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2SAMOVAR, Télécom SudParis, CNRS, Univ. Paris-Saclay, Evry, France

3INPT, Institut National des Postes et Telecommunications, Rabat, Morocco
4LARODEC, University of Tunis, Tunisia

{dlala,jabbour,sais}@cril.fr,badran.raddaoui@telecom-sudparis.eu

Abstract. Recently, a new declarative mining framework based on con-
straint programming (CP) and propositional satisfiability (SAT) has
been designed to deal with several pattern mining tasks. The itemset
mining problem has been modeled using constraints whose models cor-
respond to the patterns to be mined. In this paper, we propose a new
propositional satisfiability based approach for mining maximal frequent
itemsets that extends the one proposed in [20]. We show that instead of
adding constraints to the initial SAT based itemset mining encoding, the
maximal itemsets can be obtained by performing clause learning during
search. A major strength of our approach rises in the compactness of the
proposed encoding and the efficiency of the SAT-based maximal item-
sets enumeration derived using blocked clauses. Experimental results on
several datasets, show the feasibility and the efficiency of our approach.

1 Introduction

Frequent Itemsets Mining (abbreviated as FIM) is well-known and essential in
data mining, knowledge discovery and data analysis. It plays an increasingly
important role in a series of data mining applications, such as the discovery of
associations rules, correlations, causality, sequential patterns, episodes, partial
periodicity, emerging patterns, gradual patterns, and many other important dis-
covery tasks. FIM has applications in various fields and becomes fundamental
for data analysis as datasets and datastores are becoming very large. Since the
first article of Agrawal [4] on association rules and itemset mining, the huge
number of works, challenges, datasets and projects show the actual interest in
this problem (see [3,25,15,30] and [29] for a survey).

Unfortunately, mining only frequent itemsets generates an overwhelming
number of patterns, from which it is difficult to retrieve useful informations.
Consequently, for practical data mining, it is important to reduce the size of
the output by exploiting the structure of the itemsets data. A well-known con-
densed representation is the closed sets [26,32]; an itemset is closed if it has no
superset with the same frequency. Nevertheless, in many applications, especially
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in dense data, the set of all closed itemsets remains too large [13]. One of the
most known recourse is then to mine the so-called maximal itemsets, where an
itemset is maximal frequent if it has no superset that is frequent. So, maximal
frequent itemsets is a subset of closed frequent itemsets.

In this paper we introduce SATMax, a new algorithm that makes an original
use of SAT solvers for efficiently enumerating all maximal patterns embedded in
a transaction database. Technically, the idea is to represent a maximal frequent
itemset mining task as a propositional formula such that each of its models cor-
responds to a maximal pattern of interest. The main argument for this encoding
is that it allows us to incorporate domain knowledge in the mining process in
an easy and flexible manner, among which the maximal constraint, without pre-
supposing deep insights into the mining mechanism. We address this issue by
means of propositional satisfiability solving, a prime technology for knowledge
representation and reasoning. This extends earlier results in the application of
CP and SAT formalisms to data mining, by allowing to deal with optimization
problems. SATMax uses a number of optimizations to efficiently prune away a
large portion of the search space. It uses a novel progressive focusing technique
to eliminate non-maximal itemsets and exploits blocking clauses for fast fre-
quency checking. We conduct an extensive comparative experimental evaluation
of SATMax against DMCP [24] a declarative state-of-the-art maximal itemsets
mining approach and Eclat [5] a specialized algorithm.

