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Abstract

The works presented in this paper deal with the control of a highly nonlinear and un-
certain system using the new setting of “Model-Free Control” and its related intelligent
Proportional, Integral and Derivative (iPID) regulators. Such approach that can be de-
signed, using only the input and output data of the controlled device and the new algebraic
method of identification, is applied to the control of multi/input- multi/output (MIMO)
robot manipulators. Numerical simulations conducted for the robot PUMA 560 with 6◦ of
freedom (6-DOF) show the effectiveness of the method and the easiness of the tuning of the
gains parameters of the used regulators.
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1 Introduction

Designing controllers for industrial processes or guided vehicles, nonlinear functions are often
encountered. For example, it is not unusual for the equations that govern some controlled
process or plant to be nonlinear. Even with a plant that can be considered linear, if the response
of the system is to be optimal in some way, practical limitations on the actuator may lead to a
required drive signal that is highly nonlinear. Intentional nonlinearity may then be introduced
to achieve the desired performance.

Nonlinear control design is generally difficult to apply to practical systems. Over the years,
this fact has led to the application of linear methods to problems best suited to nonlinear design.
The resulting response may be far less desirable than the optimal response, but the design
methods used are far less complex than nonlinear approaches. Because of the complexities of
nonlinear analysis, procedures such as describing function methods are not amenable to systems
of third or higher order [1].

Multi-degree-of-freedom (M-DOF) robot manipulators become an integral part of industrial
applications and being extensively employed in industries such as automobile, Medical, space
exploration, search and rescue, underwater exploration and in military. Modern manipulators
are designed complicatedly and need to do more precise, crucial and critical tasks. Therefore,
the simple traditional control methods cannot be efficient, and advanced control strategies with
considering special constraints are needed to establish.
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The robot, as the plant to be controlled, is a multi-input/multi- output, highly coupled
and nonlinear mechatronic system. The main challenges in the motion control problem are
the both para- metric and dynamic complexities. Parametric uncertainties arise from imprecise
knowledge of the kinematics and dynamics, while dynamic uncertainties occur from joint and link
flexibility, actuator dynamics, friction, sensor noise, and unknown environment dynamics [2]. It
is therefore, very difficult to implement real time control based on a detailed dynamic model of a
robot. Moreover, these systems operate in an unstructured environment and are always subjected
to environmental disturbances. A better solution to the complex control problem might result
in using an intelligent control. One of the major tasks for an intelligent control system is to
provide a desired or satisfactory system behavior under an unknown and/or uncertain controlled
environment. In this paper, we focus on the application of intelligent system methodology in the
design of a “non-math-knowledge” oriented or so-called dynamic “model-free-control” system,
which has robust and adaptive behavior [3].

Among different approaches found in literature, this paper is interested to a strategy devel-
oped recently by M. Fliess and C. Join [4], known as Model-Free-Control (MFC) to control the
6-DOF PUMA 560 arm manipulator. This choice is justified by the simplicity of design and the
ease of practical implementation for this control algorithm based on an elementary continuously
updated local modeling via the unique knowledge of the input-output behavior, where the need of
any mathematical model disappears. Although this concept is relatively new several successfully
appli- cations in a number of practical studies have been implemented in many areas, essentially
experimental greenhouses [5], wheeled autonomous vehicles [6], thermal processes [7] and among
others the highway traffic [4,8]. To prove the effectiveness of this new algorithm in the field of
robotics and nonlinear complex systems, the proposed Model Free Control (MFC) technique has
been implemented in a highly coupled nonlinear and high dynamic process, such as a six degree
of freedom PUMA 560 ar m manipulator, widely used in robotics research for which there is a
substantial literature. Results obtained have been tested with a precise and widely used method
in automation area known as computed torque controller (PD-Torque) [9], which is highlighted
on the following sections of this paper.

