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THE BEHAVIOR OF SINGULAR QUADRATIC FORMS UNDER PURELY
INSEPARABLE EXTENSIONS

AHMED LAGHRIBI1 AND DIKSHA MUKHIJA2

ABSTRACT. Let F be a field of characteristic 2 and K a purely inseparable modular extension
of F . Our aim in this paper is to give a complete classification of anisotropic semisingular F -
quadratic forms φ that have over K a maximal Witt index and a defect index at least equal to the
half of the dimension of the quasilinear part. The case of totally singular quadratic forms will be
also treated. Our method also allows us to classify the forms φ under the unique hypothesis of
maximality of the Witt index over K. This extends a recent result of Sobiech studying the hyper-
bolicity of nonsingular F -quadratic forms over K [17]. Based on our classifications, we are able
to give necessary and sufficient conditions under which an anisotropic semisingular F -quadratic
form has a given Witt index over K. We also study the quasi-hyperbolicity of semisingular F -
quadratic forms over function fields of certain irreducible polynomials and extend to such forms
many results established by the first author in [11].

1. INTRODUCTION

Throughout this paper F denotes a field of characteristic 2. Let φ be an anisotropic quadratic
form over F , and K a field extension of F . An important problem in the algebraic theory
of quadratic forms is to study the behavior of φ after extending scalars to K. A question in
this sense consists in giving the conditions under which the form φ becomes isotropic over
K. Similarly, when φ is nonsingular (resp. singular), we also ask for the hyperbolicity (resp.
quasi-hyperbolicity) over K.

Singular quadratic forms split into two classes: Totally singular forms and semisingular forms
(see Section 2 for details). The notion of quasi-hyperbolicity is a generalization of hyperbolicity
to singular quadratic forms. Recall that a totally singular quadratic form φ is called quasi-
hyperbolic if id(φ) ≥ dimφ

2
, where id(φ) is the defect index of φ. Similarly, a semisingular

quadratic form φ is called quasi-hyperbolic if it(φ) ≥ dimφ
2

, where it(φ) is the total index of φ.
In the particular case when φ is an anisotropic semisingular quadratic form and K = F (p)

is the function field of an irreducible polynomial p ∈ F [x1, · · · , xn], the quasi-hyperbolicity
of φ over K implies that p is inseparable, meaning that p ∈ F [x21, · · · , x2n], and the condition
it(φK) ≥ dimφ

2
is equivalent to saying that the Witt index iW (φK) is maximal (i.e., iW (φK) =

dimφ−dimql(φ)
2

) and the quasilinear part ql(φ) of φ is quasi-hyperbolic over K (Proposition 2.3).
This equivalence is no longer true for a field extension given by the compositum of function
fields of irreducible polynomials as the simple example 2.2 shows. For this reason we introduce
the following definition: A semisingular quadratic form φ is called strictly quasi-hyperbolic if
the Witt index iW (φ) is maximal and ql(φ) is quasi-hyperbolic.
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Our aim in this paper is to study the strict quasi-hyperbolicity of anisotropic semisingular
quadratic forms over purely inseparable modular extensions. This is motived by a recent work
of Sobiech [17], which gave a complete answer to the hyperbolicity of nonsingular F -quadratic
forms over purely inseparable extensions of F (not necessarily modular). Here we restrict
ourselves to purely inseparable modular extensions due to the fact that we can’t control the
quasi-hyperbolicity of totally singular forms over purely inseparable extensions which are not
modular. Corollary 3.2 gives a complete answer to the quasi-hyperbolicity of anisotropic to-
tally singular forms over purely inseparable modular extensions completing a previous result of
Hoffmann on the isotropy for the same forms and extensions [4, Theorem 5.9]. The main result
of this paper is Theorem 7.1 that gives a complete answer to the strict quasi-hyperbolicity of
semisingular quadratic forms over purely inseparable modular extensions of exponent > 1. The
case of exponent 1, i.e., multiquadratic purely inseparable extensions is answered in Theorem
6.1.

Theorem 7.1 is a generalization to semisingular quadratic forms of a result of Sobiech on
the hyperbolicity of nonsingular quadratic forms over purely inseparable extensions. More pre-
cisely, the generator forms mentioned in equation (3.2) will play a crucial role in our classifica-
tions, and already appear in [17]. For his method, Sobiech first computed the kernel of purely
inseparable extensions in the setting of Kato-Milne cohomology and then translated it to qua-
dratic forms with the help of Kato’s isomorphism giving the connection between nonsingular
quadratic forms and differential forms [8]. For our proof of Theorem 7.1, we take a completely
different method specific to singular quadratic forms since there is no connection established
between such forms and differential forms. In a way, situation is a bit subtle and rigorous in
case of singular quadratic forms since many well known results like Witt cancellation are not
applicable for singular forms.

To prove Theorem 7.1, we first treat the case of a simple purely inseparable extension and
working on the same lines extend the proof for any purely inseparable modular extension with
slightly more technical computations. For the convenience of the reader, we mention the proof
of both cases. We give here the outline of proof for a simple purely inseparable extension
F ( 2n

√
d), n ≥ 2. We divide this proof into two major steps: We first study the case where the

semisingular form φ is of the type (1, s) and becomes quasi-hyperbolic over F ( 2n
√
d) (Proposi-

tion 5.2). In this first step, we use an induction on n, and we also take help of a recent result of
ours [15, Theorem 1.1], which gives us that φ represents the polynomial x2n + d up to a scalar
represented by φ. Further, we use the Cassel-Pfister theorem (Proposition 4.2). The second step
deals with an induction on the dimension of the nonsingular part of the semisingular form using
a tricky argument based on the so-called completion lemma (Lemma 2.6).

This paper is organized as follows. In section 2, we recall some definitions and results on
quadratic forms in characteristic 2. In Section 3, we give some preliminaries concerning the
quasi-hyperbolicity of totally singular forms over purely inseparable modular extensions, and
introduce some background on the generator forms in equation (3.2). Section 4 is devoted to
computations on these generator forms when they are defined over an inseparable quadratic ex-
tension of F , and to some representation results. In section 5, we prove Theorem 5.1 that treats
the quasi-hyperbolicity over purely inseparable simple extensions. Section 6 contains the proof

2



of Theorem 6.1 concerning multiquadratic purely inseparable extensions, and then in Section 7
we give the proof of our main result (Theorem 7.1). As an application we completely answer
the isotropy of semisingular quadratic forms over purely inseparable modular extensions (The-
orem 8.4). In the last section, we introduce the notion of a strong Pfister set, in the spirit of what
was done in [11], and give some domination results when a semisingular quadratic form repre-
sents certain inseparable polynomials. We also give a complete classification of quadratic forms
that become quasi-hyperbolic over the function fields of the following irreducible polynomials
x4 + ax2 + b, x4 + ay2 + b and x4 + ay4 + bx2.

2. BACKGROUND ON QUADRATIC FORMS

Let φ be a quadratic form over F with underlying vector space V . The radical of φ is the
F -vector space

Rad(φ) := {v ∈ V | Bφ(v, w) = 0 for all w ∈ V },

whereBφ is the polar form of φ. The restriction of φ to Rad(φ) is given by a diagonal quadratic
form

∑s
i=1 cix

2
i that we denote ⟨c1, . . . , cs⟩. Obviously, this form is unique up to isometry, we

call it the quasilinear part of φ and denote it ql(φ).
Over the space V , the form φ can be written as follows:

(2.1) φ ≃ [a1, b1] ⊥ [a2, b2] ⊥ . . . ⊥ [ar, br] ⊥ ql(φ),

where ≃ and ⊥ denotes the isometry and orthogonal sum of quadratic forms, and [a, b] denotes
the quadratic form ax2 + xy + by2. In this case, we say that φ is of type (r, s). As in equation
(2.1), the form φ is called:

• nonsingular if s = 0,
• totally singular if r = 0,
• semisingular if r > 0 and s > 0.
• singular if s > 0.

We denote by dimφ the dimension of φ. We say that φ represents α if there exists v ∈ V

such that φ(v) = α. We denote by DF (φ) the set of values in F ∗ represented by φ. We let
D0
F (φ) = DF (φ) ∪ {0}.
For a, b ∈ F and α ∈ F ∗, let [a;α; b] denote the binary quadratic form ax2 + αxy + by2.
For p ∈ F [x1, x2, . . . , xn] an irreducible polynomial, let F (p) be the field of fractions of the

quotient ring F [x1, . . . , xn]/(p). We call it the function field of p.
A scalar α ∈ F ∗ is called a norm of φ if φ ≃ αφ.
For a field extension K/F and φ an F -quadratic form, let φK denote the form φ considered

as a form over K by scalar extension.

2.1. Witt decomposition. We say that φ is isotropic if there exists v ∈ V \ {0} such that
φ(v) = 0, otherwise φ is called anisotropic.

For any integer n ≥ 0, the quadratic form φ ⊥ . . . ⊥ φ︸ ︷︷ ︸
n times

is denoted by n× φ.

The quadratic form φ uniquely decomposes as follows:

φ ≃ φan ⊥ i× [0, 0] ⊥ j × ⟨0⟩ ,
3



where φan is an anisotropic quadratic form. We call φan the anisotropic part of φ, and the
integer i (resp. j) is called the Witt index (resp. the defect index) of φ. The integer i + j is
called the total index of φ. We denote i, j and i + j by iW (φ), id(φ) and it(φ), respectively.
The form φ is called nondefective when id(φ) = 0.

Two quadratic forms φ1 and φ2 are Witt-equivalent, denoted by φ1 ∼ φ2, if φ1 ⊥ m×[0, 0] ≃
φ2 ⊥ n× [0, 0] for some m,n ∈ N.

Definition 2.1. Let φ be a singular quadratic form.
(1) If φ is totally singular, then φ is called quasi-hyperbolic if id(φ) ≥ dimφ

2
.

(2) If φ is semisingular, then φ is called quasi-hyperbolic (resp. strictly quasi-hyperbolic) if
it(φ) ≥ dimφ

2
(resp. iW (φ) = dimφ−dimql(φ)

2
and ql(φ) is quasi-hyperbolic).

Obviously, a semisingular quadratic form which is strictly quasi-hyperbolic is in particular
quasi-hyperbolic. But the converse is not always true as the following easy example shows:

Example 2.2. Consider the quadratic form φ = [t1, t2] ⊥ ⟨1, t3, t4, t5⟩ defined over the rational
function field K = F (t1, · · · , t5) in the indeterminates t1, · · · , t5. Extending the scalars to
L = K(

√
t3,

√
t4,

√
t5) yields φL ≃ [t1, t2] ⊥ ⟨1⟩ ⊥ 3 × ⟨0⟩. Thus, it(φL) ≥ dimφ

2
but

iW (φL) = 0.

However, the following proposition shows that the two versions of quasi-hyperbolicity coin-
cide over the function field F (p) for any irreducible p ∈ F [x1, · · · , xn].

Proposition 2.3. ([15, Prop. 2.2]) Let p ∈ F [x1, · · · , xn] be an irreducible polynomial. Let φ
be an anisotropic semisingular quadratic form. If φ is quasi-hyperbolic over F (p), then p is
inseparable and φF (p) is strictly quasi-hyperbolic.

We recall the following cancellation result:

Proposition 2.4. ([9, Proposition 1.2] for (1), [6, Lemma 2.6] for (2)) Let φ1, φ2 be two qua-
dratic forms (possibly singular). Suppose that one of the following conditions holds:

(1) φ1 ⊥ ψ ≃ φ2 ⊥ ψ for some nonsingular form ψ,
(2) φ1 ⊥ s× ⟨0⟩ ≃ φ2 ⊥ s× ⟨0⟩ for some integer s ≥ 0 and φ1, φ2 nondefective.

Then, φ1 ≃ φ2.

The following isometries are easy to prove and will be used in our proofs:

[a, b] ⊥ [c, d] ≃ [a+ c, b] ⊥ [c, b+ d],

[a, b] ⊥ ⟨c⟩ ≃ [a+ c, b] ⊥ ⟨c⟩ ,

[1, a] ≃ [1, a2],

α[a, b] ≃ [αa, α−1b],

[a;α; b] ≃ [a, bα−2],

for all a, b, c ∈ F and α ∈ F ∗. In particular, the first isometry gives the equivalence [a, b] ⊥
[a, d] ∼ [a, b+ d].
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2.2. Pfister forms. For a1, . . . , an ∈ F ∗, let ⟨a1, . . . , an⟩b be the diagonal bilinear form defined
by:

((x1, . . . , xn), (y1, . . . , yn)) 7→
n∑
i=1

aixiyi.

Let W (F ) (resp. Wq(F ) ) be the Witt ring of regular symmetric F -bilnear forms (resp. the
Witt group of nonsingular F -quadratic forms). The group Wq(F ) is endowed with a W (F )-
module structure as follows: To any regular symmetric F -bilinear form B on a vector space U
and nonsingular F -quadratic form φ on a vector space V , we associate a nonsingular quadratic
form B ⊗ φ defined on U ⊗F V by:

B ⊗ φ(u⊗ v) = B(u, u)φ(v) for any (u, v) ∈ U × V

and whose polar form is B ⊗Bφ [2].
An n-fold bilinear Pfister form is a form of type B = ⟨1, a1⟩b ⊗ · · · ⊗ ⟨1, an⟩b for some ai ∈

F ∗; we write B = ⟨⟨a1, · · · , an⟩⟩b for short. If Q : x 7→ B(x, x) is the totally singular quadratic
form associated to B, we write Q = ⟨⟨a1, · · · , an⟩⟩ and call it an n-fold quasi-Pfister form. An
(n+1)-fold quadratic Pfister form is a nonsingular quadratic form of type ⟨⟨a1, · · · , an⟩⟩b⊗[1, b]

for some ai ∈ F ∗, b ∈ F , we denote it ⟨⟨a1, · · · , an; b]]. Both Pfister and quasi-Pfister forms are
round, i.e., x ∈ F ∗ is represented by a Pfister (or quasi-Pfister) form π if and only if π ≃ xπ [2,
Th. 2.4, page 95], [6, Prop. 8.5]. The set of forms isometric (resp. similar) to n-fold quadratic
Pfister forms will be denoted by Pn(F ) (resp. GPn(F )).

Let Q be a quadratic Pfister form and B a bilinear form. Using the roundness of Q, we prove
the following: If B ⊗ Q is isotropic, then there exists an isotropic bilinear form B′ such that
B⊗Q ≃ B′⊗Q. In particular, (B⊗Q)an ≃ C⊗Q for some bilinear form C and iW (B⊗Q) is
divisible by dimQ. Similarly, if we take Q a quadratic form and B a bilinear Pfister form, then
(B ⊗ Q)an ≃ B ⊗ Q′ for some quadratic form Q′ and iW (B ⊗ Q) is divisible by dimB. For
totally singular forms, we also have the following: If Q′ is a quasi-Pfister form and ρ a totally
singular form, then (Q′ ⊗ ρ)an ≃ Q′ ⊗ δ for some totally singular form δ, and id(ρ ⊗ Q′) is
divisible by dimQ′.

We also have the following fact: If Q be a quadratic Pfister form, B a bilinear form and
α ∈ DF (B ⊗ Q), then there exists a bilinear form B′ such that B ⊗ Q ≃ (⟨α⟩b ⊥ B′) ⊗ Q.
Similarly, If Q′ is a quasi-Pfister form, ρ a totally singular form and α ∈ DF (Q

′⊗ρ), then there
exists a totally singular form ρ′ such that Q′ ⊗ ρ ≃ Q′ ⊗ (⟨α⟩ ⊥ ρ′). These two facts are due to
the roundness property of Pfister forms.

2.3. Dominated forms. Let φ and ψ be quadratic forms with underlying vector spaces V and
W , respectively. We say that φ is dominated by ψ, denoted φ ≺ ψ, if there exists an injective
F -linear map σ : V −→ W such that φ(v) = ψ(σ(v)) for all v ∈ V . We say that φ is
weakly dominated by ψ if there exists α ∈ F ∗ such that αφ ≺ ψ. An explicit translation of the
domination relation is given by the following theorem.

Theorem 2.5. ([6, Th. 3.4]) Let φ and ψ be quadratic forms over F . Then, φ is dominated
by ψ is there exist nonsingular quadratic forms φr and τ , nonnegative integers s′ ≤ s ≤ s′′,
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ci ∈ F (1 ≤ i ≤ s′′) and dj ∈ F (1 ≤ j ≤ s′) such that φ ≃ φr ⊥ ⟨c1, . . . , cs⟩ and

ψ ≃ φr ⊥ τ ⊥ [c1, d1] ⊥ . . . ⊥ [cs′ , ds′ ] ⊥ ⟨cs′+1, . . . , cs′′⟩ .

We also mention the completion lemma due to Hoffmann and Laghribi which will play a
crucial role in many proofs.

Lemma 2.6. ([6, Lemma 3.9]) Let R and R′ be nonsingular quadratic forms over F , and
ci, c

′
i, di ∈ F , 1 ≤ i ≤ n. Suppose that R ⊥ ⟨c1, . . . , cn⟩ ≃ R′ ⊥ ⟨c′1, . . . , c′n⟩. Then, there exist

d′1, . . . , d
′
n ∈ F such that R ⊥ [c1, d1] ⊥ . . . ⊥ [cn, dn] ≃ R′ ⊥ [c′1, d

′
1] ⊥ . . . ⊥ [c′n, d

′
n].

We derive from Lemma 2.6 some specific corollaries that we will need.

Corollary 2.7. Let φ = R ⊥ ql(φ) be an anisotropic quadratic form over F , and π a quasi-
Pfister form such that ql(φ) ≃ π ⊗ γ for some totally singular form γ. Let c1, · · · , cs ∈ DF (π)

be such that ⟨c1, · · · , cs⟩ ≺ φ. Suppose that 1 ∈ DF (R). Then, there exist d1, · · · , ds ∈ F and
R′ a nonsingular form such that φ ≃ [c1, d1] ⊥ · · · ⊥ [cs, ds] ⊥ R′ ⊥ ql(φ). In particular,
dimR ≥ 2s.