2 Related Works

In the literature, various proposals have been introduced to mine maximal fre-
quent itemsets from a database of transactions. Many of these existing algorithms
are based on the enumeration of frequent itemsets. In [22], Bayardo proposed
the MaxMiner algorithm which extends the Apriori algorithm. MaxMiner em-
ploys a breadth-first traversal of the search space to limit the database scan-
ning. Furthermore, it uses a dynamic heuristic to increase the effectiveness of
superset-frequency pruning. Later, several other enhancements have been sug-
gested for mining maximal frequent itemsets. Pincer-Search algorithm combined
the top-down and bottom-up techniques to discover the maximal frequent item-
sets [23]. Agarwal et al. [2] implemented a depth-first search technique with
bitmap representation (DepthProject), in which columns denote the items and
rows denote the transactions. Like MaxMiner algorithm, the authors used dy-
namic reordering and look-ahead pruning. A projection mechanism is used to
reduce the size of the database. The authors efficiently find the support counts
and give a superset of the maximal frequent itemsets. Burdick et al. introduced
MAFIA [6], an extension of DepthProject. They used vertical bit-vector data
format. Compression and projection on bitmaps are applied to increase the per-
formance of the proposed algorithm. Unlike DepthProject and MaxMiner prun-
ing techniques, MAFIA used Parent Equivalence Pruning. Also, GenMax [13]
is a backtrack search based algorithm for identifying maximal frequent itemsets
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from a transactional database. More specifically, this algorithm integrates nu-
merous optimization techniques to prune the search space including progressive
focusing that perform maximality checking and diffset propagation for fast sup-
port counting. To search maximal frequent itemsets, SmartMiner [33] records at
each step tail information to guide the search for new maximal frequent itemsets.
Moreover, Eclat algorithm [5] is proposed to find maximal frequent itemsets in
transaction databases. This method carries out a depth first search on the subset
lattice and determines the support of itemsets by intersecting transaction lists.

Several recent contributions to pattern mining exploit constraint program-
ming and propositional satisfiability [7,12,18,20,27,9,21]. In this context, Guns
et al. [14] studied the problem of mining maximal frequent itemsets using CP
formalism. More precisely, the authors show how the typical constraint of maxi-
mality used in itemset mining can be formulated for use in CP. Besides, in [28],
the authors formulate the problem of maximal frequent itemset mining as the
enumeration of a set of models of a constraint network by adding a constraint
to force the required models to be maximal.

3 Technical Background

This section introduces the preliminaries related to propositional satisfiability,
maximal frequent itemset mining and its associated encoding in propositional
logic.

3.1 Propositional Satisfiability (SAT)

We consider a standard propositional logical language L built on a finite set of
Boolean variables p, q, r, . . . and usual connectives ¬, ∨, ∧, → and ↔ standing
for negation, disjunction, conjunction, implication and equivalence connectives,
respectively. A literal is either a Boolean variable p or its negation ¬p. The two
literals p and ¬p are called complementary. A clause is a formula that consists of
a finite disjunction of literals. A conjunctive normal form formula (abbreviated as
CNF) is defined over a set of Boolean variables as a conjunction (also represented
as a set) of clauses. Let Φ be a CNF formula. We refer to the set of Boolean
variables appearing in Φ as V ar(Φ). Any formula in L can be represented (while
preserving satisfiability) in CNF using a set of clauses interpreted conjunctively.

A truth assignment, or boolean interpretation B assigns truth values from
{0, 1} (0 corresponds to false and 1 to true) to every Boolean variable. An
interpretation can be also seen as conjunctions or sets of literals. It is lifted
to clauses and CNF formulas of L following usual compositional rules. A CNF
formula Φ is satisfiable when there exists at least one boolean interpretation B
satisfying it, i.e., B(Φ) = 1. Otherwise, it is unsatisfiable. If B satisfies a formula
Φ, B is then called a model of Φ and is represented by the set of variables that
it satisfies. We refer to the set of models of Φ as M(Φ).
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SAT is the decision problem of determining the satisfiability of a CNF for-
mula, i.e., whether or not there exists a model of all clauses in the CNF. This
well known NP-Complete problem has seen spectacular progress these recent
years. Interestingly, state-of-the-art SAT solvers have been shown of practical
use, solving real-world instances encoding industrial problems up to millions of
variables and clauses. As a consequence, providing SAT encoding for a given
problem allows us to benefit from this continous and spectacular progress.

3.2 Frequent Itemset Mining

We are given a set of distinct items (symbols) denoted as Ω = {a, b, c, . . .}. A
transaction database D is a set of transactions {t1, t2, . . . , tn} such that each
transaction ti ∈ D (i ∈ [1..n]) is a subset of Ω, i.e., ti ⊆ Ω. Transactions
can represent things such as the supermarket items purchased by a customer
during a shopping visit, or the characteristics of a person as described by his or
her replies in a census questionnaire. For instance, Table 1 gives a transaction
dataset containing seven transactions {t1, t2, t3, t4, t5, t6, t7} described by five
items, which will be used as a running example. Besides, each transaction ti ∈ D
(i ∈ [1..n]) has an associated unique identifier i called TID. A non-null finite
subset of items I of Ω is more succinctly called an itemset (or pattern). An
itemset with k items is called a k-itemset. The notation I ⊆ t will be used to
denote that the itemset I is a subset of the set of items that t contains. For
convenience, we will often directly refer to a transaction as the set of items that
it contains.