The rest of the paper is organized as follows. Section 2 resumes the related works in the field
of control strategies with different characteristics and complexities. For simulations purpose a
description of the mathematical model of the studied robot “PUMA 560” and the application
of the computed torque controller are detailed in Section 3. The same section relates some
basics of the new concept of “Model-free control” and its implementation to the studied robot
manipulator. Section 4, gives some diagrams of the studied system in Matlab/Simulink. The
conducted numerical simulations are shown in Section 5. Section 6 provides a conclusion and
some furthers works.

2 Related work

A number of control algorithms with different characteristics and complexities have been devel-
oped (see e.g., [10–15] and references therein). One of the most important powerful nonlinear
robust controllers is computed torque controller (PD-Torque) [10]. Computed torque controller
(PD-Torque) is a powerful nonlinear controller, which is widely used in control robot manipu-
lator. It is based on Feedback linearization and computes the required arm torques using the
nonlinear feedback control law. This controller works very well when all dynamic and physical
parameters are known but when the robot manipulator has variation in dynamic parameters, in
this situation the controller has no acceptable performance [16]. Since, it is difficult to obtain a
good mathematical model of the process dynamics and to know the different disturbances acting
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on the process, the Model-based control techniques such as PD-Torque controller cannot provide
satisfactory results when applied to poorly modeled processes, which can operate in ill-defined
environments. Research on computed torque controller is significantly growing on robot manip-
ulator application, which has been reported in [9,10,14,15]. In order to overcome this problem,
model-free control techniques that can be directly applied to complex processes have been given
much attention in the control community during the last decade [17,18]. In nowadays, the best-
known classical model free industrial process controller is the PID controller [19] because of its
simplicity, robustness, high reliability and it can be easily implemented on any processor, never-
theless the tuning gain of such regulators is very difficult and classical PID controllers are usually
not sufficiently powerful control tools. In recent years, there has been an increasing interest in
the utilization of unconventional control strategies such as neural networks (NN), fuzzy logic,
and genetic algorithm (GA) [20]. Fuzzy logic reasoning is based on human experience and ex-
pert knowledge [21,22]. Neural network reasoning depends on the extraction of hidden relation-
ships in given datasets. It has the ability to learn from examples, drawing conclusions based
on experiences [22,23]. Genetic algorithm is essentially an optimization technique based on the
ideas of evolution in biological development. It has the ability to obtain systematically solutions
in complex problems [24,25]. These control methods derive their advantages from the fact that
they do not use any mathematical model of the system, however, sometimes these methods take
quite a long time to find a coefficient that satisfies the requirement of the controlling task. In
addition, lack of theoretical analysis and stability security makes industrialists wary of using
the results in real industrial environments. A possible solution to avoid the identification of the
model parameters to efficiently control a complex process like robot arm manipulators, a new
technique in the framework of “model-free control” [4,26,27,28] is considered. The approach uses
derivative estimations [29–31], which provides good results even if the measured signals are cor-
rupted by noise. Thus, a non-physical model valid during a very short period of time is estimated
and permits classic control design.

3 Control design

In this section, the process of controller design is presented. In this study, a model free controller
(MFC) is used to control the six degree of freedom robot system. In order to compare the
performance of the studied controller a detailed mathematical model is performed for 6DOF-
PUMA 560 and implemented with Computed torque controller (PD-Torque) which is a powerful
nonlinear controller widely used in control of robot manipulator. Results obtained have been
compared with the newest model free control (MFC) method.

3.1 Robot manipulators dynamics

The system under study is a six-degree robot arm manipulator developed specifically for research
purposes. An important initial step in analyzing, designing or controlling a complex mechanical
system, such us a robot, is to construct a representative model of the system. The PUMA 560
has six revolute joints as shown in Fig. 1.