Proof. First we claim that D0
F (⟨c1, · · · , cs⟩) ∩ D0

F (ql(φ)) = {0}. In fact, suppose we have
a nonzero scalar c ∈ DF (⟨c1, · · · , cs⟩) ∩ DF (ql(φ)). Using the roundness of π, we get
ql(φ) ≃ π ⊗ (⟨c⟩ ⊥ · · ·). Since, ⟨c1, · · · , cs⟩ is anisotropic as it is dominated by φ, we get
⟨c1, · · · , cs⟩ ⊂ π. Hence, c ∈ DF (π). Consequently, the condition ql(φ) ≃ π ⊗ (⟨c⟩ ⊥ · · ·)
implies that 1 ∈ DF (ql(φ)), a contradiction because 1 ∈ DF (R) and φ is anisotropic.
Since D0

F (⟨c1, · · · , cs⟩) ∩ D0
F (ql(φ)) = {0}, the domination condition ⟨c1, · · · , cs⟩ ≺ φ en-

sures the existence of a nonsingular form R′ and scalars c′1, · · · , c′s, d′1, · · · , d′s ∈ F such that
⟨c1, · · · , cs⟩ ≃ ⟨c′1, · · · , c′s⟩ and φ ≃ [c′1, d

′
1] ⊥ · · · ⊥ [c′s, d

′
s] ⊥ R′ ⊥ ql(φ) (Theorem 2.5).

Moreover, by the completion lemma, there exist d1, . . . , ds ∈ F such that [c′1, d
′
1] ⊥ · · · ⊥

[c′s, d
′
s] ≃ [c1, d1] ⊥ · · · ⊥ [cs, ds]. Hence the claim. □

Corollary 2.8. Let d ∈ F ∗, R,R′ nonsingular F -quadratic forms and Q a totally singular
F -quadratic form. Suppose

(R ⊥ Q ⊥ dQ)L ∼ (R′ ⊥ Q ⊥ dQ)L,

where L = F or L is a multiquadratic purely inseparable extension of F . Then, there exists a
nonsingular F -quadratic form λ such that:

(R ⊥ Q)L ∼ (R′ ⊥ ⟨1, d⟩b ⊗ λ ⊥ Q)L.

Proof. Let us write Q = ⟨a1, · · · , as⟩ for a1, · · · , as ∈ F . Applying Lemma 2.6 to the equiva-
lence

(R ⊥ Q ⊥ dQ)L ∼ (R′ ⊥ Q ⊥ dQ)L,

we get

(2.2) (R ⊥ Q)L ⊥
s∑
i=1

[0, dai] ∼ (R′ ⊥ Q)L ⊥
s∑
i=1

[bi, dai]
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for suitable b1, . . . , bs ∈ L. Since ⟨ai⟩ ∼ ⟨ai⟩ ⊥ [ai, dbi] and ⟨ai⟩ ⊂ Q, we may write (2.2) as
follows

(R ⊥ Q)L ∼ R′
L ⊥ ⟨1, d⟩b ⊗ λ ⊥ QL

where λ =
∑s

i=1[dbi, ai] for all 1 ≤ i ≤ s. Moreover, when ai ̸= 0 we have [dbi, ai] ≃
ai[1, aidbi] ≃ ai[1, (aidbi)

2] is defined over F since L2 ⊂ F , as desired. □

Corollary 2.9. Let R,R′ be nonsingular F -quadratic forms, and Q = ⟨c1, · · · , cs⟩ , Q′ totally
singular F -quadratic forms. Let d ∈ F ∗ be such that

R ⊥ Q ⊥ dQ ⊥ Q′ ∼ R′ ⊥ Q ⊥ dQ ⊥ Q′.

Then, for any x1, · · · , xs ∈ F , there exist λ and R′′ nonsingular F -quadratic forms such that
dimR′′ = 2s and

R ⊥
s∑
i=1

[ci, xi] ⊥ Q′ ∼ R′ ⊥ ⟨1, d⟩b ⊗ λ ⊥ R′′ ⊥ Q′.

Proof. We apply Lemma 2.6 to the equivalence R ⊥ Q ⊥ dQ ⊥ Q′ ∼ R′ ⊥ Q ⊥ dQ ⊥ Q′, we
get

R ⊥
s∑
i=1

([ci, xi] ⊥ [dci, 0]) ⊥ Q′ ∼ R′ ⊥
s∑
i=1

([ci, yi] ⊥ [dci, zi]) ⊥ Q′.

for suitable yi, zi ∈ F for 1 ≤ i ≤ s. Moreover, using [ci, yi] ⊥ [dci, zi] ∼ ⟨1, d⟩b ⊗ [ci, yi] ⊥
[dci, d

−1yi + zi], we obtain

R ⊥
s∑
i=1

[ci, xi] ⊥ Q′ ∼ R′ ⊥ ⟨1, d⟩b ⊗ λ ⊥ R
′′ ⊥ Q′,

where λ =
∑s

i=1[ci, yi] and R′′
=
∑s

i=1[dci, d
−1yi + zi] of dimension 2s, as desired. □

2.4. A result on excellence. A field extension L/F is called excellent for quadratic forms if
for any F -quadratic form φ, there exists an F -quadratic form ψ such that (φL)an ≃ ψL. The
excellence property holds for totally singular quadratic forms over any field extension [12, Lem.
2.1]. More precisely, we have:

Lemma 2.10. Let L/F be a field extension and φ a totally singular F -quadratic form. Then,
there exists ψ a subform of φ such that (φL)an ≃ ψL.

Hence, using the uniqueness of the quasilinear part, we get the following lemma.

Corollary 2.11. ([6, Lemma 2.2]) Let φ be a quadratic form over F , and L any field extension
of F . Then, there exists ψ a subform of ql(φ) such that (ql(φL))an ≃ ψL.

A classical example of excellent extensions is given by quadratic extensions of F (separable
or inseparable). More generally, for multiquadratic purely inseparable extensions we recall the
following important result:

Theorem 2.12. ([5, Main theorem]) If L/F is a multiquadratic purely inseparable extension of
F , then L/F is excellent for quadratic forms.

7



3. ON QUASI-HYPERBOLICITY OVER PURELY INSEPARABLE MODULAR EXTENSIONS

Let K be a purely inseparable extension of F . We say that K/F is modular if there exist
K1, · · · , Ks simple purely inseparable extensions of F such that K ≃ K1 ⊗F · · · ⊗F Ks. In
other words, K/F is a purely inseparable modular extension if there exist d1, · · · , ds ∈ F and
n1, · · · , ns ∈ N0 such that:

(3.1) K = F ( 2n1
√
d1, . . . ,

2ns
√
ds) and [K : F ] = 2n1+···+ns .

In this case, the scalars d1, · · · , ds are 2-independent, and thus the quasi-Pfister form π :=

⟨⟨d1, · · · , ds⟩⟩ is anisotropic. The exponent e of K is just the biggest integer among n1, · · · , ns.
It is the smallest integer e satisfying K2e ⊂ F .

We recall a result on the isotropy of totally singular forms over purely inseparable extensions
which are modular.

Theorem 3.1. ([4, Theorem 5.9]) Let K be as in (3.1) and π = ⟨⟨d1, · · · , ds⟩⟩. Let φ be an
anisotropic totally singular F -quadratic form. Then, the following statements are equivalent:
(1) φK is isotropic.
(2) π ⊗ φ is isotropic.

We use Theorem 3.1 to give criterion for quasi-hyperbolicity of totally singular quadratic
forms over K.

Corollary 3.2. Let K be as in (3.1) and π = ⟨⟨d1, · · · , ds⟩⟩. Let φ be an anisotropic totally sin-
gular F -quadratic form. Then, φK is quasi-hyperbolic if and only if π⊗φ is quasi-hyperbolic.

Proof. Since π is round, we get (π ⊗ φ)an ≃ π ⊗ φ′ for a suitable totally singular quadratic
form. Let us write π ⊗ φ ≃ ϵ × ⟨0⟩ ⊥ π ⊗ φ′. Extending π ⊗ φ to K, and using the fact that
πK ≃ ⟨1⟩ ⊥ (2s − 1)× ⟨0⟩, we get

φK ⊥ (2s − 1) dimφ× ⟨0⟩ ≃ ϵ× ⟨0⟩ ⊥ φ′
K ⊥ (2s − 1) dimφ′ × ⟨0⟩ .

The form φ′
K is anisotropic because π ⊗ φ′ is anisotropic (Theorem 3.1). By the uniqueness

of anisotropic part, it follows from the previous isometry that (φK)an ≃ φ′
K .

Obviously, dim(π ⊗ φ′) ≤ dim(π⊗φ)
2

iff dimφ′ ≤ dimφ
2

, and thus π ⊗ φ is quasi-hyperbolic
iff φK is quasi-hyperbolic. □

In the case of simple purely inseparable extensions, the quasi-hyperbolicity criterion for to-
tally singular forms has an equivalence formulation as given in the following proposition:

Proposition 3.3. ([4, Th. 7.7]) Let d ∈ F \ F 2 and K = F ( 2n
√
d) (n ≥ 1). Let φ be an

anisotropic totally singular F -quadratic form. Then, φ becomes quasi-hyperbolic over K iff
φ ≃ ⟨1, d⟩ ⊗ ρ for suitable totally singular F -quadratic form ρ.

Note that the form ρ in Proposition 3.3 is anisotropic over F ( 2n
√
d) as φ ≃ ⟨1, d⟩ ⊗ ρ is

anisotropic (Theorem 3.1).

Corollary 3.4. Let d ∈ F \ F 2 and K = F ( 2n
√
d) (n ≥ 1). Let φ be an anisotropic totally

singular F -quadratic form. Then , we have:
8



(1) φK is quasi-hyperbolic iff ⟨1, d⟩ ⊗ φ is quasi-hyperbolic iff there exists a totally singular
form ρ such that φ ≃ ⟨1, d⟩ ⊗ ρ.
(2) If one of the equivalent conditions in (1) is satisfied, then DF (⟨1, d⟩ ⊗ φ) = DF (φ).

Proof. (1) This is a direct consequence of Corollary 3.2 and Proposition 3.3.
(2) Suppose that one of the equivalent conditions in (1) is satisfied. Then, there exists a totally

singular form ρ such that φ ≃ ⟨1, d⟩ ⊗ ρ. Hence, we get the following equivalences:

u ∈ DF (⟨1, d⟩ ⊗ φ) ⇐⇒ u ∈ DF (⟨1, d⟩ ⊗ ⟨1, d⟩ ⊗ ρ)

⇐⇒ u ∈ DF (⟨1, d, 0, 0⟩ ⊗ ρ)

⇐⇒ u ∈ DF (⟨1, d⟩ ⊗ ρ ⊥ 2 dim ρ× ⟨0⟩)

⇐⇒ u ∈ DF (φ).

□

We recall the norm theorem that will be used repeatedly in our proofs.

Theorem 3.5. ([15, Theorem 1.1]) Let φ be a nondefective semisingular quadratic form of
dimension ≥ 3 over F , and let p ∈ F [x1, x2, . . . , xn] be a normed irreducible polynomial and
L = F (x1, x2, . . . , xn). Then, the following two conditions are equivalent:

(1) φ is quasi-hyperbolic over F (p).
(2) p is a norm of φL.

We keep K = F ( 2n1
√
d1, · · · , 2ns√

ds) and π = ⟨⟨d1, · · · , ds⟩⟩ as in the beginning of this
section, and we let e the exponent of K. In the case when e > 1, we attach to F the following
2-fold quadratic Pfister forms:

(3.2)
〈〈
u, u2

t

d
k(t,1)
1 · · · dk(t,s)s

]]
such that u ∈ F ∗, 1 ≤ t < e, 0 ≤ k(t, l) < 2t and max{1, 2t−nl+1} | k(t, l) for all 1 ≤ l ≤ s.
These forms will play a crucial role in the classifications given in Theorems 7.1 and 5.1, and
appear in a recent paper of Sobiech [17, Th. 5.3] where the (graded-)Witt kernel of an arbitrary
purely inseparable extension of F is given.

Notations 3.6. Let φ = R ⊥ ql(φ) be a singular quadratic form over F and a ∈ DF (R). We
fix the following notations:
(1) PF (n1, d1, · · · , ns, ds) is the set of 2-fold quadratic Pfister forms as given in equation (3.2).
(2) P a

F (n1, d1, · · · , ns, ds;φ) is the set of 2-fold quadratic Pfister forms as given in equation
(3.2) and satisfying the additional condition u ∈ DF (aπ ⊗ ql(φ)).

The following remark is a direct consequence of Corollary 3.4 and will appear for the case of
simple purely inseparable extensions:

Remark 3.7. When K = F ( 2n1
√
d1), n1 ≥ 2, is a simple purely inseparable extension, then n1

is the exponent of K and we have:
(1) PF (n1, d1) = {

〈〈
u, u2

t
dk1
]]

| u ∈ F ∗, 1 ≤ t < n1 and 0 ≤ k < 2t}.
(2) If φ = R ⊥ ql(φ) is an anisotropic singular form that becomes quasi-hyperbolic over K
and a ∈ DF (R), then:

9



(a) There exists a totally singular form ρ such that ql(φ) ≃ ⟨1, d1⟩ ⊗ ρ.
(b) P a

F (n1, d1;φ) =
{〈〈

u, u2
t
dk1
]]

| u ∈ DF (aql(φ)), 1 ≤ t < n1 and 0 ≤ k < 2t
}

.

To state our results in a simple way, we introduce the following notations:

Notations 3.8. (1) MF (n1, d1, · · · , ns, ds) is the W (F )-submodule of Wq(F ) generated by
PF (n1, d1, · · · , ns, ds).
(2) NF (d1, · · · , ds) is the submodule

∑s
i=1 ⟨1, di⟩b ⊗Wq(F ) of Wq(F ).

(3) Ma
F (n1, d1, · · · , ns, ds;φ) is the subgroup of Wq(F ) additively generated by

P a
F (n1, d1, · · · , ns, ds;φ).

The following remark is obvious but useful for our proofs:

Remark 3.9. Let φ = R ⊥ ql(φ) be a singular quadratic form over F and a ∈ DF (R). Then,
Ma

F (n1, d1, · · · , ns, ds;φ) = M1
F (n1, d1, · · · , ns, ds; aφ).

In our proofs of Theorems 7.1 and 5.1, we will first treat the case of semisingular
quadratic forms of type (1, s). This is the reason why we need to consider the sets
Ma

F (n1, d1, · · · , ns, ds;φ) for scalars a ∈ F ∗ represented by the nonsingular part of φ.
Recall that any 2-fold quadratic Pfister form as in (3.2) is hyperbolic over K [17, Theorem

5.3], and thus any form in MF (n1, d1, · · · , ns, ds) becomes hyperbolic over K. Obviously, any
form in NF (d1, · · · , ds) is hyperbolic over K as well.

4. SOME USEFUL RESULTS

4.1. Representation results. Let φ be an F -quadratic form of underlying vector space V , and
F [x] the ring of polynomials in the indeterminate x. We denote by V (x) and V [x] the spaces
V ⊗F F (x) and V ⊗F F [x], respectively. We recall the Cassels-Pfister theorem:

Theorem 4.1. ([3, Th. 17.3]) We keep the same notations and hypotheses as before. Let v ∈
V (x) be such that φ(v) ∈ F [x]. Then, there exists a vector w ∈ V [x] such that φ(v) = φ(w).

We also need the following result which is a stronger version of Cassels-Pfister theorem.

Proposition 4.2. ([3, Prop. 17.9]) We keep the same notations and hypotheses as before.
Suppose that φ is anisotropic and let s ∈ V , v ∈ V (x) be such that φ(v) ∈ F [x] and
Bφ(s, v) ∈ F [x]. Then, there exists w ∈ V [x] such that φ(v) = φ(w) andBφ(s, v) = Bφ(s, w).

Another result that will play a crucial role for the quasi-hyperbolicity over the function fields
of certain inseparable polynomials is the so-called “Witt Extension Theorem” that states the
following:

Theorem 4.3. ([3, Theorem 8.3]) Let φ and ψ be isometric F -quadratic forms whose underly-
ing vector spaces are U and V , respectively. Let U ′ ⊂ U and V ′ ⊂ V be subspaces such that
U ′ ∩Rad(φ) = 0 and V ′ ∩Rad(ψ) = 0. Suppose there is an isometry α : φ|U ′ −→ ψ|V ′ . Then,
there is an isometry α′ : φ −→ ψ such that α′(U ′) = V ′ and α′

|U ′ = α.
10



The following corollary is the starting point for the quasi-hyperbolicity of semisingular qua-
dratic forms over inseparable quadratic extensions.

Corollary 4.4. Let φ = R ⊥ ql(φ) be an anisotropic semisingular F -quadratic form. Let
d ∈ F \F 2 and suppose that φ is quasi-hyperbolic over F (

√
d). Then, dimR ≥ 4, and for any

scalar α ∈ DF (R), there exist a nonsingular form R′ of dimension dimR − 2 and a ∈ F such
that

(4.1) φ ∼ α ⟨1, d⟩b ⊗ [1, a] ⊥ R′ ⊥ ql(φ).

Proof. Let L = F (
√
d) and V the underlying vector space of φ. We may suppose α = 1.