Classical data mining problems are usually concerned with itemsets that
frequently occur in a database of transactions. The number of occurrences of an
itemset in a database is commonly referred to as the support of this itemset.
Informally, the support of an itemset measures how often an itemset X occurs
in the database. In other words, the support of an itemset is the number of
transactions in which that itemset occurs as a subset.

Definition 1. Given a transaction database D and an itemset X, the cover of X
in D, denoted Cover(X), is defined as follows: {J ∈ D and X ⊆ J}. The support
of X in D, denoted Supp(X), corresponds to the cardinality of Cover(X), i.e.,
Supp(X) = |Cover(X)|.

Example 1. Let us consider the transaction database D stated in Table 1. There
are five different items {a, b, c, d, e} and seven transactions {t1, t2, t3, t4, t5, t6, t7}.
Then, the support of the itemset X = abc is equal to 2, since X occurs in the
transactions t1 and t2.

Given a transaction database D over Ω and a minimum support threshold
set as λ according to users’ preference, the problem of finding the complete set
of frequent itemset is called the frequent itemset mining problem defined as:

FI(D, λ) = {X ⊆ Ω | Supp(X) > λ}.
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TID Itemset

t1 a b c d
t2 a b c e
t3 a e
t4 a e d
t5 a b
t6 b d
t7 b e

Table 1: A transaction database D

Unfortunately, identifying the complete set of frequent itemsets may lead to
a huge number of patterns. In order to overcome this problem, the concept of
closed itemsets is afterward proposed.

Definition 2 (Closed Frequent Itemset). Let D be a transaction database
and X an itemset. Then, X is a closed itemset if there exists no itemset X ′ such
that X ⊆ X ′, and ∀t ∈ D, X ∈ t→ X ′ ∈ t.

That is, enumerating all closed itemsets allows us to reduce the size of the
output.

Extracting all the elements of FI(D, λ) can be obtained from the closed
itemsets by computing their subsets. Then, we have CFI(D, λ) ⊆ FI(D, λ).

Example 2. Let us consider again our example described in Table 1. The set
of closed frequent itemsets with the minimal support threshold equal to 2 is:
CFI(D, 2) = {a, d, ab, ae, abc}.

In order to reduce the large number of extracted closed frequent itemsets,
another condensed representation, called maximal frequent itemsets, has been
introduced.

Definition 3 (Maximal Frequent Itemset). Let D be a transaction database
over Ω and X ⊆ Ω an itemset. We say that X is a maximal frequent itemset
in D given a minimum threshold λ, if X ∈ FI(D, λ), and there exists no other
itemset Y s.t. X ⊂ Y and Y ∈ FI(D, λ).

That is, if the itemset X is frequent and no superset of X is frequent, then
we say that X is a maximal frequent itemset. This condensed representation is
the one which store most of the information contained in frequent itemsets using
less space.

In this work, we are interested in the problem of mining maximal frequent
itemsets, abbreviated as MFI. More formally,

MFI(D, λ) = {X ⊆ Ω | Supp(X) > λ and 6 ∃Y ⊃ X, s.t. Y ∈ FI(D, λ)}

Given a transaction database D, it is important to note that the set of max-
imal frequent itemsets is a subset of frequent closed ones, i.e., MFI(D, λ) ⊆
CFI(D, λ).
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3.3 SAT-Based Itemset Mining

This section presents a brief overview of the SAT-based approach for enumerating
all frequent itemsets in a transaction database proposed in [16,20]. The authors
have shown that such mining task can be encoded as a propositional formula
whose models are in bijection with the patterns to be mined.

The basic idea consists in the use of two kinds of propositional variables: the
i-variable pa to represent each item a ∈ Ω, and the t-variable qi to represent
each transaction ti.