The dynamics of robot manipulators with rigid links describes the relationship between dis-
placement, velocity and acceleration to force acting on robot manipulator, the application of the
Euler-Lagrange equations to each link results in a system of coupled differential equations. In
matrix form, it can be written as [10,11]:

M(q)q̈ = V (q, q̇)q̇ + F (q̇)G(q) = Γ (1)
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Figure 1: D–H notation for a six-degrees-of-freedom PUMA 560 robot manipulator [7]

where M(q) is the inertia matrix, V (q, q̇) represents the Coriolis/centripetal matrix, F (q̇) are
the friction terms, G(q) is the gravity vector, and Γ is the control input vector. q, q̇, q̈ are the
n× 1 vectors of the joint position, velocity and acceleration respectively.

By writing the velocity dependent term V (q, q̇) in a different form, all the matrices become
functions of only the manipulator position; in this case the dynamic equation is called configu-
ration space equation and has the following form:

Γ = M(q)q̈ = B(q)[q̇.q̇] + C(q)[q̇2] +G(q) (2)

where, B(q) : n × n(n − 1)/2 matrix of Coriolis torques, C(q) : n × n matrix of Centrifugal
torques, [q̇q̇] : n(n− 1)/2× 1 vector of joint velocity products given by:

[q̇1q̇2, q̇1q̇3, q̇1q̇n, q̇2q̇3, q̇2q̇4, . . . q̇n−2q̇n, q̇n−1q̇n]T

[q̇2] : n× 1 vector given by: [q̇21 , q̇
2
2 , . . . , q̇

2
n]

To derive the model of the robot arm, Amstrong et al. [32] started by generating the kinetic
energy matrix and gravity vector symbolic elements by performing the summation of either
Lagrange’s or the Gibbs-Alembert formulation; these elements are then simplified by combining
inertia constants that multiply common variable expressions. The Coriolis and centrifugal matrix
elements are then calculated in terms of partial derivatives of kinetic energy, and then reduced
using four relations that hold on the partial derivatives. Finally, the necessary partial derivatives
are formed, and the Coriolis and centrifugal matrices are found. A simplification step is then
done by combining the inertia constants that multiply the common variable expressions. All the
parameters and the explicit dynamic model of the PUMA 560 used in the simulation can be
found in [33, 34].
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3.1.1 Computed torque control for 6DOF-PUMA560

The Computed Torque Control (PD-Torque) is a controller used in wide range areas such as
robotics, control process and aerospace applications, because it has an acceptable control per-
formance and solve some main challenging topics in control such as resistivity to the external
disturbance [9]. This controller rely detailed knowledge of the dynamic characteristic of the robot
arm expressed in an accurate mathematical model.

From the dynamic model in Eq. (2), the computed torque control law is stated as follows:

Γ = M(q)q̈? +B(q)[q̇q̇] + C(q)[q̇2] +G(q) (3)

where,
M represents a symmetric 6× 6 inertia matrix

M(q) =


m11 m12 m13 0 0 0
m21 m22 m23 0 0 0
m31 m32 m33 0 m35 0

0 0 0 m44 0 0
0 0 0 0 m55 0
0 0 0 0 0 m66

 (4)

and
m11=Im1 + I1 + I3CC2 + I7SS23 + I10SC23 + I11SC2 + I21SS23

+2 [I5C2S23 + I12C2C23 + I15SS23 + I16C2S23 + I22SC23]
m12=I4S2 + I8C23 + I9C2 + I13S23

m13=I8C23 + I13S23 + I18C23

m22=Im2 + I2 + I6 + 2 [I5.S3 + I12C2 + I15 + I16S3]
m23=I5S3 + I6 + I12C3 + I16S3 + 2I15
m33=Im3 + I6 + 2I15
m35=I15 + I17
m44=Im4 + I14
m55=Im5 + I17
m66=Im6 + I23
m21 = m12, m31 = m13 and m32 = m23

while the matrix of Coriolis torques B is:

B(q) =


b112 b113 0 b115 0 b123 0 0 0 0 0 0 0 0 0

0 0 b214 0 0 b223 0 b225 0 0 b235 0 0 0 0
0 0 b314 0 0 0 0 0 0 0 0 0 0 0 0
b412 b413 0 b415 0 0 0 0 0 0 0 0 0 0 0

0 0 b514 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 (5)

and,

• b112=2[−I3SC2 + I5C223 + I7SC23 − I12S223 + I152SC23 + I16C223 + I21SC23 + I22(1 −
2.SS23)] + I10(12SS23) + I11(1− 2SS2)

• b113 =2[I5C2C23−I7SC23−I12C2S23+I152SC23+I16C2C23+I21SC23++I22(1−2SS23)]+
I10(1− 2SS23)

• b115 =2[−SC23 + I15SC23 + I16C2C23 + I22CC23]
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• b123 =2[−I8S23 + I13C23 + I18S23]

• b214 =I14S23 + I19S23 + 2I20S23(1− 0.5)

• b223 =2[−I12S3 + I5C3 + I16C3]

• b225=2 [I16C3 + I22]

• b235=2 [I16C3 + I22]

• b314=2[I20S23(1− 0.5)] + I14S23 + I19S23

• b412 = −b214=-[I14S23 + I19S23 + 2I20S23(1− 0.5)]

• b413 = −b3142[I20S23(1− 0.5)] + I14S23 + I19S23

• b415=−I20S23 − I17S23

• b514=−b415 = I20S23 + I17S23

The Coriolis matrix C is:

C(q) =


0 c12 c13 0 0 0
c21 0 c23 0 0 0
c31 c32 0 0 0 0
0 0 0 0 0 0
c51 c52 0 0 0 0
0 0 0 0 0 0

 (6)

and,

• c12=I4c2 − I8S23 − I13c23 + I18S23

• c13 = 0.5b123=−I8S23 + I13C23 + I18S23

• c21 = −0.5b112=I3SC2 + I5C223 + I7SC23 − I12S223 + I152SC23 + I16C223 + I21SC23 +
I22(1− 2.SS23)] + I10(12SS23) + I11(1− 2SS2)

• c32 = −c23=I12S3 − I5C3 − I16C3

• c51 = −0.5b115=SC23 − I15SC23 − I16C2C23 − I22CC23

• c52 = −0.5b225=−I16C3 − I22

The gravity vector G is:

G(q) =


0
g2
g3
0
g5
0

 (7)

• g2 = g1C2 + g2S23 + g3S2 + g4C23 + g5S23

• g3 = g2S23 + g4C23 + g5S23

• g5 = g5S23
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Table 1: Initial constants (kg/m2)

I1 = 1.43± 0.05 I2 = 1.75± 0.07
I3 = 1.38± 0.05 I4 = 0.69± 0.02
I5 = 0.372± 0.031 I6 = 0.333± 0.016
I7 = 0.298± 0.029 I8 = −0.134± 0.014
I9 = 0.038± 0.012 I10 = −0.0213± 0.0022

I11 = −0.0142± 0.0070 I12 = −0.011± 0.0011
I13 = −0.00379± 0.0009 I14 = 0.00164± 0.07
I15 = 0.00125± 0.0003 I16 = 0.00124± 0.0003
I17 = 0.000642± 0.0003 I18 = 0.000431± 0.00013
I19 = 0.0003± 0.0014 I20 = −0.000202± 0.0008
I21 = −0.0001± 0.0006 I22 = −0.000058± 0.000015
I23 = 0.00004± 0.00002 Im1 = 1.14± 0.27

Im2 = 4.71± 0.54 Im3 = 0.827± 0.093
Im4 = 0.2± 0.0016 Im5 = 0.179± 0.014
Im6 = 0.193± 0.016