Since φL is quasi-hyperbolic, then ql(φ)L is quasi-hyperbolic, and thus ql(φ) ≃ ⟨1, d⟩ ⊗ ρ for
some totally singular form ρ. Moreover, x2 + d is a norm of φF (x) (Theorem 3.5). Hence,
φF (x)(v) = x2 + d for some vector v ∈ V (x). We may suppose v ∈ V [x] (Theorem 4.1).
Since φ is anisotropic, we may write v = v0 + xv1 for v0, v1 ∈ V . Hence, the condition
φF (x)(v) = x2 + d implies the following relations: φ(v0) = d, φ(v1) = 1 and Bφ(v0, v1) = 0,
meaning that ⟨1, d⟩ ≺ φ. It follows from Corollary 2.7 that dimR ≥ 4, and we have the
following isometry:

φ ≃ [1, a] ⊥ d[1, b] ⊥ θ ⊥ ql(φ),

where a, b ∈ F and θ is a nonsingular quadratic form of dimension dimR − 4. The previous
isometry can be re-written as follows:

φ ∼ ⟨1, d⟩b ⊗ [1, a] ⊥ R′ ⊥ ql(φ),

where R′ = d[1, a+ b] ⊥ θ is of dimension dimR− 2. Hence the corollary. □

Remark 4.5. Note that in Corollary 4.4, the hypothesis of quasi-hyperbolicity is necessary to
make the scalar α appear in the right hand side of equation (4.1).

Corollary 4.6. Let d ∈ F \ F 2 and φ an anisotropic semisingular F -quadratic form. Then, φ
becomes quasi-hyperbolic over F (

√
d) iff we have the two conditions:

(1) φ ∼ φ1 ⊥ ql(φ) for some φ1 ∈ NF (d).
(2) ql(φ) ≃ ⟨1, d⟩ ⊗ ρ for some totally singular F -quadratic form ρ.

Proof. Let L = F (
√
d). Since φL is quasi-hyperbolic, then ql(φ) ≃ ⟨1, d⟩ ⊗ ρ for some totally

singular form ρ. The rest of the corollary follows from Corollary 4.4 using an induction on the
dimension of the nonsingular part of φ. □

4.2. Certain calculations on generator quadratic forms. Our criterion for (strict) quasi-
hyperbolicity over purely inseparable modular extensions is based on the 2-fold Pfister forms
given in equation (3.2). Our aim in this section is to prove some results helping us to expand
these forms when they are given over a quadratic inseparable extension of the base field. This is
due to the fact that in our proofs, we will proceed by induction on the degree of the extension,
and thus we are brought to consider the generators first on a quadratic inseparable extension.
To this end we recall a lemma that will play a key role in this process.

11



Lemma 4.7. Let a1, . . . , an ∈ F ∗ (n ≥ 2) and c ∈ F be such that a :=
∑n

i=1 ai ̸= 0. Then, we
have

⟨1, a⟩b ⊗ [1, c] ∼
n∑
i=1

⟨1, ai⟩b ⊗
[
1,
aic

a

]
.

This lemma is due to Aravire and Baeza for n = 2 [1, Lemma 2.1], but their proof easily
extends to any integer n ≥ 2.

For the rest of this subsection we fix an inseparable quadratic extension F (
√
d) of F . As a

direct consequence of Lemma 4.7, we have the following result.

Corollary 4.8. Let s = s0 + s1
√
d ∈ F (

√
d) with s0, s1 ∈ F ∗. Then, we have the following

equivalence over F (
√
d):

⟨1, s⟩b ⊗ [1, s2
t

(
√
d)k] ∼ ⟨1, s0⟩b ⊗

[
1, s0s

2t−1(
√
d)k
]
+ ⟨1, s1

√
d⟩b ⊗

[
1, s1s

2t−1(
√
d)k+1

]
.

We mention an easy lemma but useful for the sequel.

Lemma 4.9. Let s = s0 + s1
√
d ∈ F (

√
d) with s0, s1 ∈ F . Then, we have:

s2
t−1 = (s0 + s1

√
d)2

t−1 =
2t−1∑
j=0

sj0(s1
√
d)2

t−1−j.

Proof. We already know s2
t−1 = (s0 + s1

√
d)2

t−1 =
∑2t−1

j=0

(
2t−1
j

)
sj0(s1

√
d)2

t−1−j . Since(
2t−1
j

)
≡ 1 (mod 2) for all 0 ≤ j ≤ 2t − 1, and we are working over a field of character-

istic 2, we get the desired conclusion. □

We will often use the following lemma.

Lemma 4.10. Let ρ be a totally singular F -quadratic form such that s ∈ DF (
√
d)(ρ ⊥

√
dρ),

where s = s0 + s1
√
d for some s0, s1 ∈ F . Then, for each i = 0, 1, when si ̸= 0 we obtain:

si ∈ DF (ρ ⊥ dρ), and si, si
√
d ∈ DF (

√
d)(ρ ⊥

√
dρ).

Proof. Put L = F (
√
d). Since s ∈ DF (

√
d)(ρ ⊥

√
dρ), there exist v0, v1, w0, w1 vectors in the

underlying F -vector space of ρ such that

s = ρ(v0 +
√
dv1) +

√
dρ(w0 +

√
dw1) = ρ(v0) + dρ(v1) +

√
d(ρ(w0) + dρ(w1)).

Hence, s0 = ρ(v0)+dρ(v1) and s1 = ρ(w0)+dρ(w1). So when si ̸= 0, we get si ∈ DF (ρ ⊥ dρ).
Moreover, when si ̸= 0, the condition si ∈ DF (ρ ⊥ dρ) implies si ∈ DL(ρ ⊥ dim ρ× ⟨0⟩),

and thus si ∈ DL(ρ). In particular, si ∈ DL(ρ ⊥
√
dρ) and si

√
d ∈ DL(ρ ⊥

√
dρ). □

Further joining the Lemma 4.10 with Corollary 4.8 gives us the following corollary:

Corollary 4.11. Let ρ, s, so, s1 be as in Lemma 4.10, and β ∈ F . Then, we have the following
equivalence over F (

√
d):〈〈

s, s2
t

(
√
d)kβ

]]
⊥ ρ ⊥

√
dρ ∼ [1, s2

t+1

0 dkβ2] ⊥ [1, s2
t+1

1 d2
t+kβ2] ⊥ ρ ⊥

√
dρ.(4.2)
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Proof. Put Q = ρ ⊥
√
dρ. If s0 = 0 or s1 = 0, then the corollary is obviously satisfied.

So we deal with the case s0, s1 ∈ F ∗. With the help of Corollary 4.8 we have the following
equivalence:

〈〈
s, s2

t

(
√
d)kβ

]]
⊥ Q ∼ ⟨1, s0⟩b ⊗ [1, s0s

2t−1(
√
d)kβ] ⊥ ⟨1, s1

√
d⟩b ⊗ [1, s1s

2t−1(
√
d)k+1β] ⊥ Q.

(4.3)

Now using the expansion s2t−1 =
∑2t−1

j=0 s
j
0(s1

√
d)2

t−1−j (Lemma 4.9), and repeatedly use the
equivalence [1, a+ b] ∼ [1, a] ⊥ [1, b] to get the following equation:

〈〈
s, s2

t

(
√
d)kβ

]]
⊥ Q ∼

2t−1∑
j=0

⟨1, s0⟩b ⊗ [1, sj+1
0 s2

t−1−j
1 (

√
d)2

t−1−j+kβ]

⊥
2t−1∑
l=0

〈
1, s1

√
d
〉
b
⊗ [1, sl0s

2t−l
1 (

√
d)2

t−l+kβ] ⊥ Q.

Hence, we get

〈〈
s, s2

t

(
√
d)kβ

]]
⊥ Q ∼

2t−2∑
j=0

⟨1, s0⟩b ⊗ [1, sj+1
0 s2

t−1−j
1 (

√
d)2

t−1−j+kβ] ⊥ ⟨1, s0⟩b ⊗ [1, s2
t

0 (
√
d)kβ]

⊥
〈
1, s1

√
d
〉
b
⊗ [1, s2

t

1 (
√
d)2

t+kβ] ⊥
2t−1∑
l=1

〈
1, s1

√
d
〉
b
⊗ [1, sl0s

2t−l
1 (

√
d)2

t−l+kβ] ⊥ Q.

(4.4)

Note that the terms sj+1
0 s2

t−1−j
1 (

√
d)2

t−1−j+k and sl0s
2t−l
1 (

√
d)2

t−l+k are on the respective range
of j and l. Hence, we can re-write equation (4.4) as:

〈〈
s, s2

t

(
√
d)kβ

]]
⊥ Q ∼

2t−2∑
j=0

s0[1, s
j+1
0 s2

t−1−j
1 (

√
d)2

t−1−j+kβ] ⊥ [1, s2
t

0 (
√
d)kβ] ⊥ s0[1, s

2t

0 (
√
d)kβ]

⊥ [1, s2
t

1 (
√
d)2

t+kβ] ⊥ s1
√
d[1, s2

t

1 (
√
d)2

t+kβ] ⊥
2t−1∑
l=1

s1
√
d[1, sl0s

2t−l
1 (

√
d)2

t−l+kβ] ⊥ Q.

(4.5)

Since s0, s1
√
d ∈ DF (

√
d)(Q), we know:

Q ∼ s0[1, u] ⊥ s1
√
d[1, v] ⊥ Q,

for any u, v ∈ F (
√
d). Thus, we can express equation (4.5) as follows:

(4.6)
〈〈
s, s2

t

(
√
d)kβ

]]
⊥ Q ∼ [1, s2

t

0 (
√
d)kβ] ⊥ [1, s2

t

1 (
√
d)2

t+kβ] ⊥ Q.

Now over equation (4.6), we use the isometry [1, u] ≃ [1, u2] to get equation (4.2). □
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5. THE CASE OF SIMPLE PURELY INSEPARABLE EXTENSIONS

Throughout this section, we fix d ∈ F \ F 2 and K = F ( 2n
√
d), n ≥ 2, a simple purely

inseparable extension of F . Our aim is to prove Theorem 5.1 below that deals with the quasi-
hyperbolicity over K of semisingular quadratic forms. Although the proof is also covered in
the general case coming up in the next section, we mention the proof here to form a clear idea
for the reader, and because the strategy of proof dealing with the quasilinear part for a general
extension is a little bit different than that used for simple purely inseparable extensions.

Theorem 5.1. Let K = F ( 2n
√
d), n ≥ 2, be as before and φ an anisotropic semisingular

F -quadratic form. Then, φ is quasi-hyperbolic over K iff we have the two conditions:

(1) φ ∼ φ1 ⊥ φ2 ⊥ ql(φ) for suitable φ1 ∈ MF (n, d) and φ2 ∈ NF (d),
(2) ql(φ) ≃ ⟨1, d⟩ ⊗ ρ for a suitable totally singular form ρ.

We first prove Proposition 5.2 which deals with the quasi-hyperbolicity overK of semisingu-
lar quadratic forms φ of type (1, s). The classification given in this proposition is more precise
than that given in Theorem 5.1 because we take a form in Ma

F (n, d;φ) multiplied by a scalar
represented by the nonsingular part of φ. This is crucial to prove the proposition using an in-
duction on the integer n. Based on this proposition and an induction on the dimension of the
nonsingular part, we will prove Theorem 5.1.

Proposition 5.2. LetK = F ( 2n
√
d), n ≥ 2, be as before and φ = a[1, b] ⊥ ql(φ) an anisotropic

semisingular F -quadratic form. Then, φ is quasi-hyperbolic over K iff we have the two condi-
tions:

(1) φ ∼ aφ1 ⊥ ql(φ) for suitable φ1 ∈ Ma
F (n, d;φ),

(2) ql(φ) ≃ ρ ⊥ dρ for a suitable totally singular form ρ.

Proof. Working with the form aφ and because Ma
F (n, d;φ) = M1

F (n, d; aφ) (Remark 3.9), we
may suppose a = 1. Let V be the underlying vector space of φ. The conditions (1) and (2)
imply that φK is quasi-hyperbolic. Now suppose that φ is quasi-hyperbolic over K. It follows
from Proposition 2.3 that iW (φ

F (
2n√

d)
) = 1 and ql(φ

F (
2n√

d)
) is quasi-hyperbolic. With the help

of Proposition 3.3, we have ql(φ) ≃ ρ ⊥ dρ for some totally singular F -quadratic form ρ. We
proceed by induction on n to prove the first statement of the proposition.

Step 1. Suppose n = 2. By Theorem 3.5 we have:

φ ≃ (x4 + d)φ.

Since the nonsingular part of φ represents 1, there exists v ∈ V (x) such that φ(v) = x4 + d.
We may assume v ∈ V [x] by Theorem 4.1. Since φ is anisotropic, the polynomial vector v has
degree 2. Let v = v0 + v1x+ v2x

2 be such that v0, v1, v2 ∈ V . Then, we get

φ(v) = x4 + d = φ(v0) +Bφ(v0, v1)x+ φ(v1)x
2 +Bφ(v0, v2)x

2 +Bφ(v1, v2)x
3 + φ(v2)x

4.

So we have the following relations:

• φ(v0) = d,
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• φ(v2) = 1,
• φ(v1) = Bφ(v0, v2),
• Bφ(v0, v1) = Bφ(v1, v2) = 0.

Case 1. Suppose φ(v1) = 0. Since φ is anisotropic, it follows that v1 = 0, and thus we reduce
to the relations: φ(v0) = d, φ(v2) = 1 and Bφ(v0, v2) = 0, meaning that ⟨1, d⟩ ≺ φ. This is not
possible by Corollary 2.7 because φ has a nonsingular part of dimension 2.
Case 2. Suppose α := φ(v1) ∈ F ∗. Then, the four previous relations mean [1;α; d] ⊥ ⟨α⟩ ≺
φ. Using the isometry [1;α; d] ≃ [1, dα−2] and the fact that the nonsingular part of φ is of
dimension 2, we get

φ ≃ [1, dα−2] ⊥ ⟨α⟩ ⊥ Q,

for a suitable totally singular form Q satisfying ql(φ) ≃ ⟨α⟩ ⊥ Q. Adding a hyperbolic plane
to both sides we can write:

φ ⊥ H ≃ ⟨1, α⟩b ⊗ [1, dα−2] ⊥ ql(φ),

≃
〈
1, α−1

〉
b
⊗ [1, dα−2] ⊥ ql(φ),

≃
〈〈
α−1, dα−2

]]
⊥ ql(φ).

Note that α−1 ∈ DF (ql(φ)) = DF (⟨1, d⟩ ⊗ ql(φ)) (Corollary 3.4), and thus the form φ1 =

⟨⟨α−1, dα−2]] ∈ M1
F (n, d;φ). Hence, the proposition is satisfied for n = 2.

Step 2. Suppose n > 2. Extending φ to F (
√
d), we get:

φF (
√
d) ≃ ([1, b] ⊥ ρ)F (

√
d) ⊥ dim ρ× ⟨0⟩ .

Because iW (φ
F (

2n√
d)
) = 1, we get:

iW (([1, b] ⊥ ρ)F (
√
d))F (

2n−1√√
d)
= 1.

Thus, the F (
√
d)-form φ̃ := [1, b] ⊥ ρ ⊥

√
dρ is quasi-hyperbolic over F ( 2n−1√√

d). This
enables us to apply our induction hypothesis to the form φ̃ provided it is anisotropic over
F (

√
d).

(a) Suppose that φ̃ is isotropic over F (
√
d). Since ρK is anisotropic, it follows that ρF (

4√
d) is

anisotropic as well. Theorem 3.1 implies that ρ ⊥
√
dρ is anisotropic over F (

√
d). Hence, the

isotropy of φ̃ implies

(5.1) φ̃ ≃ H ⊥ ρ ⊥
√
dρ

Extending equation (5.1) to F ( 4
√
d) yields:

φ̃F (
4√
d) ≃ ([1, b] ⊥ ρ)F (

4√
d) ⊥ dim ρ× ⟨0⟩ ≃ H ⊥ ρF (

4√
d) ⊥ dim ρ× ⟨0⟩ .

Clearly, we can re-write the above equation as follows:

([1, b] ⊥ ρ ⊥ dρ)F (
4√
d) ≃ H ⊥ ρF (

4√
d) ⊥ dim ρ× ⟨0⟩ .

Hence, φ is quasi-hyperbolic over F ( 4
√
d), which reduces us to Step 1.
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(b) Suppose that φ̃ is anisotropic over F (
√
d). Since φ̃ is quasi-hyperbolic over F ( 2n−1√√

d),
we deduce by induction that there exists a finite set I such that:

(5.2) φ̃ ∼
∑
i∈I

Gi ⊥ ρ ⊥
√
dρ,

where Gi =
〈〈
si, s

2t

i (
√
d)k
]]

such that 1 ≤ t ≤ n− 2, 1 ≤ k ≤ 2t − 1 and si ∈ DF (
√
d)(ρ ⊥

√
dρ) for all i ∈ I (Corollary 3.4).
We write si = si0 + si1

√
d for si0, si1 ∈ F . Using Corollary 4.11 we re-write equation 5.2 as

follows:

(5.3) [1, b] ⊥ ρ ⊥
√
dρ ∼

∑
i∈I

(
[1, s2

t0

i0 d
k0 ] ⊥ [1, s2

t1

i1 d
k1 ]
)
⊥ ρ ⊥

√
dρ,

where 1 ≤ t0, t1 ≤ n− 1, 1 ≤ k0 ≤ 2t0 − 1, 1 ≤ k1 ≤ 2t1 − 1, and each scalar si0, si1 belongs
to DF (ρ ⊥ dρ) when it is nonzero.

Moreover, using the equivalence [1, x] ⊥ [1, y] ∼ [1, x + y], we deduce from equation (5.3)
the following:

(5.4) [1, b+
∑
i∈I

(s2
t0

i0 d
k0 + s2

t1

i1 d
k1)] ⊥ ρ ⊥

√
dρ ∼ ρ ⊥

√
dρ.

Let b′ = b+
∑

i∈I(s
2t0
i0 d

k0 + s2
t1

i1 d
k1). We now extend equation (5.4) to F ( 4

√
d) getting:

[1, b′] ⊥ ρ ⊥ dim ρ× ⟨0⟩ ∼ ρ ⊥ dim ρ× ⟨0⟩ .