Next, the SAT encoding is based on the following three CNF formulas built
over the previous propositional variables.

n∧
i=1

(¬qi ↔
∨

a∈Ω\ti

pa) (1)

The first constraint (1) allows to model the transaction database and then
to catch the itemsets. So, an itemset appears in a transaction ti (i.e., qi = 1)
iff the boolean variables associated to items not involved in ti are set to false.
Notice that the formula (¬qi ↔

∨
a∈Ω\ti pa) can be translated into the following

CNF formula: ∧
a∈Ω\ti

(¬qi ∨ ¬pa) ∧ (qi ∨
∨

a∈Ω\ti

pa)

n∑
i=1

qi > λ (2)

Constraint (2) allows us to consider the itemsets having a support greater
than or equal to the minimum threshold λ. This encoding is defined as a 0/1
linear inequality, usually called cardinality constraint. Because of the presence of
such constraint in several applications, many efficient CNF encodings have been
proposed over the years. Mostly, such encodings try to derive the best compact
representation while maintaining constraint propagation (e.g. [19]).∧

a∈Ω
((

∨
a 6∈ti

qi) ∨ pa) (3)

Formula (3) expresses the closure property. Intuitively, if the itemset is in-
volved in all transactions containing the item a, then a must be added to the
candidate itemset. In other words, when in all the transactions where a does not
appear, the candidate itemset is not included, this implies that the candidate
itemset appears only in transactions containing the item a. Consequently, to be
closed, the item a must be added to the final candidate itemset.

The main advantage of the SAT-based approach is its ability to easily inte-
grate other user constraints. For instance, enumerating itemsets of size at most
k can be expressed by simply adding the linear constraint

∑
a∈Ω pa 6 k.
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4 SAT-based Approach for Efficient MFI Mining

In this section, we introduce our SAT-based formuation that enables us to spec-
ify in term of constraints maximal frequent pattern mining problem. Given a
transaction database and a user specified threshold value, our goal is to pro-
vide a simple and efficient way to model and enumerate all maximal frequent
itemsets.

As mentioned in Section 3.2, an itemset X is maximal if X is frequent and
each superset of X is not frequent. Clearly, this requirement can be expressed
by the following constraint:∧

a∈Ω
¬pa → (

∑
ti|a∈ti

qi < λ) (4)

That is, formula (4) expresses that if the item a is not added to the final
candidate itemset X, this means that the occurrence frequency of X in the
transactions containing a is lower than the minimum threshold λ. Notice that
the constraint (4) represents a conditional cardinality constraint.

Interestingly, we can naturally translate the formula (4) to a Pseudo Boolean
constraint 1 as follows:∧

a∈Ω
(((λ− Supp({a})− 1)× ¬pa +

∑
ti|a∈ti

qi) < λ) (5)

In the literature, various approaches proposed different efficient encodings
of Pseudo Boolean constraints as CNF formula [1,11,31]. This transformation
can be useful if the number of items and their associated transactions are small.
Unfortunately, it is ineffective for large datasets, since it can lead to large CNF
formulas. Indeed, each item will be associated with a Pseudo Boolean constraint
(5). Consequently, the weakness of SAT-based approaches resides in the size of
the encoding, which for large formulas can outgrow available memory or can
make SAT solving otherwise inefficient.

Alternatively, another way to manipulate such Pseudo Boolean constraints is
to associate a propagator to each constraint of the form (5), as done in constraint
programming. However, this case can be challenging since we have to go through
each constraint at each decision to check the satisfiability of such constraints.

In order to avoid the addition of conditional cardinality constraints to our
initial encoding, we propose in the sequel an original method that allows to insert
additional clauses in an incremental manner, throughout the search process, with
the aim of ensuring that the found models correspond exactly to the maximal
frequent itemsets of the given transaction database. For this purpose, we consider
as our SAT solver a DPLL-like procedure that firstly assigns the i -variables. To
illustrate our approach, we assume that the solver assigns the truth value true

1A pseudo Boolean constraint over boolean variables is defined by
∑
i ci.li .k where

ci are the coefficients, k an integer constant, li are literals and . is one of the operators
{=, <,6, >,>}.
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to the i -variables. Let us refer to a given model of the CNF formulas encoding
the FIM task as B, and P (B) = {a | B(pa) = 1} will denote the corresponding
frequent itemset. Clearly, the first found model B corresponds to a maximal
frequent itemset P (B). In fact, assigning to true the i -variables is a way to
derive a maximal itemset.

Now, in order to discard retrieving a model B′ such that P (B′) ⊂ P (B), one
need to eliminate (or block) all itemsets X ⊂ P (B). To do so, it is sufficient
to add the blocking clause C = (

∨
a∈Ω\P (B) pa) to the original encoding. The

solver can then backtrack and explore new search space by performing positive
assignment of the i -variables.

