; (c) Optimising α and β bounds (c.f.
Section 3.3) had almost no influence on runtime. This unsur-
prising due to the speed of bisection method convergence.

Note that in the absence of equivalent arguments with the
same acceptability degree, one could allow for early termi-
nation without getting to the target acceptability degrees, but
that was not investigated in the current paper.

https://github.com/jhudsy/numerical_inverse
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Figure 2: Runtime (in seconds) and number of iterations for the different semantics and graph types

6 Conclusion & Discussion
We considered the inverse problem for a WAF. We demon-
strated that a solution to this inverse problem exists for at least
one family of semantics, and that a solution does not exist
for at least some semantics. We then described an algorithm
to solve this problem, and empirically evaluated its perfor-
mance. Our results show the viability of our approach. When
selecting arguments for initial weight perturbation based on
relative error, each argument is typically perturbed at most
twice (depending on semantics and graph topology).

Our approach was able to find weightings over all evalu-
ated graphs and semantics, suggesting that HC,CB and MB
meet all the requirements described in Section 4. Some of our
results rely on empirical analysis, and providing analytical
proofs for these is a critical avenue of future work.

We note in passing that our approach assumes that our ar-
gument ranking is total. Extending our scheme to admit par-
tial rankings is — in a sense — trivial, but would result in a
combinatorial explosion as we would need to consider multi-
ple possible argument rankings as inputs.

To our knowledge no work has explicitly considered the
inverse problem applied to gradual semantics as described in
this paper, but several works have examined related concepts
under different guises. The work of [Dunne et al., 2015] is
perhaps closest to ours. They consider the case where one
is given a set of extensions and a semantics, and need to de-
cide whether there exists an argumentation framework that
induces the given set of extensions. Unlike our work, they
situate their approach in standard abstract argumentation se-
mantics. Work on the epistemic approach to probabilistic ar-

gumentation [Hunter and Thimm, 2017] describes properties
which probabilistic argumentation semantics should satisfy.
Selecting some of these properties constrains the probabilities
which arguments can have. Similarly, in fuzzy argumentation
[Wu et al., 2016] calculates legal ranges of fuzzy degrees for
arguments based on initial weights and the semantics under-
pinning the fuzzy argumentation system. Finally, argumenta-
tion dynamics examines what arguments or attacks should be
introduced to strengthen or weaken an argument, somewhat
analogous to our changing of initial argument weight.

There has been some work on sensitivity analysis within ar-
gumentation [Tang et al., 2016]. This work considers whether
(small) changes in argument weights will affect the conclu-
sions that can be drawn from an argumentation framework.
The results reported on in this paper are a first step towards
our long-term goal to provide a formal analysis of sensitivity
to initial weights in MB,CB and HC style semantics.

The conditions specified in Prop. 2 are necessary for our
algorithm to operate. As mentioned above, we are still in-
vestigating whether these conditions are also sufficient, or
whether additional properties need to be identified. Once this
is done, we will be able to categorise other weighted seman-
tics unrelated to those discussed in the current work (e.g., the
constellation-based probabilistic semantics [Li et al., 2011])
and consider whether our approach can be applied to them.

While we believe analytical solutions exist for the inverse
problem for some semantics, one advantage of the numerical
approach proposed in this work is that it is more generally
applicable to a wide range of semantics. The current work
therefore describes an easily applied approach to solving the
inverse problem in argumentation.
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