Equivalently, we can write

(5.5) ([1, b′] ⊥ ρ ⊥ dρ)F (
4√
d) ∼ ρ ⊥ dim ρ× ⟨0⟩ .

Thus, the F -quadratic form [1, b′] ⊥ ρ ⊥ dρ is quasi-hyperbolic over F ( 4
√
d). We treat two

cases:
(b.1) Suppose that [1, b′] ⊥ ρ ⊥ dρ is isotropic over F . Then, since ρ ⊥ dρ is anisotropic

over F , we have:
[1, b′] ⊥ ρ ⊥ dρ ∼ ρ ⊥ dρ.

Consequently, we get

(5.6) φ ∼
∑
i∈I

(
[1, s2

t0

i0 d
k0 ] ⊥ [1, s2

t1

i1 d
k1 ]
)
⊥ ρ ⊥ dρ.

Since si0, si1 ∈ DF (ρ ⊥ dρ), we deduce from equation (5.6) the following:

φ ∼ φ1 ⊥ ρ ⊥ dρ,

where φ1 =
∑

i∈I
(
⟨1, si0⟩b ⊗ [1, s2

t0

i0 d
k0 ] ⊥ ⟨1, si1⟩b ⊗ [1, s2

t1

i1 d
k1 ]
)
∈ M1

F (n, d;φ).
(b.2) Suppose that [1, b′] ⊥ ρ ⊥ dρ is anisotropic. Since it is quasi-hyperbolic over F ( 4

√
d),

we deduce from Step 1. the following:

[1, b′] ⊥ ρ ⊥ dρ ∼
〈〈
r, r2d

]]
⊥ ρ ⊥ dρ

for a scalar r ∈ DF (ρ ⊥ dρ). Hence, as in case (b.1), we get

φ ∼ φ1 ⊥ ρ ⊥ dρ,
16



where φ1 = ⟨⟨r, r2d]] ⊥
∑

i∈I
(
⟨1, si0⟩b ⊗ [1, s2

t0

i0 d
k0 ] ⊥ ⟨1, si1⟩b ⊗ [1, s2

t1

i1 d
k1 ]
)

belongs to
M1

F (n, d;φ). This proves the proposition. □

Now we are able to prove Theorem 5.1.

Proof of Theorem 5.1. The two conditions imply that φK is quasi-hyperbolic. Conversely,
suppose that φK is quasi-hyperbolic. Then, we know that ql(φ) ≃ ρ ⊥ dρ for some totally
singular form ρ which is anisotropic over K. Let R = [a1, b1] ⊥ . . . ⊥ [ar, br] be such that
φ = R ⊥ ql(φ). We prove the statement (1) by induction on r.

The case r = 1 is given in Proposition 5.2. So we suppose r ≥ 2. By the quasi-hyperbolicity
of φK , we get

RK ⊥ ρK ⊥ dim ρ× ⟨0⟩ ≃ r ×H ⊥ ρK ⊥ dim ρ× ⟨0⟩ .

Using Witt cancellation (Proposition 2.4), we deduce

RK ⊥ ρK ≃ r ×H ⊥ ρK .

Now adding ⟨a2, a3, . . . , ar⟩K in both sides of the previous equation, we get

RK ⊥ ρK ⊥ ⟨a2, a3, . . . , ar⟩K ≃ r ×H ⊥ ρK ⊥ ⟨a2, a3, . . . , ar⟩K .

Note that [ai, bi] ⊥ ⟨ai⟩ ≃ H ⊥ ⟨ai⟩. Thus, after canceling hyperbolic planes, we have the
following isometry:

(5.7) [a1, b1]K ⊥ ρK ⊥ ⟨a2, a3, . . . , ar⟩K ≃ H ⊥ ρK ⊥ ⟨a2, a3, . . . , ar⟩K .

Moreover, by Lemma 2.10, there exists ρ1 a subform of ρ ⊥ ⟨a2, a3, . . . , ar⟩ such that

((ρ ⊥ ⟨a2, a3, . . . , ar⟩)K)an ≃ (ρ1)K .

Let ρ2 be a totally singular form such that ρ ⊥ ⟨a2, a3, . . . , ar⟩ ≃ ρ1 ⊥ ρ2. Canceling the
zero form in (5.7) yields the following

(5.8) [a1, b1]K ⊥ (ρ1)K ≃ H ⊥ (ρ1)K .

Let φ̃ = [a1, b1] ⊥ ρ1 ⊥ dρ1. The form (ρ1)K is anisotropic, and thus (ρ1)F (
√
d) is also

anisotropic. Consequently, ρ1 ⊥ dρ1 is anisotropic (Theorem 3.1). We distinguish two cases:

Case 1. Suppose iW (φ̃) = 0. Hence, φ̃ is anisotropic. Clearly, equation (5.8) implies that φ̃K
is quasi-hyperbolic. We now apply Proposition 5.2 to get

(5.9) [a1, b1] ⊥ ρ1 ⊥ dρ1 ∼ a1φ1 ⊥ ρ1 ⊥ dρ1,

where φ1 ∈ Ma1
F (n, d;φ). Adding in both sides of equation (5.9) the form ρ2 ⊥ dρ2, we get

[a1, b1] ⊥ ql(φ) ⊥ ⟨1, d⟩ ⊗ ⟨a2, a3, . . . , ar⟩ ∼ a1φ1 ⊥ ql(φ) ⊥ ⟨1, d⟩ ⊗ ⟨a2, a3, . . . , ar⟩ .

Now we apply Corollary 2.9 (for Q = ⟨a2, a3, . . . , ar⟩, Q′ = ql(φ) and xi = bi for all 2 ≤ i ≤
r), we obtain

(5.10) φ ∼ a1φ1 ⊥ φ2 ⊥ R′′ ⊥ ql(φ)

for φ2 ∈ NF (d) andR′′ a nonsingular form of dimension 2(r−1). Since φK is quasi-hyperbolic,
the form R′′ ⊥ ql(φ) is also quasi-hyperbolic over K. Hence, we conclude by induction.
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Case 2. Suppose iW (φ̃) = 1. Then, φ̃ ∼ ρ1 ⊥ dρ1. Adding in both sides the form ρ2 ⊥ dρ2,
we get

[a1, b1] ⊥ ql(φ) ⊥ ⟨1, d⟩ ⊗ ⟨a2, a3, . . . , ar⟩ ∼ ql(φ) ⊥ ⟨1, d⟩ ⊗ ⟨a2, a3, . . . , ar⟩ .

Hence, we conclude as in Case 1. This proves the theorem.

6. THE CASE OF MULTIQUADRATIC PURELY INSEPARABLE EXTENSIONS

The case of purely inseparable modular extensions of exponent > 1 is treated in Theorem
7.1. To complete the picture, we treat the case of multiquadratic purely inseparable extensions.

Theorem 6.1. Let d1, · · · , ds ∈ F and K = F (
√
d1, . . . ,

√
ds) be such that [L : F ] = 2s. Let φ

be an anisotropic semisingular F -quadratic form. Then, φ is strictly quasi-hyperbolic over K
iff the two conditions hold:
(1) φ ∼ φ1 ⊥ ql(φ) for a suitable form φ1 ∈ NF (d1, · · · , ds),
(2) ⟨⟨d1, · · · , ds⟩⟩ ⊗ ql(φ) is quasi-hyperbolic.

Proof. We write φ = R ⊥ ql(φ) for some nonsingular form R of dimension 2r.
Clearly, the conditions (1) and (2) imply that φK is strictly quasi-hyperbolic since the condi-

tion (2) implies that ql(φ)K is quasi-hyperbolic (Corollary 3.1).
Conversely, suppose that φK is strictly quasi-hyperbolic. Then, ql(φ) is quasi-hyperbolic

over K, which implies that ⟨⟨d1, · · · , ds⟩⟩⊗ ql(φ) is quasi-hyperbolic (Corollary 3.1). To prove
the statement (1), we proceed by induction on s. The case s = 1 was already treated in Corollary
4.6. So suppose s ≥ 2.

Let L = F (
√
d2, . . . ,

√
ds), so K = L(

√
d1). By Corollary 2.11, there exists η a subform of

ql(φ) such that (ql(φ)K)an ≃ ηK . Let η′ be such that ql(φ) ≃ η ⊥ η′.
Since η is anisotropic over K = L(

√
d1), it follows that η ⊥ d1η is anisotropic over L

(Theorem 3.1). Moreover, since L/F is excellent (Theorem 2.12), there exists a nonsingular
F -quadratic form R1 such that ψ := ((R ⊥ η ⊥ d1η)L)an ≃ (R1 ⊥ η ⊥ d1η)L.

Case 1. Suppose dimR1 > 0. Since

φK ≃ r ×H ⊥ ηK ⊥ s× ⟨0⟩ ≃ (R ⊥ η)K ⊥ s× ⟨0⟩ ,

for some integer s ≥ 0 and ηK is anisotropic, it follows from Witt cancellation (Proposition 2.4)
that

r ×H ⊥ ηK ≃ (R ⊥ η)K .

In particular, we have

r ×H ⊥ ηK ⊥ dim η × ⟨0⟩ ≃ (R ⊥ η)K ⊥ dim η × ⟨0⟩(6.1)

≃ (R ⊥ η ⊥ d1η)K .

Now since (R ⊥ η ⊥ d1η)L ∼ (R1 ⊥ η ⊥ d1η)L, equation (6.1) ensures that (R1 ⊥ η ⊥ d1η)L
becomes quasi-hyperbolic over K = L(

√
d1). It follows from Corollary 4.4 that

(6.2) (R1 ⊥ η ⊥ d1η)L ∼ α ⟨1, d1⟩b ⊗ [1, β] ⊥ R2 ⊥ (η ⊥ d1η)L,
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where α is an arbitrary scalar inDF (R1), β ∈ L andR2 a nonsingular form over L of dimension
dimR1 − 2. We may suppose β ∈ F because [1, β] ≃ [1, β2] and L2 ⊂ F . Hence, by the
excellence of L/F we may suppose R2 defined over F .

Since (R1 ⊥ η ⊥ d1η)L is quasi-hyperbolic over K, the form (R2 ⊥ η ⊥ d1η)L is also
quasi-hyperbolic over K. We repeat a number of times the same arguments as we did for
R1 ⊥ η ⊥ d1η, to prove

(R1 ⊥ η ⊥ d1η)L ∼ ψ1 ⊥ (η ⊥ d1η)L

for some ψ1 ∈ NF (d1). In particular

(R ⊥ η ⊥ d1η)L ∼ ψ1 ⊥ (η ⊥ d1η)L.

By Corollary 2.8 (applied to Q = η), there exists ψ2 ∈ NF (d1) such that

(6.3) (R ⊥ ψ2 ⊥ η)L ∼ ηL.

Now consider the F -quadratic form θ := R ⊥ ψ2 ⊥ ⟨1, d2⟩ ⊗ η. The form η ⊥ d2η is
anisotropic over F because ηF (

√
d2) is also anisotropic. Hence, we conclude from equation (6.3)

that θ is strictly quasi-hyperbolic over L. The induction hypothesis implies

θ ∼ ψ3 ⊥ η ⊥ d2η,

where ψ3 ∈ NF (d2, · · · , ds). Again using Corollary 2.8 (applied for Q = η), we deduce

(6.4) R ⊥ ψ2 ⊥ η ∼ ψ′
3 ⊥ η,

for some ψ′
3 ∈ NF (d2, . . . , ds). To conclude we add in both sides of (6.4) the form η′ to get

φ ∼ φ1 ⊥ ql(φ),

where φ1 = ψ2 ⊥ ψ′
3 ∈ NF (d1, · · · , ds).

Case 2. Suppose dimR1 = 0. Then, (R ⊥ η ⊥ d1η)L ∼ (η ⊥ d1η)L. By Corollary 2.8
(applied to Q = η), we get

(6.5) (R ⊥ δ ⊥ η)L ∼ ηL,

where δ ∈ NF (d1). Hence, we are in the conditions of equation (6.3), and thus we finish the
proof as in the previous case. □

7. THE CASE OF PURELY INSEPARABLE MODULAR EXTENSIONS

Throughout this section we fix the same notations as in Section 3, namely: A purely insepa-
rable modular extension K = F ( 2n1

√
d1, · · · , 2ns√

ds), the quasi-Pfister form π = ⟨⟨d1, · · · , ds⟩⟩
and the exponent e of K which is nothing but max{n1, · · · , ns}. We suppose e > 1. The strict
quasi-hyperbolicity over K is given by the following theorem:

Theorem 7.1. Let K be as before and φ an anisotropic semisingular F -quadratic form. Then,
φ is strictly quasi-hyperbolic over K iff we have the two conditions:
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(1) φ ∼ φ1 ⊥ φ2 ⊥ ql(φ) for suitable φ1 ∈ MF (n1, d1, · · · , ns, ds) and φ2 ∈
NF (d1, · · · , ds),

(2) π ⊗ ql(φ) is quasi-hyperbolic.

We will proceed in the same manner as we did in Section 5 for simple purely inseparable
extensions. We first prove Proposition 7.2 that treats the case of semisingular quadratic forms
of type (1, s), and then proceed by induction on the dimension of nonsingular part to prove
Theorem 7.1.

Proposition 7.2. Let K be as before and φ = a[1, b] ⊥ ql(φ) an anisotropic semisingular
quadratic form over F . Then, φ is strictly quasi-hyperbolic over K iff the following conditions
are satisfied:

(1) φ ∼ aφ1 ⊥ φ2 ⊥ ql(φ) for suitable φ1 ∈ Ma
F (n1, d1, · · · , ns, ds;φ) and φ2 ∈

NF (d1, · · · , ds).
(2) π ⊗ ql(φ) is quasi-hyperbolic.

Proof. The conditions described in the proposition are sufficient to get the strict quasi-
hyperbolicity. Conversely, suppose that φ is strictly quasi-hyperbolic over K. Since ql(φ)

is quasi-hyperbolic over K, it follows that π ⊗ ql(φ) is quasi-hyperbolic (Corollary 3.2). For
the rest of the proof we proceed by induction on n1+· · ·+ns. The case n1 = n2 = · · · = ns = 1

is excluded since e > 1. So without loss of generality, we may suppose n1 ≥ 2 and
n1 ≥ n2 ≥ · · · ≥ ns. Hence e = n1. The case n1 = 2, n2 = · · · = ns = 0 is covered
by Proposition 5.2.

Now we will discuss the case when [K : F ] > 4, and because Ma
F (n1, d1, · · · , ns, ds;φ) =

M1
F (n1, d1, · · · , ns, ds; aφ) we may suppose a = 1. Let η be a subform of ql(φ) such that

(ql(φ)K)an ≃ ηK and let η′ be a form such that ql(φ) ≃ η ⊥ η′. Consider the quadratic form
ψ := [1, b] ⊥ η ⊥

√
d1η over L := F (

√
d1).

Observe that η ⊥ d1η is anisotropic over F (resp. η ⊥
√
d1η is anisotropic over L) because

ηF (
√
d1) and ηF ( 4√d1) are anisotropic as ηK is also anisotropic. Moreover, the form ψ is strictly

quasi-hyperbolic over K because ([1, b] ⊥ η)K ≃ H ⊥ ηK .

(A) Suppose that ψ is isotropic over L. Since η ⊥
√
d1η is anisotropic over L, we have the

following isometry:

[1, b] ⊥ η ⊥
√
d1η ≃ H ⊥ η ⊥

√
d1η.

We extend ψ to F ( 4
√
d1) to get:

([1, b] ⊥ η)F ( 4√d1) ⊥ dim η × ⟨0⟩ ≃ H ⊥ η ⊥ dim η × ⟨0⟩ ,

or equivalently, θ := [1, b] ⊥ η ⊥ d1η is quasi-hyperbolic over F ( 4
√
d1).

(1) If θ is anisotropic over F , we deduce from Proposition 5.2 that

(7.1) [1, b] ⊥ η ⊥ d1η ∼ ψ1 ⊥ η ⊥ d1η,

where ψ1 ∈ M1
F (2, d1; θ). Corollary 2.8, applied to equation (7.1), implies

[1, b] ⊥ η ∼ ψ1 ⊥ ψ2 ⊥ η,
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for some ψ2 ∈ NF (d1). We add in both sides of the previous equivalence the form η′ to get
ql(φ). Clearly, M1

F (2, d1; θ) ⊂ M1
F (n1, d1, · · · , ns, ds;φ) and NF (d1) ⊂ NF (d1, · · · , ds).

Hence, the proposition is satisfied.

(2) If θ is isotropic, then there exist x1 ∈ DF (η) such that d1x1 ∈ DF ([1, b] ⊥ η). Since
η ⊥ d1η is anisotropic, we get the following isometry over F :

[1, b] ⊥ η ≃ d1x1[1, v] ⊥ η,

for some v ∈ F . Further, since x1 ∈ DF (η) we have the following equivalence over F :

[1, b] ⊥ η ∼ d1x1[1, v] ⊥ x1[1, v] ⊥ η,

∼ ⟨1, d1⟩b ⊗ (x1[1, v]) ⊥ η.

In particular, [1, b] ⊥ ql(φ) ∼ ψ3 ⊥ ql(φ), where ψ3 = ⟨1, d1⟩b ⊗ (x1[1, v]) ∈ NF (d1). Hence,
the proposition is satisfied.