So, the main idea of our approach consists in adding blocking clauses every
time a model is found. It is worth to remark that such clauses are composed of the
literals that are assigned to false under the current assignment. This means that
such clauses are false before backtracking. In order to enumerate more effectively
the set of all maximal frequent itemsets, one need to take the level of literals of
each blocking clause C into account to backtrack at the adequate level. This can
be seen as a new form of clause learning.

For real-word problems, the items not taking part in each transaction ti are
generally more numerous than those involved in ti, i.e., |ti| 6 |Ω \ ti|. Conse-
quently, each blocking clause C used to discard non-maximal itemsets can be
large. For example, let us suppose that the current itemset appears in the trans-

action ti. Clearly, the clause C can be written as C = (
∨

a∈ti\P (B)

pa ∨
∨

a∈Ω\ti

pa).

On the other hand, using the constraint (1), the size of C can be considerably

reduced by rewriting it as C = (
∨

a∈ti\P (B)

pa ∨ ¬qi).

Additionally, we can choose the most suitable clause C by choosing the smallest
transaction ti containing P (B). Roughly speaking, the size of the blocking clause
C clearly depends on the choice of the transaction ti.

Example 3. Let us consider the transaction database depicted in Table 1. We
further assume a minimum threshold λ = 2. Now, suppose that the SAT solver
chooses the following variables ordering during the search process: pa, pb, pc,
¬pd, and ¬pe (see the search tree depicted by Figure 1). Then, a first model
B = {pa, pb, pc,¬pd,¬pe} can be obtained by assigning pa at level 1, pb at level
2, and pc at level 3. Hence, the added blocking clause is C = (pd ∨ pe). In this
case, the solver must backtrack to the level 2 since C becomes falsified in level
3 and causes a conflict.

Next, we show the potential behind using blocking clauses in order to sig-
nificantly improve the mining efficiency. Let us first remark that the blocking
clauses involve positive i -variables. More specifically, let C = (pa1 ∨ . . . ∨ pak)
be a blocking clause. According to the constraint (1), each item ai is involved in
many negative binary clauses of the form:∧

tj∈D|ai 6∈tj

(¬pai ∨ ¬qj)
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¬pa

pb

¬pd

pe

>

¬pc

⊥pd

pa

pb

pc

⊥

¬pd

>

¬pe

⊥

⊥

¬pc

>

¬pe⊥ ⊥

Fig. 1: Search tree of Example 3

Now, one of the most known form of resolution called hyper binary resolution
[17] can be applied between C and the previous set of negative binary clauses
clauses. This gives us the following general constraint of the form:∧

i1 6∈Cover({a1})...ik 6∈Cover({ak})

(¬qi1 ∨ . . . ∨ ¬qik) (6)

Interestingly enough, the constraint (6) involves only negative clauses (i.e.,
disjunction of negative literals) over t-variables. These clauses can help improv-
ing the efficiency of the frequency constraint (2) by requiring that at least one
of the t-variables {qi1 , . . . , qik} must be false. Unfortunately, when the length
of C is large, a great number of clauses can be derived by hyper binary resolu-
tion, which leads to excessive space complexity that might slowdown the solver.
An alternative is to limit the application of hyper binary resolution to the case
where the derived clauses are relevant or of small size. For efficiency reason, we
consider the case where the constraint (6) gives rise to a unit clause:∧

i 6∈
⋃

1≤j≤k Cover({aj})

(¬qi) (7)

Intuitively, the constraint (7) aims to exclude each transaction that does not
contain none of the i-variables of the blocking clause C. Indeed, any t-variable
that do not belong to

⋃
1≤j≤k Cover({aj}) must be assigned to false by unit

propagation. In fact, the clause C = (pa1 ∨ . . .∨pak) requires that at least one of
its literal must be true and consequently the transactions not involving none of
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items corresponding to literals of C must be assigned to false. Doing so, we are
able to effectively improve the resolution process when

⋃
1≤j≤k Cover({aj}) 6= ∅.

Example 4. Let us take the transaction database of Example 1. Assume that
the first found model is {pa, pb, pc,¬pd,¬pe}. Then, using the blocking clause
(pd ∨ pe) and the constraint (7), we deduce that q5 and q6 must be assigned to
false.

As mentioned previously, our method requires the addition of a blocking
clause once a model is found. Then, the maximum number of blocking clauses
that can be added is equal to the number of maximal frequent itemsets. Fortu-
nately, even if the number of added blocked clauses might be large, the experi-
ments show that it is feasible in practice.