Table 2: Gravitational constants (N.m)

g1 = −37.2± 0.5 g2 = −8.44± 0.20
g3 = 1.02± 0.50 g4 = 0.249± 0.025

g5 = −0.0282± 0.0056

where,
Si = sin(θi), Ci = cos(θi),Cij = cos(θi + θj), Sijk = sin(θi + θj + θk),
CCi = cos(θi)cos(θi) and Csi = cos(θi)sin(θi)

Table. 1 and 2 contain the computed values for the constants appearing in the equations of
forces of motion,

The expression of the acceleration term q̈? in Eq. (3) is defined by Eq. (8) as below.

q̈? = q̈d +Kp(qd − q) +Kv(qd − q) (8)

where, q̈d is the vector of desired acceleration with respect to the joint coordinates of the robot, q̇d
represents the vector of desired velocity with respect to the joint coordinates of the robot. q̇ is the
vector of actual velocity with respect to the joint coordinates. qd is the vector of desired position
with respect to the joint coordinates. q is the vector of actual position with respect to the joint
coordinates of the robot. Kp is the proportional gain matrix, Kv is the derivative gain matrix.
The proportional and the derivative gains can be designed by knowing the physical characteristics
of the system or by following empirical tuning methods like the Zeigler-Nichols method [34]. Thus,
for every sampling period, from the position and velocity feedback information, the corrected
accelerations estimated using Eq. (8) and thereby, the control torque can be computed using the
control law Eq. (3) [9]. The computed torque signal is further communicated to the torque servo
module for real-time execution. This process is carried out repeatedly, through the trajectory
period, at regular sampling intervals, until the desired trajectory is completed.
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3.2 Model-free control

As robots and their tasks become more complex, the effectiveness of model based control methods
begins to decline. Firstly, the often highly nonlinear dynamic model of the robot becomes more
difficult to establish with sufficient accuracy. Particularly, effects such as joint friction and link
flexibility can make accurate models difficult to derive. Secondly, strategies such as computed
torque control, which require that the robot’s dynamic model be recalculated during every sample
period can, place exceptional demands on computing resources, especially when rapid sampling is
required. To avoid the drawbacks resulting from model uncertainties and/or model truncations,
a very recent approach to nonlinear control that has been introduced by M. Fliess and C. Join
[4] is proposed.

3.2.1 Genesis of the ultra-local model concept

For a sake of simplicity, consider a SISO1 Systems. The ultra-local model is based on local
modeling, continually updated, from the solely knowledge of input-output behavior (See e.g.
[35]). For the unknown differential equation:

E
(
y, ẏ, . . . , y(ι), u, u̇, . . . , u(κ)

)
= 0 (9)

Notice that Eq. (9) can be linear or not, with u the system input and y the system output.
E is a sufficiently smooth function of its arguments. Assume also that for for an integer ν,

0 < ν < 1, ∂E
∂y(ν)

6= 0. The implicit function theorem permits to write

y(ν) = φ
(
t, y, ẏ, . . . , y(ι−1), y(ι+1), . . . , yγ , u, u̇, . . . , u(κ)

)
(10)

Ultra-local model control consists in trying to estimate via the input and the output measure-
ments what can be compensated by control in order to achieve a good output trajectory tracking.
This implies the construction of a purely ultra-local model of the system which replaces (2) and
that, can be written as:

y(ν)(t) = F (t) + αu(t) (11)

where

• y represents the output of the system,

• ν is the time derivative order, usually no more than 2 because it is sufficient to describe
the behavior of the system.

• α is a parameter that can be defined by the practitioner such that αu and y(ν) are of the
same magnitude.

• F groups all the unknown signals (disturbance, noise, . . . ) and the imperfections of the
model, it is estimated at each sample time.

Emphasis that in many industrial applications, the order of ν is often equal to 1 or 2. Assume
that ν = 2 in Eq. (11), which leads to the following expression:

ÿ = F + αu (12)

The ultra-local model can be seen as an approximated model for system dynamics valid for a
short period of time that allows a real-time update. This approach attempts the simplification

1Single-Input Single-Output
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of the nonlinear control by discarding the need for a global and complex nonlinear model. The
numerical value of F must be updated every short period T since Eq. (??) is valid for a short
time window. Using the knowledge of the input u and the measurement of the output y, F can
be estimated based on the online parameter identification techniques described in the following
sections.