(B) Suppose that ψ is anisotropic over L. Since ψK is strictly quasi-hyperbolic and [K : L] <

[K : F ], we get by induction the following equivalence over L:

[1, b] ⊥ η ⊥
√
d1η ∼

∑
i∈I

〈〈
ui, u

2t

i (
√
d1)

k(t,1)d
k(t,2)
2 · · · dk(t,s)s

]]
⊥
〈
1,
√
d1

〉
b
⊗ ρ1

⊥
s∑
j=2

⟨1, dj⟩b ⊗ ρj ⊥ η ⊥
√
d1η,

(7.2)

where ui ∈ DL

(〈〈√
d1, d2, . . . , ds

〉〉
⊗ (
〈〈√

d1
〉〉

⊗ η)
)
= DL(

〈〈√
d1, d2, . . . , ds

〉〉
⊗ η), ρj ∈

Wq(L) and

• 1 ≤ t < e′,
• 0 ≤ k(t, l) < 2t,
• max{1, 2t−nl+1} | k(t, l) for l ̸= 1, and max{1, 2t−(n1−1)+1} | k(t, 1),

where e′ is the exponent of the extension K/L. Observe that e′ ∈ {e − 1, e}. Completing the
quaslinear part in both sides of equation (7.2) yields:

[1, b] ⊥
〈〈√

d1, d2, . . . , ds

〉〉
⊗ η ∼

∑
i∈I

〈〈
ui, u

2t

i (
√
d1)

k(t,1)d
k(t,2)
2 · · · dk(t,s)s

]]
⊥
〈
1,
√
d1

〉
b
⊗ ρ1 ⊥

s∑
j=2

⟨1, dj⟩b ⊗ ρj ⊥
〈〈√

d1, d2, . . . , ds

〉〉
⊗ η,

(7.3)

For all i ∈ I , let us write ui = ui0 + ui1
√
d1 such that ui0, ui1 ∈ F . Recall (Lemma 4.10):

• ui0, ui1 ∈ DF (π ⊗ η) ⊂ DF (π ⊗ ql(φ)),
• ui0, ui1

√
d1 ∈ DL(

〈〈√
d1, d2, . . . , ds

〉〉
⊗ η).

Put dk(t,2)2 · · · dk(t,s)s = β ∈ F . Applying Corollary 4.11 to equation (7.3) yields:

[1, b] ⊥
〈〈√

d1, d2, . . . , ds

〉〉
⊗ η ∼

∑
i∈I

(
[1, u2

t+1

i0 d
k(t,1)
1 β2] ⊥ [1, u2

t+1

i1 d
k(t,1)+2t

1 β2]
)

⊥
〈
1,
√
d1

〉
b
⊗ ρ1 ⊥

s∑
j=2

⟨1, dj⟩b ⊗ ρj ⊥
〈〈√

d1, d2, . . . , ds

〉〉
⊗ η.

(7.4)
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Using the isometry [1, x] ⊥ [1, y] ∼ [1, x+ y], we deduce from equation (7.4) the following:

[1, b′] ⊥
〈〈√

d1, d2, . . . , ds

〉〉
⊗ η ∼

〈
1,
√
d1

〉
b
⊗ ρ1 ⊥

s∑
j=2

⟨1, dj⟩b ⊗ ρj

⊥
〈〈√

d1, d2, . . . , ds

〉〉
⊗ η,

(7.5)

where b′ = b+
∑

i∈I

(
u2

t+1

i0 d
k(t,1)
1 β2 + u2

t+1

i1 d
k(t,1)+2t

1 β2
)

.

Let M = F ( 4
√
d1,

√
d2, . . . ,

√
ds) and S = F (

√
d2, . . . ,

√
ds). We extend equation (7.5) to

M getting:

([1, b′] ⊥ η)M ⊥ (2s − 1) dim η × ⟨0⟩ ∼ η ⊥ (2s − 1) dim η × ⟨0⟩.

Equivalently, we can cancel (2s − 1) dim η × ⟨0⟩ and write:

([1, b′] ⊥ η ⊥ d1η)M ∼ η ⊥ dim η × ⟨0⟩.

Thus, the F -quadratic form [1, b′] ⊥ η ⊥ d1η is strictly quasi-hyperbolic over M .

(1) Suppose that [1, b′] ⊥ η ⊥ d1η is isotropic over F . Then, its Witt index is 1 because η ⊥ d1η

is anisotropic over F , and thus

(7.6) [1, b′] ⊥ η ⊥ d1η ∼ η ⊥ d1η.

(2) Suppose that [1, b′] ⊥ η ⊥ d1η is anisotropic over F . Since ηK is anisotropic, the form
ηS(

√
d1) is anisotropic as well, and thus (η ⊥ d1η)S is anisotropic.

Case 1. Suppose iW (([1, b′] ⊥ η ⊥ d1η)S) = 1. Then, [1, b′] ⊥ η ⊥ d1η is strictly quasi-
hyperbolic over S(

√
d1) = F (

√
d1, . . . ,

√
ds). Hence, we get by Theorem 6.1

[1, b′] ⊥ η ⊥ d1η ∼
s∑
l=1

⟨1, dl⟩b ⊗ γl ⊥ η ⊥ d1η

for suitable γ1, · · · , γs ∈ Wq(F ). In particular, we have

(7.7) ([1, b′] ⊥ η ⊥ d1η)S ∼ ⟨1, d1⟩b ⊗ γ1 ⊥ η ⊥ d1η

Case 2. Suppose iW (([1, b′] ⊥ η ⊥ d1η)S) = 0. Then, [1, b′] ⊥ η ⊥ d1η is anisotropic over
S and becomes quasi-hyperbolic over M . Hence, by the quartic case (Step 1 in the proof of
Proposition 5.2), we get

(7.8) ([1, b′] ⊥ η ⊥ d1η)S ∼
〈〈
α, α2d1

]]
⊥ η ⊥ d1η,

where α ∈ DS(η ⊥ d1η). Obviously, α ∈ DS(η ⊥ d1η) implies α ∈ DF (π ⊗ η).

To summarize, in every situation (equations (7.6), (7.7) and (7.8)), we have:

(7.9) ([1, b′] ⊥ η ⊥ d1η)S ∼ (G ⊥ η ⊥ d1η)S,

where G ∈ NF (d1) or G = ⟨⟨α, α2d1]] such that α ∈ DF (π ⊗ η) ⊂ DF (π ⊗ ql(φ)).
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We add to equation (7.9) the form
∑

i∈I

(
[1, u2

t+1

i0 d
k(t,1)
1 β2] ⊥ [1, u2

t+1

i1 d
k(t,1)+2t

1 β2]
)

, and
complete the quasilinear part to get:

([1, b] ⊥ π ⊗ η)S ∼

(∑
i∈I

[1, u2
t+1

i0 d
k(t,1)
1 β2] ⊥ [1, u2

t+1

i1 d
k(t,1)+2t

1 β2] ⊥ G ⊥ π ⊗ η

)
S

.(7.10)

Recall that ui0, ui1 ∈ DF (π ⊗ η) and the exponent e′ of K/L is equal to e− 1 or e. Now we
discuss on each integer t that appears in equation (7.10) to get the desired generators over F :

(a) Suppose t + 1 < e. This happens when t ≤ e′ − 2 or e′ = e − 1. Obviously, for
all l = 2, . . . , s, we have 0 ≤ 2k(t, l) < 2.2t = 2t+1 and the condition max{1, 2t−nl+1}
divides k(t, l) implies that max{1, 2(t+1)−nl+1} divides 2.k(t, l). Moreover, k(t, 1) < 2t <

2t+1 and k(t, 1) + 2t < 2t + 2t = 2t+1. So in this case, we add to (7.10) the form
ui0[1, u

2t+1

i0 d
k(t,1)
1 β2] ⊥ ui1[1, u

2t+1

i1 d
k(t,1)+2t

1 β2] to get the generators
〈〈
ui0, u

2t+1

i0 d
k(t,1)
1 β2

]]
and〈〈

ui1, u
2t+1

i1 d
k(t,1)+2t

1 β2
]]

.

(b) Suppose t+1 = e. Recall that e = n1. Since by induction hypothesis max{1, 2t−(n1−1)+1}
divides k(t, 1), then k(t, 1) is even. Hence, we get the following isometries over F :

[1, u2
t+1

i0 d
k(t,1)
1 β2] ≃ [1, u2

t

i0d
k(t,1)/2
1 β],

[1, u2
t+1

i1 d
k(t,1)+2t

1 β2] ≃ [1, u2
t

i1d
(k(t,1)/2)+2t−1

1 β].

We have by induction hypothesis 0 ≤ k(t, l) < 2t and max{1, 2t−nl+1} divides k(t, l) for all
2 ≤ l ≤ s. Obviously, we have max{1, 2t−n1+1} divides k(t, 1)/2 and 0 ≤ k(t, 1)/2 + 2t−1 <

2t. So in this case, we add to (7.10) the form ui0[1, u
2t

i0d
k(t,1)/2
1 β] ⊥ ui1[1, u

2t

i1d
(k(t,1)/2)+2t−1

1 β] to
get the generators

〈〈
ui0, u

2t

i0d
k(t,1)/2
1 β

]]
and

〈〈
ui1, u

2t

i1d
k(t,1)/2+2t−1

1 β
]]

.
Moreover, π⊗η is quasi-hyperbolic over S because id(πS) = 2s−2. Hence, after recovering

the generators as explained in (a) and (b), we apply Theorem 6.1 to equation (7.10) to get:

(7.11) [1, b] ⊥ π ⊗ η ∼ φ1 ⊥ φ2 ⊥ π ⊗ η,

for some φ1 ∈ M1
F (n1, d1, · · · , ns, ds;φ) and φ2 ∈ NF (d1, · · · , ds).

We apply Corollary 2.8 to (7.11) to eliminate the form d1 ⟨⟨d2, · · · , ds⟩⟩⊗η in both sides, and
get in the right hand side a form in NF (d1). So the new quasilinear part is ⟨⟨d2, · · · , ds⟩⟩ ⊗ η.
Again we eliminate the form d2 ⟨⟨d3, · · · , ds⟩⟩ ⊗ η and get in the right hand side a form in
NF (d2). Step by step we continue this process until we reduce the quasilinear part to η. Now
adding in both sides of (7.11) the form η′, we recover the quasilinear part ql(φ). This ends the
proof of the proposition. □

Now we give the proof of Theorem 7.1 which is an adaptation of that of Theorem 5.1.

Proof of Theorem 7.1. Let φ = R ⊥ ql(φ) be an anisotropic semisingular quadratic form over
F . The two conditions given in Theorem 7.1 imply that φ is strictly quasi-hyperbolic over K.

Conversely, suppose that φK is strictly quasi-hyperbolic. Since ql(φ)K is quasi-hyperbolic,
it follows from Corollary 3.2 that π ⊗ ql(φ) is quasi-hyperbolic. Let us write R = [a1, b1] ⊥
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. . . ⊥ [ar, br] for some ai, bi ∈ F ∗. We proceed by induction on dimR. Since iW (φ)K = r, we
have

φK ≃ r ×H ⊥ ql(φ)K .

Adding ⟨a2, a3, . . . , ar⟩ to this equation, and canceling the hyperbolic planes, we get:

(7.12) [a1, b1] ⊥ ⟨a2, a3, . . . , ar⟩K ⊥ ql(φ)K ≃ H ⊥ ⟨a2, a3, . . . , ar⟩K ⊥ ql(φ)K .

Let δ be a subform of ⟨a2, a3, . . . , ar⟩ ⊥ ql(φ) such that

δK ≃ (⟨a2, a3, . . . , ar⟩K ⊥ ql(φ)K)an .

Let δ′ be a form such that ⟨a2, a3, . . . , ar⟩ ⊥ ql(φ) ≃ δ ⊥ δ′. Canceling the zero form in
(7.12), we obtain ([a1, b1] ⊥ δ)K ≃ H ⊥ δK . This implies that φ̃ := [a1, b1] ⊥ δ ⊥ d1δ is
strictly quasi-hyperbolic over K.

Case 1. If φ̃ is anisotropic, then applying Proposition 7.2 yields:

(7.13) φ̃ ∼ a1φ1 ⊥ φ2 ⊥ ⟨1, d1⟩ ⊗ δ,

where φ1 ∈ Ma1
F (n1, d1, · · · , ns, ds) and φ2 ∈ NF (d1, · · · , ds). Since ⟨1, d1⟩ ⊗ δ ⊆ ⟨1, d1⟩ ⊗

(⟨a2, . . . , ar⟩ ⊥ ql(φ)), we obtain

[a1, b1] ⊥ ⟨1, d1⟩ ⊗ (⟨a2, . . . , ar⟩ ⊥ ql(φ)) ∼ a1φ1 ⊥ φ2 ⊥ ⟨1, d1⟩ ⊗ (⟨a2, . . . , ar⟩ ⊥ ql(φ)).

(7.14)

We apply Corollary 2.8 to eliminate the form d1(⟨a2, . . . , ar⟩ ⊥ ql(φ)) in both sides of (7.14),
and get a new form φ′

2 ∈ NF (d1, · · · , ds) such that

[a1, b1] ⊥ ⟨a2, . . . , ar⟩ ⊥ ql(φ) ∼ a1φ1 ⊥ φ′
2 ⊥ ⟨a2, . . . , ar⟩ ⊥ ql(φ).(7.15)

We use Lemma 2.6 on equation (7.15) by completing ⟨a2, a3, . . . , ar⟩ on left side with
[a2, b2] ⊥ . . . ⊥ [an, bn], we get

φ ∼ a1φ1 ⊥ φ′
2 ⊥ [a2, x2] ⊥ . . . ⊥ [ar, xr] ⊥ ql(φ),(7.16)

for suitable scalars x2, . . . , xr ∈ F . Since φK is strictly quasi-hyperbolic, it follows from
equation (7.16) that φ′ := [a2, x2] ⊥ . . . ⊥ [ar, xr] ⊥ ql(φ) is also strictly quasi-hyperbolic
over K. We conclude by induction because the nonsingular part of φ′

an is of dimension < 2r.

Case 2. If φ̃ is isotropic, then iW (φ̃) = 1 because ⟨1, d1⟩ ⊗ δ is anisotropic over F as δF (
√
d1) is

anisotropic. Then, we have

[a1, b1] ⊥ ⟨1, d1⟩ ⊗ δ ≃ H ⊥ ⟨1, d1⟩ ⊗ δ.

Hence, we are in the condition of equation (7.13) with φ1 and φ2 hyperbolic, and thus we
conclude as in the first case. This proves the theorem.
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8. ISOTROPY OVER PURELY INSEPARABLE MODULAR EXTENSIONS

Throughout this section, we let K = F ( 2n1
√
d1, · · · , 2ns√

ds) a purely inseparable modular ex-
tension of F as in Section 3. Let π be the anisotropic quasi-Pfister form ⟨⟨d1, · · · , ds⟩⟩ attached
to K, and let e be the exponent of K.

Our aim is to apply Theorem 7.1 to classify semisingular F -quadratic forms that become
isotropic or more generally having a given Witt index over K.

8.1. Maximality of Witt index over K. We first give a preliminary lemma.

Lemma 8.1. Let φ = R ⊥ ql(φ) be a semingular F -quadratic form. Suppose that φ has
maximal Witt index over K. Then, the form (R ⊥ π⊗ ql(φ))an is strictly quasi-hyperbolic over
K.

Proof. By the roundness of π, there exists a totally singular form S over F such that (π ⊗
ql(φ))an ≃ π ⊗ S. Note that SK is anisotropic because π ⊗ S is anisotropic (Theorem 3.1).

Let l = id(π ⊗ ql(φ)) and dimR = 2r. By the uniqueness of the quasilinear part, we have

(R ⊥ π ⊗ ql(φ))an ≃ R′ ⊥ π ⊗ S

for some nonsingular form R′ of dimension 2r′ ≤ 2r. Hence

(8.1) R ⊥ π ⊗ ql(φ) ∼ R′ ⊥ π ⊗ S ⊥ l × ⟨0⟩ .

Moreover, we have

(R ⊥ ql(φ))K ∼ ql(φ)K ,

and

(π ⊗ ql(φ))K ≃ SK ⊥ (l + (2s − 1) dimS)× ⟨0⟩ .

Thus, extending equation (8.1) to K yields

(8.2) SK ⊥ (l + (2s − 1) dimS)× ⟨0⟩ ∼ (R′ ⊥ S)K ⊥ (l + (2s − 1) dimS)× ⟨0⟩ .

Since SK is anisotropic, the form (R′ ⊥ S)K is nondefective. Using Witt cancellation (Propo-
sition 2.4), we deduce from equation (8.2) the equivalence (R′ ⊥ S)K ∼ SK . Hence

(R′ ⊥ π ⊗ S)K ∼ SK ⊥ (2s − 1) dimS × ⟨0⟩ .

Consequently, (R′ ⊥ π ⊗ S)K is strictly quasi-hyperbolic, as desired. □

The following corollary classifies semisingular quadratic forms that have maximal Witt index
over K.

Corollary 8.2. Let φ be an anisotropic semisingular F -quadratic form. Suppose that φ has
maximal Witt index over K. Then,

φ ∼ φ1 ⊥ φ2 ⊥ ql(φ),

where φ1 ∈ MF (n1, d1, · · · , ns, ds) and φ2 ∈ NF (d1, · · · , ds).
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Proof. Let us write φ = R ⊥ ql(φ). Since φK has maximal Witt index, it follows from Lemma
8.1 that (R ⊥ π ⊗ ql(φ))an is strictly quasi-hyperbolic over K. Theorem 7.1 implies

(8.3) R ⊥ π ⊗ ql(φ) ∼ φ1 ⊥ φ2 ⊥ π ⊗ ql(φ),

where φ1 ∈ MF (n1, d1, · · · , ns, ds) and φ2 ∈ NF (d1, · · · , ds).
By Corollary 2.8, we successively eliminate in equation (8.3) the forms d1 ⟨⟨d2, · · · , ds⟩⟩ ⊗

ql(φ), d2 ⟨⟨d3, · · · , ds⟩⟩ ⊗ ql(φ), · · · , dsql(φ), and we obtain in the right hand side forms in
NF (d1), NF (d2), · · · ,NF (ds). Hence, after this process, we recover the initial quasilinear part
ql(φ). This proves the corollary. □

8.2. On the isotropy over K. Let L = F ( 2n1−1√
d1, · · · , 2ns−1√

ds) and αi = 2ni−1√
di for all

1 ≤ i ≤ s (note that L = F when e = 1). Let J = {(ϵ1, · · · , ϵs) ∈ Ns | 0 ≤ ϵi ≤ 2ni−1 − 1}.
For any ϵ = (ϵ1, · · · , ϵs) ∈ J , let αϵ = αϵ11 · · ·αϵss .