Let us now present our general SATMax algorithm for SAT-based MFI enu-
meration task. To summarize the idea behind Algorithm 1, we first encode the
closed frequent itemset mining task, then we use a DPLL-like algorithm, while
adding a blocking clause each time a model is found. In this way, the models
are restricted to those corresponding to maximal frequent itemsets in the given
transaction database.

At first, our algorithm encodes the closed frequent itemsets mining task
CFI(D, λ) into CNF (line 1). Then, a DPLL procedure is called. It iteratively
picks an i-variable (line 22), assigns it to true and performs unit propagation
(line 5). Then, we can distinguish two cases: (1) when a conflict occurs (line 6),
in this case if the level of the conflict is 0, the enumeration terminates and the set
of MFI is returned. Otherwise, a simple backtrack is performed; (2) when there
is no conflict. Here, the procedure continues by checking the satisfiability of the
frequency constraint (line 15). Then, the same later steps are performed. If all
the i-variables are assigned without conflict, then a model is found and a maxi-
mal frequent itemset is extracted (line 16). Then, a blocking clause is built (line
17) and analyzed (line 18) to determine the backtracking level. A backtracking
is performed accordingly and the procedure loops.

Proposition 1 (Correctness). SATMax returns all and only the maximal fre-
quent itemsets in the given transaction database.

5 Experimental Validation

In this section, we evaluate the performance of SATMax. Our mining solver is
implemented using a model enumeration MiniSAT solver based on the DPLL
(Davis-Putnam-Logemann-Loveland) procedure [8], as described in Algorithm
1. All our experiments were performed on a 2.66 Ghz Intel Xeon quad-core PC
with 32GB of memory, running Ubuntu Linux.

In our SATMax algorithm, the i-variables are firstly assigned. Note that our
SAT solver does not branch on t-variables. In fact, the i-variables constitute a
strong backdoor, i.e., the t-variables are boolean functions of i-variables (con-
straint (1)). In our algorithm, each time a model is found, we add a blocking
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Algorithm 1: SAT-based MFI enumeration (SATMax)

Input: D: a transaction database, λ: a minimum support threshold
Output:M: maximal frequent itemsets of D

1 Φ← encodeCFI(D, λ);
2 B = ∅ ; /* Current interpretation */

3 M = ∅ ; /* Set of Maximal Frequent Itemsets */

4 while (true) do
5 C = propagate(Φ);
6 if (C!=null) then
7 if (decisionLevel == 0) then return M;
8 backtrack();

9 else
10 if (

∑n
i=1 qi < λ) then

11 if (decisionLevel == 0) then return M;
12 else
13 backtrack();
14 end
15 if (Satisfiable(Φ) == true) then
16 M =M∪ {B ∩Ω};
17 C ←

∨
a∈Ω | ¬pa∈B pa;

18 Φ← Φ ∧ C;
19 k ← analyze(C);
20 backtrackUntil(k);

21 else
22 selectV ariable(Φ);
23 end

24 end

25 end

Lakhdar Saïs�


Lakhdar Saïs�


Lakhdar Saïs�
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clause and perform a backtracking after analyzing the blocking clause as de-
scribed in Section 4. For the variable ordering heuristic, we follow the one used
in [10]. We empirically evaluated our novel approach using different datasets
coming from FIMI 2 and CP4IM 3 repositories. A CPU time limit is fixed to
1200 seconds per instance. We also use the symbol (-) in Table 2 to mention that
the algorithm is not able to scale on the considered dataset under the time limit.
In our experiments, we considered different minimum support threshold values.
For baseline comparison, we retain the dedicated algorithm Eclat [5] and also
DMCP [24], a custom CP bitvector solver. For each method, we report the time
needed to enumerate all MFI. Table 2 summarizes our empirical results.

While conducting experiments comparing the three different algorithms, we
observed that the performance can vary significantly depending on the dataset
characteristics and especially the minimum support threshold values. In many
cases our SATMax solver is able to compute all MFI, and improves or meets the
dedicated solver Eclat. More interesting enough, SATMax achieves better perfor-
mances than the CP-based baseline on most considered datasets. In addition, on
BMS-WebView-1 we find that SATMax is significantly faster than DMCP for all the
considered support threshold values. For the dataset accidents, our approach
outperforms considerably DMCP. Moreover, for some minimum support threshold
values, DMCP fails to get the maximal frequent itemsets in some instances under
the time limit.