3.2.2 Estimation of F : first method

Assume that the first term in Eq. (12) may be well approximated by a piecewise constant function
Fest which is valid during a short lapse of time. Rewrite, then the Eq.(12) in Laplace domain
(See e.g. [36])

s2Y (s)− sy(0)− ẏ(0) =
Fest
s

+ αU(s)

Take the fist derivative2 with respect to s in order to get a rid of ẏ(0)

s2
dY (s)

ds
+ 2sY (s)− y(0) = −s(−2)Fest + α

dU(s)

ds

Differentiating the above equation permits to eliminate the initial condition y(0)

s2
d2Y (s)

ds2
+ 4s

dY (s)

ds
+ 2Y (s) = 2s(−3)Fest + α

d2U(s)

ds2

Noise attenuation is achieved by multiplying both sides on the left by s−3, since integration with
respect to time is a lowpass filter [37].

s−1 d
2Y (s)

ds2
+ 4s−2 dY (s)

ds
+ 2s−3Y (s) = 2s(−6)Fest + αs−3 d

2U(s)

ds2

It yields in the time domain, using the well known Cauchy rule (See e.g. [36]) the real-time
estimate,

Fest(t) =
60

t5

∫ t

0

(
t2 − 6tτ + 6τ2

)
y(τ)− 30α

t5

∫ t

0

(t− τ)
2
τ2u(τ)dτ (13)

where τ > 0 might be quite small

Remark 3.1. The above expression (17) can be digitally implemented resulting in a FIR filter.
For this purpose, the method is modified and we integrate backwards in a small fixed length window
T to provide a feasible implementation in real-time.

3.2.3 Estimation of F: second method

If we close the loop, for example by an iP (intelligent proportional) controller

u =
Fest − ÿ? +Kpe

α
(14)

where,

• ÿ? is the second derivative of the reference trajectory y?

2Derivative said “Algebraic”: d
ds

corresponds, in time domain, to the multiplication by −t. In the same order,
dn

dsn
→ (−1)ntn.
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• e = y − y? is the tracking error

• Kp is a usual tuning gain

we obtain immediately the estimation value of F .

Fest(t) =
1

τ

[∫ t

t−τ
((ÿ? − αu−Kpe)dτ)

]
(15)

as stated in [35, 36], note the following facts

• τ > 0 may be chosen quite small.

• Integrals (17) and (15) are low pass filters.

• These integrals may be replaced for implementation purpose by classic digital filters.

3.3 Application to the robot manipulator control design

3.3.1 Principle

Based on the numerical knowledge of F previously estimated, the control for sampling period k
is calculated using Eq.(12) as a simple cancellation of the nonlinear terms F plus a closed loop
tracking of a reference trajectory y?:

u = −F − ÿ
? +Kpe

α
(16)

where e = y − y? is the tracking error. According to the algebraic parameter identification
methods, F can be approximated via the operational calculus mentioned in previous sections.
The control scheme can be summarized as in Fig. reffig:2.

Figure 2: Model-free control scheme

3.3.2 Model-free control development for the PUMA6DOF manipulator

PUMA 560 is a six degree of freedom (6 DOF) arm manipulator; the outputs of the system are
accelerations (q̈1, q̈2, . . . , q̈6), velocities (q̇1, q̇2, . . . , q̇6) and positions (q1, q2, . . . , q6). According to
the model-free control concept, we do not need any information about the system model. During
a short time step ∆T , the system model is replaced by the ultra-local one as follow:

ÿn(t) = Fn(t) + αnun(t), n = 1, . . . 6. (17)
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where, Fn represents the whole structural and unmodeled or time-varying part of the system
which must be updated automatically. This parameter can be estimated either by the first or a
second method depicted in Section 3. For example, the value of F is evaluated from u and ÿ at
any time step as the following:

Fn,est = ÿn,est − αnun(k − 1) (18)

where, Fn,est, ÿn,est(k) are the estimated values of Fn and ÿ?(k) at time step k, u(k − 1) is the
command at time step k−1. Closing the loop with a linearizing control including a Proportional-
Derivative action we obtain the intelligent proportional-derivative controller, or iPD,

un(k) =
Fn,est(k)

αn
+
ÿ?n(k)

αn
+KPnen(k) +KDn ė(k) (19)

where un(k) is the command at time step k; y?n(k) is the desired trajectory at time step k. The
tracking error indicating how well the manipulator follows the desired trajectory is defined by

en(k) = yn(k)− y?n(k) (20)

KPn , KDn are the classic PD tuning gains.
In this section a Simulink, which is a Block Diagram Simulation Tool used together with

MATLAB, implementation of the arm manipulator and the proposed intelligent model free con-
troller is presented. The Plant PUMA 560 was implemented in Simulink as represented in Fig. 3,
(q, q̇ and q̈) symbolize respectively the position, velocity and acceleration of the robot arm. M(q),
B(q), C(q) and G(q) characterize inertia matrix, matrix of Coriolis torque, centrifugal torque
matrix and gravity vector respectively.

Figure 3: Simulink Block Diagram for PUMA560 arm.

The proposed MFC controller block scheme applied for the trajectory control of 6-DOF
PUMA 560 robot arms is given by the Fig. 4 below. The blocks MFCs characterize the model
free control of each joint qn, (n = 1, . . . , 6), the value of un (n = 1, . . . , 6) is given in Eq. (19). For
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simulations purpose the accelerations q̈n of the 6-DOF PUMA 560 have been calculated using
Eqs. (2) and (19),

q̈n = M−1(q)

{
Fn,est(k)

αn
+
ÿ?n(k)

αn(k)
+KPnen(k) +KDn ė(k)−

[
B(qn)q̇nq̇n + C(qn)q̇2n +G(qn)

]}
(21)

Figure 4: MFC structure for PUMA560 control

4 Simulation results

All simulations have been performed using MATLAB and SIMULINK [38] which are used widely
in control applications. The control performances obtained with Model Free Controller (MFC)
are compared with the performances achieved using computed torque control (PD-Torque). This
controller allows the design of considerably more precise, energy efficient, lower feedback gains
and complaint controls for robots but requires knowledge of all manipulator parameters and its
payloads, which may not be realistic [39]. The obtained results using the 4th order Runge-Kutta
solver with fixed step time ∆t = 0.001 are shown below.

Results for the two controllers (PD-Torque and MFC) are shown in Figs. 5–8, in which the
output of the closed loop system and the tracking errors are given. Using the integral of the
accelerations leads to the time evolution of the speed of the studied device (See. Fig. 6). Fig.
7 illustrates the evolution of the manipulator. From the obtained different evolutions of the
manipulator, one can plot the error tracking as depicted in Fig. 8. Fig. 9 illustrates the error
(Radians vs. Seconds) between the computed torque controller and the Model Free Control.
From Figs. 5–7 it can be seen that trajectories (red color) with the proposed MFC controller are
driven to the desired trajectories (blue color) precisely and quickly. As we can see from figures,
the MFC trajectories are very close to the desired trajectories than trajectories with PD-Torque
controller, which demonstrate the validity of the proposed method to control highly nonlinear
complex system. For example if we take the Fig. 5-a (joint 1 acceleration), the trajectory of
acceleration with the model free control system (red color) is very close to the desired trajectory
(blue color). On the other hand, the computed torque trajectory (Black color) outlying the
desired trajectory. We can say the same thing about joints velocities and positions. For example,
one can see in Fig. 7, all joints positions with model free controller (red color) are neighboring the
reel (blue color) position than positions (black color) controlled by computed torque controller.
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Figure 5: Time evolutions of the accelerations of the manipulator compared to the desired
trajectory (Radians vs. Seconds).
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Figure 6: Time evolutions of the velocity of the manipulator compared to the desired trajectory
(Radians vs. Seconds).
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Figure 7: Time evolutions of the position of the manipulator compared to the desired trajectory
(Radians vs. Seconds).
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The errors between MFC controller trajectory and desired trajectory are shown in Fig. 8, it
is shown from the figure that the acceleration tracking error converge to zero asymptotically.
In Fig. 9-c, -d and -f, the error is equal to zero, which demonstrate the stability of proposed
technique.