Notation. To any a, b ∈ L such that 0 ̸= a =
∑
ϵ∈J

xϵα
ϵ and xϵ ∈ F , we attach the quadratic form

G(a, b) in I2q (F ) given as follows:

G(a, b) =

′∑
ϵ∈J

⟨1, xϵ⟩b ⊗

[
1,

(
bxϵα

ϵ

a

)2e−1
]
.

Here
′∑

means that the sum is taken over all ϵ for which xϵ is nonzero. Clearly, the formG(a, b)

is defined over F because L2e−1 ⊂ F . A property satisfied by the forms G(a, b) is given by the
following lemma:

Lemma 8.3. We keep the same notations as before. Then, we have the following equivalence:

G(a, b)K ⊥ [1, b]K ∼ a[1, b]K .

Proof. We have αϵ ∈ K2 for all ϵ ∈ J because αi ∈ K2 for all 1 ≤ i ≤ s. Moreover,
[1, x] ≃ [1, x2] for any x ∈ K. Hence, we get

G(a, b)K =

( ′∑
ϵ∈J

⟨1, xϵ⟩b ⊗

[
1,

(
bxϵα

ϵ

a

)2e−1
])

K

≃

( ′∑
ϵ∈J

⟨1, xϵαϵ⟩b ⊗
[
1,
bxϵα

ϵ

a

])
K

.

It follows from Lemma 4.7 that G(a, b)K ∼ ⟨1, a⟩b ⊗ [1, b]K . Hence, G(a, b)K ⊥ [1, b]K ∼
a[1, b]K . □

Our result on the isotropy of semisingular F -quadratic form over K is the following:

Theorem 8.4. Let K and L as before, and φ a semisingular quadratic form over F whose
nonsingular part is of dimension 2r. Then, the following statements are equivalent:
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(1) iW (φK) ≥ m.
(2) There exist a1, · · · , ar−m, b1, · · · , br−m ∈ L such that aj ̸= 0 for all 1 ≤ j ≤ r −m and

φ ∼ φ1 ⊥ φ2 ⊥
r−m∑
j=1

([1, b2
e−1

j ] ⊥ G(aj, bj)) ⊥ ql(φ),

where φ1 ∈ MF (n1, d1, · · · , ns, ds) and φ2 ∈ NF (d1, · · · , ds).

Proof. Suppose that iW (φK) ≥ m. Then, we have

(8.4) φK ≃ m×H ⊥ a1[1, b1] ⊥ . . . ⊥ ar−m[1, br−m] ⊥ ql(φ)K ,

where aj, bj ∈ K and aj ̸= 0. Since K/L is excellent (Theorem 2.12), we may suppose
aj, bj ∈ L for all 1 ≤ j ≤ r −m. Adding

∑r−m
j=1 [1, bj] to both sides of equation (8.4), we get:

φK ⊥
r−m∑
j=1

[1, bj]K ≃ m×H ⊥
r−m∑
j=1

⟨1, aj⟩b ⊗ [1, bj]K ⊥ ql(φ)K .

We write aj =
∑

ϵ∈J xj,ϵα
ϵ for xj,ϵ ∈ F , 0 ≤ j ≤ r −m. We expand the form ⟨1, aj⟩b ⊗ [1, bj]

according to Lemma 4.7 to get:

φK ⊥
r−m∑
j=1

[1, bj]K ∼
r−m∑
j=1

′∑
ϵ∈J

⟨1, xj,ϵαϵ⟩b ⊗
[
1,
bjxj,ϵα

ϵ

aj

]
K

⊥ ql(φ)K ,(8.5)

where the notation
′∑

in the double sum means that the sum is taken over all j and ϵ for which
xj,ϵ is nonzero. Since α ∈ K2 and [1, x] ≃ [1, x2], we can express equation (8.5) as follows:(

φ ⊥
r−m∑
j=1

(
[1, b2

e−1

j ] ⊥ G(aj, bj)
))

K

∼ ql(φ)K .

Notice that b2e−1

j ∈ F since L2e−1 ⊂ F . Hence, the F -quadratic form φ ⊥
∑r−m

j=1 [1, b
2e−1

j ] ⊥
G(aj, bj) has maximal Witt index over K. Using Corollary 8.2, we get

(8.6) φ ⊥
r−m∑
j=1

(
[1, b2

e−1

j ] ⊥ G(aj, bj)
)
∼ φ1 ⊥ φ2 ⊥ ql(φ)

for φ1 ∈ MF (n1, d1, · · · , ns, ds) and φ2 ∈ NF (d1, · · · , ds).
Conversely, let φ be a semisingular quadratic form as in equation (8.6) whose nonsingular

part is of dimension 2r. Extending scalars to K, and using Lemma (8.3) with the isometry
[1, b2

e−1

j ] ≃ [1, bj], we get φK ∼
∑r−m

j=1 aj[1, bj] ⊥ ql(φ). Hence, iW (φK) ≥ m. □

9. SIMILAR RESULTS ON FUNCTION FIELDS OF SOME IRREDUCIBLE POLYNOMIALS

In this section, we are interested in studying the quasi-hyperbolicity of semisingular quadratic
forms over different field extensions.
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9.1. On quasi-hyperbolicity over function fields of quadrics. Our aim is to extend some
results from [11] to the setting of semisingular quadratic forms. Let us first fix few terminologies
to be useful for our results.

We define SQ(F ) to be the set of isometry classes of semisingular quadratic forms over F .
This is a semi-group with respect to the orthogonal sum. To any field extension K of F , we
attach its Witt kernel Wq(K/F ), i.e. the group of nonsingular F -quadratic forms that become
hyperbolic over K. Similarly, let SQ(K/F ) be the set of semisingular F -quadratic forms that
become strictly quasi-hyperbolic over K.

Definition 9.1. Let K/F be a field extension, and I a nonempty subset of N.

(1) SQ(K/F ) is called an I-Pfister set if any quadratic form in SQ(K/F ) is Witt-
equivalent to a quadratic form whose nonsingular part is a sum of forms in GPni

(F ) ∩
Wq(K/F ) for suitable ni ∈ I .

(2) SQ(K/F ) is called a strong I-Pfister set if any anisotropic quadratic form in SQ(K/F )
is isometric to a quadratic form whose nonsingular part is a sum of forms in GPni

(F )∩
Wq(K/F ) for suitable ni ∈ I .

Note that when K = F (ψ) for an anisotropic quadratic form ψ and SQ(K/F ) ̸= ∅, then ψ is
totally singular (Proposition 2.3). Moreover, for simplicity, we talk about n-Pfister set (strong
n-Pfister set) in the particular case I = {n}.

Our aim is to extend some results of the first author from the setting of nonsingular qua-
dratic forms to semisingular quadratic forms. The proofs follow on the same lines as in [11,
Proposition 3.9, Theorem 1.5]. Our main result in this sense is the following theorem:

Theorem 9.2. Let ψ be an anisotropic totally singular quadratic form over F of dimension
greater than 3, and let ψ′ be a form dominated by ψ such that dimψ = dimψ′ + 1 and
SQ(F (ψ′)/F ) is a strong m-Pfister set. Then, SQ(F (ψ)/F ) is an {m,m + 1}-Pfister set.

To prove this result we need some facts. Let ψ be a nonzero totally singular F -quadratic form.
The norm field of ψ is the fieldNF (ψ) := F 2(αβ | α, β ∈ DF (ψ)). We have [NF (ψ) : F

2] = 2d

for some integer d ≥ 1, and thus there exist x1, · · · , xd ∈ F such that NF (ψ) = F 2(x1, · · · , xd).
The quasi-Pfister form πψ := ⟨⟨x1, . . . , xd⟩⟩ is anisotropic and uniquely determined by ψ.
Moreover, we have αψ ⊂ πψ for any scalar α ∈ DF (ψ), and πψ is the quasi-Pfister form
of smallest dimension satisfying this property (see [6, Section 8] for more details). The follow-
ing result deals with the quasi-hyperbolicity over function fields of totally singular quadratic
forms.

Theorem 9.3. ([10, Theorem 1.5]) Let φ and ψ be anisotropic totally singular quadratic forms
over F . Then, φ is quasi-hyperbolic over F (ψ) iff φ ≃ πψ ⊗ ρ for some totally singular
F -quadratic form ρ.

Moreover, we need a generalization of the domination theorem to the setting of semisingular
quadratic forms.
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Proposition 9.4. ([14, Prop. 1.3]) Let φ = R′ ⊥ ql(φ) be an anisotropic semisingular F -
quadratic form. Let ψ be an anisotropic totally singular quadratic form such that φF (ψ) is
quasi-hyperbolic. Then, for any α ∈ DF (ψ), β ∈ DF (R

′) and γ ∈ DF (ql(φ)), there exists a
nonsingular quadratic form R such that φ ≃ R ⊥ ql(φ), ψ ≺ αβR and ψ ≺ αγql(φ).

Recall that if ψ and ψ′ are two anisotropic quadratic forms over F such that ψF (ψ′) is isotropic,
thenWq(F (ψ)/F ) ⊂ Wq(F (ψ

′)/F ) [11, Prop. 3.9]. This result remains true for the semi-group
SQ(F ) as the following proposition shows.

Proposition 9.5. Let ψ and ψ′ be anisotropic totally singular forms over F such that ψF (ψ′) is
isotropic. Then SQ(F (ψ)/F ) ⊂ SQ(F (ψ′)/F ).

Proof. Suppose SQ(F (ψ)/F ) ̸= 0 and let η ∈ SQ(F (ψ)/F ) be anisotropic. We will prove
that η belongs to SQ(F (ψ′)/F ) using an induction on dim η. By Proposition 9.4, there exists a
nonsingular F -quadratic form R such that η ≃ R ⊥ ql(η) and ψ is weakly dominated by R and
ql(η). Since ψF (ψ′) is isotropic, it follows that RF (ψ′) is also isotropic. In particular, we have
iW (ηF (ψ′)) ≥ 1. Hence, the extension F (ψ′)(η)/F (ψ′) is purely transcendental [3, Proposition
22.9]. We discuss two cases:

Case 1. Suppose iW (ηF (η)) = dim η
2

, i.e., ηF (η) = dimR
2

× H ⊥ ql(η)F (η). Extending this
isometry to F (η)(ψ′), we get:

(9.1) ηF (η)(ψ′) =
dimR

2
×H ⊥ ql(η)F (η)(ψ′).

We claim that that ql(η)F (η)(ψ′) is quasi-hyperbolic. In fact, since ηF (ψ) is quasi-hyperbolic, the
form ql(η)F (ψ) is quasi-hyperbolic. By Theorem 9.3, we get ql(η) ≃ πψ ⊗ ρ, where πψ is the
quasi-Pfister form associated to ψ, and ρ is a suitable totally singular form. Since, ψF (ψ′) is
isotropic and ψ is similar to a subform of πψ, it follows that (πψ)F (ψ′) is also isotropic. Thus,
(πψ)F (ψ′) is quasi-hyperbolic [6, Corollary 8.14]. Consequently, ql(η) is quasi-hyperbolic over
F (ψ′), in particular ql(η) is quasi-hyperbolic over F (η)(ψ′). Hence, equation (9.1) yields the
quasi-hyperbolicity of ηF (η)(ψ′). Now since F (ψ′)(η)/F (ψ′) is a purely transcendental exten-
sion, the form η is quasi-hyperbolic over F (ψ′).

Case 2. Suppose iW (ηF (η)) <
dim η
2

. Let η1 := (ηF (η))an. The form ψF (η) is anisotropic
because ψ is totally singular and η is not totally singular [13, Cor. 3.1]. Moreover, the form
(η1)F (η)(ψ) is quasi-hyperbolic because η1 ∼ ηF (η) and ηF (ψ) is quasi-hyperbolic. Since ψF (η)(ψ′)

is isotropic, we deduce by induction that (η1)F (η)(ψ′) is quasi-hyperbolic. Since F (η)(ψ′) =

F (ψ′)(η) and the extension F (ψ′)(η)/F (ψ′) is purely transcendental extension, the form ηF (ψ′)

is quasi-hyperbolic. Hence, in both cases we have η ∈ SQ(F (ψ′)/F ), as desired. □

As an immediate consequence we get the following corollary:

Corollary 9.6. Let π be an anisotropic quasi-Pfister form and ψ a quasi-Pfister neighbor of π.
Then, SQ(F (π)/F ) = SQ(F (ψ)/F ).

Proof. Since ψ is a quasi-Pfister form of π, it follows that πF (ψ) and ψF (π) are isotropic [6, Prop.
8.9(iii)]. Then, the corollary follows from Proposition 9.5. □
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Now we are able to prove Theorem 9.2.

Proof of Theorem 9.2. Let ψ and ψ′ be anisotropic totally singular quadratic form over F such
that dimψ ≥ 3, ψ′ is dominated ψ and dimψ = dimψ′ + 1. Suppose that SQ(F (ψ′)/F ) is a
strong m-Pfister set. We have to prove that SQ(F (ψ)/F ) is an {m,m+ 1}-Pfister set.

Let η ∈ SQ(F (ψ)/F ) be anisotropic and write η = R ⊥ ql(η). We proceed by induction on
dimR. By Proposition 9.5, η ∈ SQ(F (ψ′)/F ) and by assumption η ≃⊥r

i=1 ηi ⊥ ql(η), where
ηi ∈ GPm(F ) ∩Wq(F (ψ

′)/F ) for all 1 ≤ i ≤ r. After scaling, we may assume that ψ′ and η1
represent 1, and thus ψ′ ≺ η1. Put γ =⊥r

i=2 ηi ⊥ ql(η).
If η1 ∈ Wq(F (ψ)/F ), then γF (ψ) is quasi-hyperbolic and we are done by induction. So we

assume that η1 ̸∈ Wq(F (ψ)/F ), which is equivalent to saying that η1 is anisotropic over F (ψ),
and thus in particular η1 does not dominate ψ.

Since η1 dominates ψ′ but not ψ, it follows that it(ψ ⊥ η1) = dimψ′ [6, Corollary 3.13].
Note that it(ψ ⊥ η1) = iW (ψ ⊥ η1) because η1 is nonsingular and ψ is anisotropic. If σ denotes
the anisotropic part of ψ ⊥ η1, then

ψ ⊥ η1 ≃ σ ⊥ u×H

with u = dimψ′.
By our choice, η is quasi-hyperbolic over F (ψ), and since both η and ψ represent 1, we have

η dominates ψ by Proposition 9.4. Hence, it(ψ ⊥ η) = dimψ = dimψ′ + 1. Therefore,

ψ ⊥ η ≃ σ ⊥ γ ⊥ u×H.

Comparing the total Witt index on both sides shows that σ ⊥ γ is isotropic, so there exists
x ∈ DF (σ) ∩DF (γ) since σ and γ are anisotropic.

Now consider π ≃ η1 ⊥ xη1. This form is anisotropic because η1 ⊥ ⟨x⟩, which is a Pfister
neighbor of π, is dominated by η. Then,

ψ ⊥ π ≃ σ ⊥ xρ1 ⊥ u×H.

Note that σ ⊥ xρ1 is isotropic. Hence, it(ψ ⊥ π) ≥ u + 1 = dimψ, and thus π dominates ψ
[6, Corollary 3.13]. Consequently, π ∈ Pm+1(F ) ∩Wq(F (ψ)/F ).

Now let η′ be the anisotropic part of η ⊥ π. We have both η and π dominate ρ1 ⊥ ⟨x⟩, so
it(η ⊥ π) ≥ dim(ρ1 ⊥ ⟨x⟩) = 2m+1. Since ql(η) is anisotropic, we have it(η ⊥ π) = iW (η ⊥
π). Thus, dim η′ ≤ dim η + dim π − 2(2m + 1) < dim η. Moreover η′ ∈ SQ(F (ψ)/F ), thus
we conclude by induction. □

We finish this section by some computations of SQ(F (ψ)/F ). The first one concerns the
case where ψ is a quasi-Pfister neighbor, it extends [11, Theorem 1.4].

Proposition 9.7. Let ψ be an anisotropic quasi-Pfister neighbor of a quasi-Pfister form
⟨⟨a1, · · · , an⟩⟩ over F . Then, any anisotropic form in SQ(F (ψ)/F ) is isometric to B ⊗ R ⊥
π⊗ρ for suitable nonsingular formR and a totally singular form ρ, whereB = ⟨⟨a1, · · · , an⟩⟩b.
In particular, SQ(F (ψ)/F ) is a strong (n+ 1)-Pfister set.

Proof. Let π = ⟨⟨a1, · · · , an⟩⟩ andB = ⟨⟨a1, · · · , an⟩⟩b. Let J be the set of n-tuples (ϵ1, · · · , ϵn)
such that ϵi ∈ {0, 1} for all 1 ≤ i ≤ n. For any ϵ = (ϵ1, · · · , ϵn) ∈ J , we let aϵ = aϵ11 . . . a

ϵn
n .