Compared with the specialized solver Eclat, this latter is generally the best.
Nevertheless remarkably, for some dataset and minimum support threshold val-
ues our approach outperforms Eclat. This is the case for connect, pumsb and
accidents when the minimum threshold becomes smaller, Eclat becomes worst.

Finally, we run our SATMax solver on large problem instances to evaluate its
robustness and scalability. For this, we used the kosarak instance containing
990002 transactions. We find that DMCP for such dataset is not able to scale for
all the minimum support threshold values under the time limit. Interestingly,
SATMax enumerates all MFI for the different support values.

Overall, on maximal frequent itemsets task, the results seem to strongly
suggest that SATMax is very promising.

Finally in Figure 2, we compare the number of closed and maximal frequent
itemsets for some datasets when the minimum support threshold is varied. We
have observed that the number of maximal frequent itemsets is limited relatively
to closed ones. For the considered datasets, the maximal frequents itemsets does
not exceed 10% of closed frequent patterns. More interesting enough, this number
can be much more limited. This is the case for connect and kosarak datasets.

6 Conclusion

In this paper, we presented an efficient and scalable approach for computing all
maximal frequent itemsets using propositional satisfiability. Based on the closed

2http://fimi.ua.ac.be/data/
3http://dtai.cs.kuleuven.be/CP4IM/datasets/
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instance (#item, #trans, density) min supp Eclat DMCP SATMax
λ time(s) time(s) time(s)

chess (75, 3196 , 49%)

2000 0.11 0.09 0.28
1500 1.09 1.44 0.52
1000 5.67 10.56 3.75
500 33.35 104.56 85.46

connect (129, 67558, 35.62%)

40000 0.29 1.29 5.14
30000 0.66 2.11 6.06
20000 3.4 4.65 9.22
10000 36.83 90.95 22.21
5000 94.46 – 51.38

kosarak (41267, 990002, 0.01%)

3000 2.52 – 30.00
2500 3.08 – 32.96
2000 7.97 – 42.94
1500 31.52 – 59.03
1000 67.96 – 100.31

pumsb (2113, 49046, 3%)

40000 0.30 2.92 5.51
35000 1.05 11.43 6.44
30000 3.48 32.71 11.23
25000 89.29 473 49.66
20000 878.02 – 202.71

retail (16470, 88162, 0.06%)

400 0.29 1.67 1.87
350 0.26 1.19 2.62
300 0.33 1.48 2.68
250 0.58 2.34 2.09
200 1.19 3.67 4.95

T10I4D100K (870, 100000, 1.0%)

500 0.21 1.77 2.88
400 0.22 1.87 3.28
300 0.24 2.48 4.14
200 0.28 3.63 5.62
100 0.32 6.44 12.43

T40I10D100K (8942, 100000, 4.31%)

10000 0.45 1.09 2.73
8000 0.62 0.93 4.03
6000 1.06 1.68 6.53
4000 1.85 3.03 9.48
2000 3.50 7.72 21.53

BMS-WebView-1 (497, 59602, 0.5%)

48 0.07 20.51 2.94
36 0.22 195.68 5.56
34 0.28 335.13 7.05
32 0.36 553.39 7.43
30 0.49 1049.28 7.14

accidents (468, 340183, 7%)

100000 12.92 33.59 54.73
80000 46.41 50.22 92.29
60000 128.85 407.75 174.34
40000 324.49 – 361.40
20000 1206.27 – 994.07

Table 2: Maximal Itemsets: SATMax vs Eclat vs DMCP
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Fig. 2: Frequent itemsets: Closed vs Maximal

frequent itemset SAT encoding, an original DPLL-based model enumeration
algorithm combined with clauses learning from models allows us to restrict the
models to maximal frequent itemsets. Experimental results on several datasets
have shown that our approach is very effective compared to Eclat and DMCP,
a specialized and CP-based algorithms, respectively. Interestingly, our approach
allows us reduce the size of the encoding by avoiding the integration of the
maximality constraints.

As a future work, we plan to pursue our investigation in order to improve
MFI task using propositional satifiability. For example, it would be interesting to
parallelize our SATMax based approach. Finally, clause learning, an important
component for the efficiency of modern SAT solvers, admits several limitations
in the context of model enumeration. An important issue is to study how such
pivotal mechanism can be efficiently integrated when maximal itemset generation
is considered.
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