Figure 8: Trajectory tracking error (Radians vs. Seconds).

Computed torque controller (PD-Torque) algorithm is simple, but it requires high accuracy in
system model and parameters [39]. Matrices and vectors M(q); C(q); D(q); and g(q) are required
available and exact. It can be seen from the experimental results of Figs. 5–7 this controller
gives good results and the trajectories fol- low the desired tracks. Nevertheless, the errors among
the desired trajectory with the proposed controller and the conventional PD- Torque controller
illustrated in Fig. 9 show that the errors with the proposed model free control are well below
of those the PD-Torque controller, which demonstrate that the suggested controller can achieve
superior tracking performance. In summary, through the simulations results, we have proved the
efficiency of the proposed controller and we can conclude that the suggested controller is able to
provide outstanding tracking performance robustly. Futures works will deal with a concrete.

5 Conclusions

The objective of this paper was to demonstrate the capability of the model free controller (MFC)
to be able to command a highly nonlinear system. This controller is independently designed and
not need any information about the system. The proposed model free controller MFC was
used to control the PUMA 560 Robot, which is well-known industrial robot with six degrees
of freedom. These systems are nonlinear, time varying, and dynamically cou- pled. According
to the simulations results the proposed technique, is highly effective in controlling the robot
arm. The free model MFC controller suggested in this research work were compared with an
industrial used method, which is computed torque controller (PD- Torque), the results obtained
have confirmed effectiveness of the studied technique.

To conclude, the model-free based control methods are easy to implement, as they do not
require a precise model of the system and with simulations results we have proved the robustness
and good performances of the proposed method with high tracking precision, this shows its high
potential for application in industry.
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Machado, B. Pátkai, I.J. Rudas (Eds.), Intelligent Engineering Systems and Computational
Cybernetics, Springer, Dodrecht, 2009, pp. 15–26.

[21] S. Heidari, F. Piltan, M. Shamsodini, K. Heidari, S. Zahmatkesh, Design new nonlinear
controller with parallel fuzzy inference system compensator to control of continuum robot
manipulator, Int. J. Control. Autom. 6 (4) (2013) 115–134.

[22] G. Bosque, I. Del Campo, J. Echanobe, Fuzzy Systems, Neural Networks and Neuro-Fuzzy
Systems: A Vision on Their Hardware Implementation and Platforms Over Two Decades”,
32, Engineering Applications of Artificial Intelligence, Elsevier Ltd, 2014, pp. 283–331, June.

[23] He Wei, Shuzhi Sam, Yanan Ge, Efe Chew Li, Yee Sien Ng, Neural network control of a
rehabilitation robot by state and output feedback, J. Intell. Rob. Syst. 80 (1) (2015) 15–31.

[24] N. Thomas, D.P. Poongodi, Position control of DC motor using genetic algorithm based
PID controller, Proceedings of the World Congress on Engineering 2 (2009) 1–3.

[25] T. Slavov, O. Roeva, Application of genetic algorithm to tuning a PID controller for glucose
concentration control, WSEAS Trans. Syst. 11 (7) (2012) 223–233.
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