Then, π =⊥ϵ∈J ⟨aϵ⟩.
30



We may suppose 1 ∈ DF (R). Since φF (π) is quasi-hyperbolic, the form ql(φ)F (π) is also
quasi-hyperbolic. It follows from Theorem 9.3 that ql(φ) ≃ π ⊗ ρ for some totally singular
form ρ. Moreover, by [14, Proposition 1.3], we get

(9.2) φ ≃⊥ϵ∈J aϵ[1, bϵ] ⊥ R′ ⊥ ql(φ),

for some scalars bϵ ∈ F ∗ for all ϵ ∈ J , and a nonsingular form R′. Consequently, equation (9.2)
can be re-written as follows

φ ⊥ (2n − 1)×H ≃ B ⊗ [1, b0] ⊥ R′′ ⊥ ql(φ),

where R′′ = R′ ⊥ (⊥ϵ∈J\{0} aϵ[1, b0 + bϵ]) and 0 = (0, 0, · · · , 0) is the zero tuple. Since
dimR′′ = dimR− 2 and the form R′′ ⊥ ql(φ) is quasi-hyperbolic over F (π), we conclude by
induction on the nonsingular part that

φ ∼ B ⊗ γ ⊥ ql(φ)

for some nonsingular form γ.
Moreover, by the roundness of B (see the subsection 2.2), we may suppose that B ⊗ γ is

anisotropic. We also choose γ of minimal dimension for the property that φ ∼ B ⊗ γ ⊥ ql(φ).
Then, we get φ ≃ B ⊗ γ ⊥ ql(φ), otherwise there would exist x ∈ DF (B ⊗ γ) ∩DF (ql(φ)).
Using the roundness of B and π, we would get B ⊗ γ ≃ B ⊗ ([x, y] ⊥ γ′) and ql(φ) ≃
π ⊗ (⟨x⟩ ⊥ ρ′) for some y ∈ F and forms γ′ and ρ′. Hence, φ ∼ B ⊗ γ′ ⊥ ql(φ) since
B ⊗ [x, y] ⊥ π ⊗ ⟨x⟩ ∼ π ⊗ ⟨x⟩, a contradiction to the choice of γ. □

As a corollary we get an analogue of [11, Cor. 6.3] for semisingular quadratic forms:

Corollary 9.8. Let ψ be an anisotropic totally singular form of dimension n such that 2 ≤ n ≤
4. Then, we have:
(1) SQ(F (ψ)/F ) is a strong 2-Pfister set for n = 2.
(2) SQ(F (ψ)/F ) is a strong 3-Pfister set for n = 3 or (n = 4 and ψ is similar to a quasi-Pfister
form).
(3) SQ(F (ψ)/F ) is a {3, 4}-Pfister set for n = 4 but ψ not similar to a quasi-Pfister form.

Proof. The statements (1) and (2) are a consequence of Proposition 9.7. For (3), we take ψ′ a
subform of ψ of dimension 3. Since SQ(F (ψ′)/F ) is a strong 3-Pfister set, then SQ(F (ψ)/F )
is a {3, 4}-Pfister set by Theorem 9.2. □

9.2. Quasi-hyperbolicity over other field extensions. We now consider the problem that con-
sists in giving conditions under which an anisotropic semisingular quadratic form φ represents
an inseparable polynomial p ∈ F [x1, . . . , xn]. The case of p given by a totally singular quadratic
form is answered by Cassels-Pfister subform theorem. Namely, if an anisotropic quadratic form
φ represents an irreducible polynomial a1x21 + · · · + anx

2
n ∈ F [x1, · · · , xn], then ⟨a1, · · · , an⟩

is dominated by φ. We wish to give a similar criteria for certain polynomials of total degree 4.
The first case we study concerns the polynomial a1x21 + a2x

2
2 + . . . + anx

2
n + x4 for which we

have the following characterization:
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Proposition 9.9. Let φ be an anisotropic semisingular F -quadratic form that represents the
polynomial a1x21 + a2x

2
2 + . . . + anx

2
n + x4 and the form ⟨1, a1, . . . , an⟩ is anisotropic. Then,

we have:
⟨1, a1, a2, . . . , an−1, an⟩ ≺ φ.

Proof. We proceed by induction on n.

Step 1. Suppose n = 1. The form φ represents a1x21 + x4, i.e., there exists v ∈ V (x, x1) such
that φ(v) = a1x

2
1 + x4. By Theorem 4.1 on V (x), we may assume v ∈ V (x)[x1]. Since φ

is anisotropic, we may write v = v0 + v1x1 such that v0, v1 ∈ V (x). Then, φ(v) = φ(v0) +

Bφ(v0, v1)x1 + φ(v1)x
2
1. So we have the following relations:

• φ(v0) = x4,
• φ(v1) = a1,
• Bφ(v0, v1) = 0.

We may suppose v1 ∈ V , in fact we have two cases:
(i) If a1 ∈ DF (ql(φ)), then there exists v′1 ∈ Rad(φ) such that φ(v′1) = a1. Since the condition
Bφ(v0, v

′
1) = 0 is satisfied, we may replace v1 by v′1.

(ii) If a1 ̸∈ DF (ql(φ)). Then, the condition a1 = φ(v1) ∈ DF (x)(φ) implies the existence of
a vector v′′1 ∈ V such that φ(v′′1) = a1. Since v1, v′′1 ̸∈ Rad(φ), we apply the Witt extension
theorem (Theorem 4.3) to the spaces W := F (x)v1 and W ′ := F (x)v′′1 and the isometry
α : W −→ W ′ given by α(v1) = v′′1 , to get an isometry of φ sending v1 to v′′1 . Hence, after
replacing if necessary v1 by v′′1 , we may suppose v1 ∈ V .
Now by Proposition 4.2, we may suppose v0 ∈ V [x]. Since φ is anisotropic, we write v0 =

w0 + w1x+ w2x
2 for w0, w1, w2 ∈ V . Then, wi ⊥ v1 for all i ∈ {1, 2, 3}. Moreover, we have

φ(v0) = x4

= φ(w0) +Bφ(w0, w1)x+ φ(w1)x
2 +Bφ(w0, w2)x

2 +Bφ(w1, w2)x
3 + φ(w2)x

4.

This gives us the following relations:

• φ(w2) = 1,
• φ(w1) +Bφ(w0, w2) = 0,
• φ(w0) = Bφ(w0, w1) = Bφ(w1, w2) = 0.

Here, φ(w0) = 0 implies w0 = 0 since φ is anisotropic. Thus, Bφ(w0, w2) = φ(w1) = 0.
Again, w1 = 0 because φ is anisotropic. So, we have ⟨1, a1⟩ ≺ φ.

Step 2. Suppose n ≥ 2 and φ represents a1x21 + a2x
2
2 + . . . + anx

2
n + x4. By Theorem 4.1,

there exist v ∈ V (x, x1, . . . , xn−1)[xn] such that

φ(v) = a1x
2
1 + a2x

2
2 + . . .+ anx

2
n + x4.

Let us write v = v0 + vnxn, where v0, vn ∈ V (x, x1, . . . , xn−1). Then, φ(v) = φ(v0) +

Bφ(v0, vn)xn + φ(vn)x
2
n. So we have the following relations over L := F (x, x1, · · · , xn−1):

• φ(v0) = a1x
2
1 + a2x

2
2 + . . .+ an−1x

2
n−1 + x4,

• φ(vn) = an,
• Bφ(v0, vn) = 0.
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As explained in Step 1 we may reduce to the case where vn ∈ V . Let (Fvn)⊥ be the or-
thogonal of the space Fvn with respect to the polar form Bφ of φ. Moreover, the previous
condition Bφ(v0, vn) = 0 implies that v0 ∈ (Fvn)

⊥ ⊗F L. Now working with the form
φ|(Fvn)⊥ , we get by induction from the relation φ(v0) = a1x

2
1+a2x

2
2+ . . .+an−1x

2
n−1+x

4 that
⟨1, a1, a2, . . . , an−1⟩ ≺ φ|(Fvn)⊥ . We already have ⟨an⟩ ≺ φ|Fvn . Since the form ⟨1, a1, . . . , an⟩
is anisotropic we get ⟨1, a1, a2, . . . , an−1, an⟩ ≺ φ. □

Likewise we give similar criteria for the polynomials a1x21+a2x
2
2+ . . .+anx

2
n+x

4+ax2+b

(resp. a1x21 + a2x
2
2 + . . .+ anx

2
n + x4 + b).

Proposition 9.10. Let φ be an anisotropic semisingular F -quadratic form that represents the
polynomial a1x21 + a2x

2
2 + . . . + anx

2
n + x4 + ax2 + b and the form ⟨1, a1, . . . , an, a, b⟩ is

anisotropic. Then, one of the following quadratic forms is dominated by φ:

(1) ⟨1, a1, a2, . . . , an, a, b⟩.
(2) [1, ba−2] ⊥ ⟨a1, a2, . . . , an⟩.
(3) [1; a+ α; b] ⊥ ⟨a1, a2, . . . , an⟩ ⊥ ⟨α⟩, where α ∈ F ∗ such that a+ α ̸= 0.
(4) [1; a + a1p

2
1 + a2p

2
2 + . . . + anp

2
n; b] ⊥ ⟨a1, a2, . . . , an⟩, where pi ∈ F such that a +

a1p
2
1 + a2p

2
2 + . . .+ anp

2
n ̸= 0.

Proof. We proceed by induction on n.

Step 1. Suppose n = 1. The form φ represents a1x21 + x4 + ax2 + b, i.e., there exists v ∈
V (x, x1) such that φ(v) = a1x

2
1 + x4 + ax2 + b. By Theorem 4.1 on V (x), we may assume

v ∈ V (x)[x1]. Let v = v0 + v1x1, where v0, v1 ∈ V (x). Then, φ(v) = φ(v0) + Bφ(v0, v1)x1 +

φ(v1)x
2
1. So we have the following relations:

• φ(v0) = x4 + ax2 + b,
• φ(v1) = a1,
• Bφ(v0, v1) = 0.

We may suppose v1 ∈ V , as explained in in Step 1 of the proof of Proposition 9.9. Now, by
Proposition 4.2, we may suppose v0 ∈ V [x]. Since φ is anisotropic, we write v0 = w0 +w1x+

w2x
2 for w0, w1, w2 ∈ V . Then, wi ⊥ v1 for all i ∈ {1, 2, 3}. Moreover, we have

φ(v0) = x4 + ax2 + b

= φ(w0) +Bφ(w0, w1)x+ φ(w1)x
2 +Bφ(w0, w2)x

2 +Bφ(w1, w2)x
3 + φ(w2)x

4.

This gives us the following relations:

• φ(w2) = 1,
• φ(w0) = b,
• φ(w1) +Bφ(w0, w2) = a,
• Bφ(w0, w1) = Bφ(w1, w2) = 0.

Case 1. Suppose Bφ(w0, w2) = 0. Thus, we have ⟨1, a1, a, b⟩ ≺ φ.
Case 2. Suppose Bφ(w0, w2) ̸= 0 and φ(w1) = 0. Then, w1 = 0 because φ is anisotropic.
Consequently, we are reduced to the relations φ(w2) = 1, φ(w0) = b and Bφ(w0, w2) = a. It
follows that [1; a; b] ⊥ ⟨a1⟩ ≃ [1, ba−2] ⊥ ⟨a1⟩ ≺ φ.
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Case 3. Suppose Bφ(w0, w2) ̸= 0 and φ(w1) ̸= 0. Let φ(w1) = α. We might have a1 = α

mod F ∗2, in which case we have the following:

[1; a+ a1p
2
1; b] ⊥ ⟨a1⟩ ≺ φ,

for some p1 ∈ F ∗. If a1 ̸= α mod F ∗2, then we have the following:

[1; a+ α; b] ⊥ ⟨α, a1⟩ ≺ φ.

Thus, all the cases are in accordance with our claim.

Step 2. Suppose n ≥ 2 and φ represents a1x21+a2x
2
2+ . . .+anx

2
n+x

4+ax2+b. By Theorem
4.1, there exist v ∈ V (x, x1, . . . , xn−1)[xn] such that

φ(v) = a1x
2
1 + a2x

2
2 + . . .+ anx

2
n + x4 + ax2 + b.

Let us write v = v0 + vnxn, where v0, vn ∈ V (x, x1, . . . , xn−1). Then, φ(v) = φ(v0) +

Bφ(v0, vn)xn + φ(vn)x
2
n. So we have the following relations over L := F (x, x1, · · · , xn−1):

• φ(v0) = a1x
2
1 + a2x

2
2 + . . .+ an−1x

2
n−1 + x4 + ax2 + b,

• φ(vn) = an,
• Bφ(v0, vn) = 0.

As explained in Step 1 of the proof of Proposition 9.9, we may reduce to the case where vn ∈
V . Let (Fvn)⊥ be the orthogonal of the space Fvn with respect to the polar form Bφ of φ.
Moreover, the previous conditionBφ(v0, vn) = 0 implies that v0 ∈ (Fvn)

⊥⊗F L. Now working
with the form φ|(Fvn)⊥ , we get by induction from the relation φ(v0) = a1x

2
1 + a2x

2
2 + . . . +

an−1x
2
n−1 + x4 + ax2 + b that one of the following conditions is satisfied:

(a) ⟨1, a1, a2, . . . , an−1, a, b⟩ ≺ φ|(Fvn)⊥ .
(b) [1, ba−2] ⊥ ⟨a1, a2, . . . , an−1⟩ ≺ φ|(Fvn)⊥ .
(c) [1; a+α; b] ⊥ ⟨a1, a2, . . . , an−1⟩ ⊥ ⟨α⟩ ≺ φ|(Fvn)⊥ , where α ∈ F ∗ such that a+α ̸= 0.
(d) [1; a+ a1p

2
1 + a2p

2
2 + . . .+ an−1p

2
n−1; b] ⊥ ⟨a1, a2, . . . , an−1⟩ ≺ φ|(Fvn)⊥ , where pi ∈ F

such that a+ a1p
2
1 + a2p

2
2 + . . .+ an−1p

2
n−1 ̸= 0.

We already have ⟨an⟩ ≺ φ|Fvn . If we are in the case (a), (b) or (d), then we get the case (1),
(2) or (4) of the proposition since the form ⟨1, a1, . . . , an, a, b⟩ is anisotropic. If we are in the
case (c) and the form ⟨a1, a2, . . . , an⟩ ⊥ ⟨α⟩ is anisotropic, then we get the case (3) of the
proposition, if not then α ∈ DF (⟨a1, a2, . . . , an−1, an⟩), and thus we get the case (4) of the
proposition. □

Following the same proof as that of Proposition 9.10, we get the following result:

Proposition 9.11. Let φ be an anisotropic semisingular F -quadratic form that represents the
polynomial a1x21 + a2x

2
2 + . . . + anx

2
n + x4 + b and the form ⟨1, a1, . . . , an, b⟩ is anisotropic.

Then, one of the following quadratic forms is dominated by φ:

(1) ⟨1, a1, a2, . . . , an, b⟩.
(2) [1;α; b] ⊥ ⟨a1, a2, . . . , an⟩ ⊥ ⟨α⟩, where α ∈ F ∗.
(3) [1; a1p

2
1+a2p

2
2+ . . .+anp

2
n; b] ⊥ ⟨a1, a2, . . . , an⟩, where pi ∈ F such that a1p21+a2p

2
2+

. . .+ anp
2
n ̸= 0.
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Before we state other results, we recall some facts: Let p ∈ F [x1, · · · , xn] be a nonzero
polynomial. We write p =

∑n
i=1 aimi such that ai ∈ F ∗ andmi is a monomial for all 1 ≤ i ≤ n.

We suppose m1 > m2 > · · · > mn with respect to the lexicographical ordering. The coefficient
a1 is called the leading coefficient of p, and we say that p is normed when a1 = 1. Let πp be the
quasi-Pfister form associated to the field F 2(a1, . . . , an), i.e., πp = ⟨⟨a1, · · · , an⟩⟩an. With these
notations, we recall a result by Hoffmann which deals with the quasi-hyperbolciity of totally
singular quadratic form over the function field of p.

Theorem 9.12. ([4, Theorem 6.10]) Let Q be an anisotropic totally singular form over F , and
p ∈ F [x1, . . . , xn] be a normed irreducible polynomial. Then, the following statements are
equivalent:

(1) p is a norm of Q,
(2) Q is quasi-hyperbolic over F (p),
(3) p ∈ F [x21, · · · , x2n] and Q is divisible by πp, i.e., there exists a totally singular form γ

such that Q ≃ πp ⊗ γ.

This result is more general that Proposition 3.3 that concerns the inseparable polynomials
x2

n

1 + d ∈ F [x1].
Our next goal is to discuss the quasi-hyperbolicity of semisingular quadratic forms over the

function field of some irreducible polynomials and find the generator quadratic forms related
to these polynomials. The first that we state concerns the polynomial x4 + ax2 + b such that
⟨1, a, b⟩ is anisotropic. This case was studied by Hoffmann and Sobiech in [7] for nonsingular
forms. We adapt here their proof to the setting of semisingular forms with a slightly different
argument, especially the use of the norm theorem. Moreover, reproducing this proof will help
us to treat the case of the polynomial x4 + ay2 + b (Proposition 9.14).

Proposition 9.13. Let φ be an anisotropic semisingular F -quadratic form and p = x4 + ax2 +

b ∈ F [x] an irreducible polynomial such that ⟨1, a, b⟩ is anisotropic. If φ is quasi-hyperbolic
over F (p), then ql(φ) is divisible by ⟨⟨a, b⟩⟩, and φ is Witt equivalent to a semisingular qua-
dratic form whose nonsingular part belongs to the W (F )-module generated by the forms:

(F1) [1, ba−2],

(F2) ⟨⟨α, b(α + a)−2]] for some scalar α ∈ F ∗ such that a+ α ̸= 0,

(F3) ⟨⟨a, b, c]] for some scalar c ∈ F .

In particular, SQ(F (p)/F ) is an {1, 2, 3}-Pfister set.

Proof. Let us write φ = R ⊥ ql(φ) for a nonsingular form R. Suppose that φ is quasi-
hyperbolic over F (p), where p = x4 + ax2 + b ∈ F [x] is an irreducible polynomial. Since
ql(φ) is quasi-hyperbolic over F (p), it follows from Theorem 9.12 that ql(φ) ≃ ⟨⟨a, b⟩⟩⊗γ for
a suitable totally singular form γ.

Without loss of generality, we may suppose 1 ∈ DF (R). We will proceed by induction on
dimR. Since φ is quasi-hyperbolic over F (p), we get by Theorem 3.5

φ ≃ (x4 + ax2 + b)φ.
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Hence, φ represents the polynomial x4 + ax2 + b. Using the same argument an in Step 1 of the
proof of Proposition 9.10, we conclude that one of the following forms is dominated by φ:

• [1, ba−2].
• [1; a+ α; b] ⊥ ⟨α⟩, where α ∈ F ∗ such that a+ α ̸= 0.
• ⟨1, a, b⟩.

Case 1. Suppose [1, ba−2] ≺ φ. Then ,we get

φ ≃ [1, ba−2] ⊥ R1 ⊥ ql(φ),

for a nonsingular form R1 defined over F of dimension dimR − 2. In this case, we get the
generator (F1) and we conclude by induction.

Case 2. Suppose [1, a+ α, b] ⊥ ⟨α⟩ ≺ φ. This means that we have one of the following cases:

φ ≃ [1; a+ α; b] ⊥ R2 ⊥ ⟨α⟩ ⊥ Q2

∼ [1, b(α + a)−2] ⊥ α[1, b(α + a)−2] ⊥ R2 ⊥ ql(φ),

or

φ ≃ [1; a+ α; b] ⊥ α[1, β] ⊥ R3 ⊥ ql(φ)

∼ [1, b(α + a)−2] ⊥ α[1, b(α + a)−2] ⊥ α[1, b(α + a)−2 + β] ⊥ R3 ⊥ ql(φ),

for suitable nonsingular forms R2, R3, and a totally singular form Q2 such that ql(φ) ≃ ⟨α⟩ ⊥
Q2. Thus, in both cases we are reduced to the following equation:

φ ∼
〈〈
α, b(α + a)−2

]]
⊥ R′ ⊥ ql(φ),

for a nonsingular form R′ of dimension dimR − 2. In this case, we get the generator (F2) and
we conclude by induction.

Case 3. Suppose that ⟨1, a, b⟩ ≺ φ. Then, Corollary 2.7 implies that ⟨1, a, b⟩ is necessary
dominated by the nonsingular part of φ because ql(φ) is divisible by ⟨⟨a, b⟩⟩.

Let α be a root of p in an algebraic extension of F and β = α2. Thus, β is a root of the
polynomial x2 + ax+ b. Consider L := F (β) = F (a−1β) = F (℘−1(a−2b)). If φL is isotropic,
then e[1, ba−2] ⊂ φ for some scalar e ∈ F ∗ [2, Th. 4.2, page 121]. Thus, in this situation we
are reduced to Case 1.

Hence, we may suppose that φL is anisotropic. We have b = β2 + aβ over L, so ⟨1, a, b⟩L ≃
⟨1, a, aβ⟩L ≺ φL. Hence, ⟨1, a, β⟩L ≺ aφL. Since φL(√β) is quasi-hyperbolic (recall that
F (p) = L(

√
β)), it follows from Corollary 4.6 that φL is divisible by ⟨1, β⟩. In particular,

aφL is also divisible by ⟨1, β⟩. Now we are equipped to apply [7, Lemma 2.4]1, which gives us
⟨1, a, β, aβ⟩ ≺ aφL. In particular, ⟨1, a, β, aβ⟩ ≺ φL. Moreover, we have ⟨⟨a, β⟩⟩L ≃ ⟨⟨a, b⟩⟩L.

In conclusion, we have ⟨⟨a, b⟩⟩L ≺ φL, ⟨1, a, b⟩ ≺ φ and φL is anisotropic.
For the rest of the proof, we discuss two cases:

(3.a) Suppose ⟨⟨a, b⟩⟩ ≺ φ. Then, by Corollary 2.7, ⟨⟨a, b⟩⟩ is dominated by the nonsingular
part of φ. Hence, we can write:

φ ⊥ 3H ≃ ⟨⟨a, b, c]] ⊥ R′ ⊥ ql(φ),

1This result remains true for semisingular quadratic forms as we can easily check.
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where c ∈ F and R′ a nonsingular form of dimension dimR − 2. In this case we get the
generator (F3) and we conclude by induction.

(3.b) Suppose ⟨⟨a, b⟩⟩ ̸≺ φ. Since ⟨1, a, b⟩ ≺ φ we have

(9.3) φ ⊥ ⟨⟨a, b⟩⟩ ≃ 3H ⊥ φ0,

where φ0 := R0 ⊥ ⟨⟨a, b⟩⟩ ⊥ ql(φ) is anisotropic. Recall that ⟨⟨a, b⟩⟩L ≺ φL, thus extending
(9.3) to L implies that (φ0)L is isotropic. Thus, φ0 ≃ λ[1, ba−2] ⊥ φ1 for a suitable anisotropic
singular form φ1 and a scalar λ ∈ F ∗. We can re-write equation (9.3) as follows:

φ ⊥ λ[1, ba−2] ⊥ ⟨⟨a, b⟩⟩ ≃ 5H ⊥ φ1.

This implies that iW (φ ⊥ λ[1, ba−2]) ≥ 1, but since φL is anisotropic iW (φ ⊥ λ[1, ba−2]) = 1.
Let ψ = (φ ⊥ λ[1, ba−2])an. Note that ψ is quasi-hyperbolic over F (p) and we also have the
following isometry:

ψ ⊥ H ⊥ ⟨⟨a, b⟩⟩ ≃ 5H ⊥ φ1,

i.e., ⟨⟨a, b⟩⟩ ≺ ψ. Note that the nonsingular part of ψ is of dimension dimR. In this case, we
are reduced to one of the previous cases and we get the desired result by induction. □

Now we give a similar criteria for irreducible polynomials x4 + ay2 + b ∈ F [x, y].

Proposition 9.14. Let φ be an anisotropic semisingular F -quadratic form and p = x4 + ay2 +

b ∈ F [x, y] an irreducible polynomial such that ⟨1, a, b⟩ is anisotropic. If φ is quasi-hyperbolic
over F (p), then ql(φ) is divisible by ⟨⟨a, b⟩⟩, and φ is Witt equivalent to a semisingular qua-
dratic form whose nonsingular part belongs to the W (F )-module generated by the forms:

(G1) ⟨⟨a, b, β]] for some scalar β ∈ F ,
(G2) ⟨⟨a, b(aγ2)−2]] for some γ ∈ F ∗.
(G3) ⟨⟨a, α, b(α)−2]] for some scalar α ∈ F ∗.
(G4) ⟨⟨a, α+ aβ2, bα−2]] for some α, β ∈ F such that α ̸= 0 and α + aβ2 ̸= 0.

In particular, SQ(F (p)/F ) is an {2, 3}-Pfister set.

Proof. Let us write φ = R ⊥ ql(φ) for a nonsingular form R. Let V be the underlying vector
space of φ. Since ql(φ) is quasi-hyperbolic over F (p), it follows from Theorem 9.12 that
ql(φ) ≃ ⟨⟨a, b⟩⟩ ⊗ ρ for a totally singular form ρ.

We may suppose that 1 ∈ DF (R). We will proceed by induction on dimR. Since φ is
quasi-hyperbolic over F (p), it follows from Theorem 3.5 that

φ ≃ (x4 + ay2 + b)φ.

Hence, there exists v ∈ V (x, y) such that φ(v) = x4 + ay2 + b. With the help of Proposition
4.1, we can assume v ∈ V (x)[y]. Since φ is anisotropic, we may write v = v0 + v1y such that
v0, v1 ∈ V (x). Then, we get φ(v) = x4 + ay2 + b = φ(v0) + Bφ(v0, v1)y + φ(v1)y

2. So we
have the following relations:

• φ(v0) = x4 + b,
• φ(v1) = a,
• Bφ(v0, v1) = 0.
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Using the Witt extension theorem (Theorem 4.3) and the same argument as in Step 1 of the
proof of Proposition 9.9, we may suppose v1 ∈ V . With the help of Theorem 4.1, we can
assume v0 ∈ V [x]. Let w0, w1, w2 ∈ V be such that v0 = w0 + w1x+ w2x

2. Then

φ(v0) = x4 + b

= φ(w0) +Bφ(w0, w1)x+ φ(w1)x
2 +Bφ(w0, w2)x

2 +Bφ(w1, w2)x
3 + φ(w2)x

4

So we have the following relations:

• φ(w0) = b,
• φ(w2) = 1,
• φ(w1) = Bφ(w0, w2),
• Bφ(w0, w1) = Bφ(w1, w2) = 0.

Moreover the condition Bφ(v0, v1) = 0 gives us Bφ(wi, v1) = 0 for all i ∈ {0, 1, 2}.

Case 1. Suppose w0 ⊥ w2, then φ(w1) = 0 and thus w1 = 0 because φ is anisotropic. In this
case, we are just reduced to the relations: φ(w0) = b, φ(w2) = 1, φ(v1) = a and the vectors
v1, w0, w2 are pairwise orthogonal. Hence, ⟨1, a, b⟩ ≺ φ. Moreover, by Corollary 2.7, the form
⟨1, a, b⟩ is necessary dominated by the nonsingular part of φ.

We have F (p) = F (u)(
√
a−1(u4 + b)) such that u is an indeterminate over F . Hence,

φF (u) is anisotropic. Let v =
√
a−1(u4 + b). Clearly, ⟨1, a, av2⟩ ≃ ⟨1, a, b⟩F (u), and thus

⟨1, a, av2⟩ ≺ φF (u). Moreover, since p is a norm of φF (x,y), we get by a specialization argument
that φF (u) ≃ aφF (u). Hence, ⟨1, a, v2⟩ ≺ φF (u). Moreover, the quasi-hyperbolicity of φF (p)

implies that φF (u) is divisible by ⟨1, v2⟩ (Corollary 4.6). Now using [7, Lemma 2.4], we get
⟨⟨a, v2⟩⟩ ≺ φF (u). Moreover, ⟨⟨a, b⟩⟩F (u) ≃ ⟨⟨a, v2⟩⟩. Hence, ⟨⟨a, b⟩⟩F (u) ≺ φF (u). Since
F (u)/F is purely transcendental, it follows that ⟨⟨a, b⟩⟩ ≺ φ. As in the subcase (3.a) in the
proof of Proposition 9.13, we obtain

φ ∼ ⟨⟨a, b, β]] ⊥ R1 ⊥ ql(φ),

for some scalar β ∈ F and a nonsingular form R1 of dimension < dimR. Thus, we get the
generator (G1) and we complete the proof by induction.

Case 2. Suppose w0 ̸⊥ w2, and let α := Bφ(w0, w2) = φ(w1). In this case, we are just
reduced to the relations: φ(w0) = b, φ(w2) = 1, Bφ(w0, w2) = α = φ(w1), φ(v1) = a and
Bφ(wi, v1) = 0 for all i ∈ {0, 1, 2}. We then have two scenarios:

(1) Suppose α = a mod F ∗2. Then, there exists γ ∈ F ∗2 such that α = aγ2, and the vectors
v1 and w1 are linearly dependent. Let W be the subspace of V generated by w0, w1 and w2.
Hence, φ|W≃ [1; aγ2; b] ⊥ ⟨a⟩ ≺ φ. Observe that a /∈ DF (ql(φ)) by Corollary 2.7, and thus

φ ≃ [1, aγ2, b] ⊥ a[1, δ] ⊥ R2 ⊥ ql(φ),

for some scalar δ ∈ F and a nonsingular form R2 of dimension dimR− 4. Then

φ ∼
〈〈
a, b(aγ2)−2

]]
⊥ R′

2 ⊥ ql(φ),

where R′
2 = a[1, δ + b(aγ2)−2] ⊥ R2. Hence, we get the generator (G2). Since dimR′

2 <

dimR, we conclude by induction.
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(2) Suppose α ̸= a mod F ∗2. Then, w0, w1, w2 and v1 are linearly independent. In this case,
we have [1, α, b] ⊥ ⟨α, a⟩ ≺ φ. We consider two cases:

(2.a) Suppose D0
F (⟨a, α⟩) ∩ D0

F (ql(φ)) = {0}. Then, the condition [1;α; b] ⊥ ⟨α, a⟩ ≺ φ

implies the following

(9.4) φ ≃ [1, bα−2] ⊥ a[1, k] ⊥ α[1, l] ⊥ R1 ⊥ ql(φ),

for suitable k, l ∈ F and a nonsingular form R1 of dimension dimR − 6. We add a hyperbolic
plane to equation (9.4) to get:

(9.5) φ ⊥ H ≃ ⟨1, a⟩b ⊗ [1, bα−2] ⊥ a[1, k + bα−2] ⊥ α[1, l] ⊥ R1 ⊥ ql(φ).

Recall that φ has x4 + ay2 + b as a norm over F (x, y). In particular, substituting x to 0, we get
φ ≃ (ay2 + b)φ over F (y) [15, Proposition 5.3]. Moreover, the polynomial ay2 + b is a norm
of ⟨1, a⟩b ⊗ [1, bα−2] as it is represented by this form. Hence, ay2 + b is also a norm of

φ′ := (a[1, k + bα−2] ⊥ α[1, l] ⊥ R1 ⊥ ql(φ))an.

In particular, α(ay2+b) is represented byφ′ over F (y). Using Theorem 4.1 as before, we deduce
that α ⟨a, b⟩ ≺ φ′ (because φ′ is anisotropic). Note that D0

F (α ⟨a, b⟩) ∩ D0
F (ql(φ)) = {0},

otherwise α would be represented by ql(φ) as ⟨⟨a, b⟩⟩ divides ql(φ), and thus φ would be
isotropic. Hence, we get

(9.6) a[1, k + bα−2] ⊥ α[1, l] ⊥ R1 ⊥ ql(φ) ≃ aα[1, s1] ⊥ bα[1, s2] ⊥ R2 ⊥ ql(φ)

for some scalars s1, s2 ∈ F and a nonsingular form R2. Consequently, we combine (9.6) with
(9.5) to get:

(9.7) φ ⊥ H ≃ ⟨1, a⟩b ⊗ [1, bα−2] ⊥ aα[1, s1] ⊥ bα[1, s2] ⊥ R2 ⊥ ql(φ),

Adding 2H to equation (9.7) yields:

φ ⊥ 3H ≃ ⟨1, a⟩b ⊗ [1, bα−2] ⊥ aα[1, bα−2] ⊥ bα[1, bα−2]

⊥ aα[1, s1 + bα−2] ⊥ bα[1, s2 + bα−2] ⊥ R2 ⊥ ql(φ).

Since bα[1, bα−2] ≃ α[1, bα−2], we get

φ ⊥ 3H ≃
〈〈
a, α, bα−2

]]
⊥ R′

2 ⊥ ql(φ),

where R′
2 = aα[1, s1 + bα−2] ⊥ bα[1, s2 + bα−2] ⊥ R2. In this case we get the generator (G3)

and we conclude by induction as dimR′
2 = dimR− 2.

(2.b) SupposeD0
F (⟨a, α⟩)∩D0

F (ql(φ)) ̸= {0}. Hence, with the condition [1;α; b] ⊥ ⟨α, a⟩ ≺
φ, there exist e, f, g ∈ F ∗ such that ⟨a, α⟩ ≃ ⟨e, f⟩ and

φ ≃ [1;α; b] ⊥ [e, g] ⊥ R1 ⊥ ql(φ),

where f ∈ DF (ql(φ)) and R1 is a nonsingular form of dimension dimR − 4. Since a ̸∈
DF (ql(φ)), we have a = ex2 + fy2 for suitable x, y ∈ F and x ̸= 0. Using the isometry
[r, s] ⊥ ⟨t⟩ ≃ [r + t, s] ⊥ ⟨t⟩, we may suppose e = a. Hence

(9.8) φ ⊥ H ≃ ⟨1, a⟩b ⊗ [1, bα−2] ⊥ a[1, ag + bα−2] ⊥ R1 ⊥ ql(φ).
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Since ql(φ) is divisible by ⟨⟨a, b⟩⟩, the polynomial ay2 + b is a norm of ql(φ)F (y). Conse-
quently, ql(φ)F (y) represents (ay2 + b)f , and thus ⟨af, bf⟩ is a subform of ql(φ). Note that
bf [1, bα−2] ≃ f [1, bα−2]. Hence, equation (9.8) can be written as follows:

φ ⊥ 3H ≃ ⟨1, a⟩b ⊗ [1, bα−2] ⊥ f [1, bα−2] ⊥ af [1, bα−2] ⊥ a[1, ag + bα−2] ⊥ R1 ⊥ ql(φ).

Consequently, we get

φ ⊥ 3H ≃
〈〈
a, f, bα−2

]]
⊥ R2 ⊥ ql(φ),

where R2 = a[1, ag + bα−2] ⊥ R1. Moreover, modulo a square, we may suppose f = α+ aβ2

for some β ∈ F (because ⟨a, α⟩ ≃ ⟨e, f⟩ and a ̸∈ DF (ql(φ))). Hence, in this case we get the
generator (G4). Since R2 is of dimension dimR− 2, we conclude by induction. □

A similar characterization could also be given for quadratic forms quasi-hyperbolic over the
function field of an irreducible polynomial x4 + ay4 + bx2 ∈ F [x, y] such that ⟨1, a, b⟩ is
anisotropic. In this case, we are reduced to Proposition 9.14, by change of indeterminates
X = xy−1 and Y = xy−2.

Remark 9.15. Note that in Proposition 9.13 and 9.14, we were able to take shelter of technical
calculations to get the desired result since, we are dealing with polynomials of small degree.
With the increase in degree of field extension, we need a more complex arguments in the induc-
tion process as we did in Theorems 7.1 and 5.1.
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