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Abstract— In the frame of supply chain networks, several
approaches stemming from control theory seem to be more
adapted to deal with dynamic inventory management. Never-
theless, the used methods, until today, are model-based control
strategies where supply chain models play a major role. Due
to the increasing complexity of such systems, the modeling of
supply chains becomes more difficult and fails to capture all
the dynamic behavior of the supply chain networks. This paper
proposes as an alternative to these approaches a model-free
control method and its corresponding intelligent controllers for
inventory control in supply chain. Several concrete numerical
simulations and comparative studies mainly with the internal
model control show the efficiency of the approach and promis-
ing future of the obtained results even in the presence of various
disturbances.

I. INTRODUCTION

Supply chain systems represent a set of meshed and com-
plex networks of facilities which includes several entities like
suppliers, manufacturers, distributors, retailers that perform
the functions of procurement of raw materials, transformation
of these raw materials into intermediate and finished products
and distribution of finished products to customers [22]. Re-
calling that in supply chain, efficient dynamic management
often leads to the coordination of supply chain operation to
optimize the use of its resources to obtain lower production,
inventory, location, and transportation cost and compete on
a global scale. Notice that several research issues and gaps
are quoted by [14] in the frame of supply chains:
• Writing down a reliable mathematical model of supply

chain becomes more difficult.
• These difficulties are amplified by the high fluctuating

disturbances and perturbations which need to be treated
in order to ensure stability and robustness of the supply
chains.

These shortcomings motivate the work presented in this
paper and open new perspectives and challenges for future
work.

Since the last half century, rigorous framework for ana-
lyzing the dynamics of supply chains and the research of
the efficient decisions become of utmost importance in order
to improve substantially the performance of such systems.
In this context, control theory provides a solid background
for building such framework and several approaches from
control engineering have been applied and tested [4],[28].
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Mainly, control theory and concept play an important role in
the improvement of the dynamic management of information
flow and inventory in supply chain systems. Within the
control framework, several tools and applied control tech-
niques have been developed which vary from classical PID
controllers to more sophisticated control strategies. The PID
controllers have been proposed by [29] where the delay in
production-inventory system was approximated by a transfer
function which degree depends on the system functioning
and recently applied in [21] on multi-echelon supply chain
without considering the lead time on production in order
to keep the inventory level of each elements at a desired
value which is considered as the optimal one which satisfies
the requirements of customers in timely and most effective
way and to synchronize theirs incoming and outgoing flows.
Following the same goal [18], [19], have developed a control
strategy based on the differential flatness concept. Optimal
control and dynamic programming methods aim to optimize
an objective function that describes the performance of the
system were applied by [5] and [13]. Another interesting
approach rests on the application of Internal Model Control
(IMC) based on H2-optimal tracking set point, unmeasured
and measured disturbance (demand) rejection. These con-
trollers allow successfully to deal with tactical decision
making as demonstrated in [25] and [26]. The same control
strategy enriched by an identification method was proposed
by [11] for the inventory control and the estimation of the
lead time. The model predictive control (MPC) represents
one of the most popular approaches that is widely employed
in the field of supply chain management. MPC has the
advantage that the future values of the system’s outputs,
are predicted using a dynamic model of the process, and
historical and current measurements. Based on the predicted
horizon and the objective function optimization, an optimal
control action that satisfies the systems constraints is then
calculated. Such approach has been investigated for a single
production-inventory system and for a multi-echelon supply
chain using centralized or decentralized approach in [3],
[10], [17], [27]. Notice that most of the cited above control
approaches are model-based ones. Therefore, controlling
such systems requires reliable mathematical models.

In the field of modeling, various approaches have been de-
veloped and can be subdivided into four categories: stochas-
tic models where at least one parameter is unknown but fol-
lows a probabilistic distribution, deterministic models where
all parameters are known, economic game theoretic models
and models based on simulation, which evaluate the per-
formance of various supply chains strategies. Nevertheless,



unavoidable dead (lead) times or throughput times, result
from phenomena like transport and production, as well as the
bullwhip effect, make the supply chain modeling a difficult
task which impacts the quality of the control strategy, [11],
[12], [23]. Generally and as stated in [8], writing down a
“goof model”, where constraints and perturbations might
be severe, is quite beyond our reach especially if online
calibration ought to be performed. In addition, the used
model needs the identification of several parameters to assess
a particular control strategy which is also true in the supply
chain systems [15].

In this work, a new way is followed which is based on the
recently introduced setting of “Model-Free Control, (MFC)”
and its related intelligent controllers. The first attempt with a
preliminary study was proposed in [20] and provides a solid
basis for the future work in the field management of supply
chain.

This paper is organized as follow. Section II provides a
mathematical description of production-inventory system of
supply chain used for simulation purposes and presents the
design of multi-degree of freedom internal model control
(IMC) for the comparative studies. Section III recalls the
main principles of model-free control. Section IV, presents
an application of MFC and IMC one to a semiconductor
manufacturing supply chain borrowed for comparative study
from [25]. Finally, some concluding remarks and discussions
are provided in Section V.

II. DYNAMIC MODELING AND CONTROL OF
PRODUCTION-INVENTORY SYSTEM

A. Mathematical modeling of production-inventory system

Without loss of generality, consider, for numerical simu-
lations purposes, the production-inventory system borrowed
from [25] and depicted in Fig.1.

Fig. 1. Fluid representation of a three-echelon supply chain of semicon-
ductor manufacturing [23].

A fluid representation of a three-nodes (or three echelons)
semiconductor manufacturing supply chain is consisting of
one fabrication/test1, one assembly/test2 and one finish node.
C1, C2, C3 and C4 are control points respectively fabrication
starts, assembly starts, finish starts and shipment.

Here the manufacturing nodes M10, M20 and M30
(Fab/test1, Assembly/test2 and Finish/Pack) are represented

as “pipes” with a particular throughput time θi and yield
Ki. While the warehouse nodes or inventory storage I10, I20
and I30 (Die1/Package inventory, Semi-finished inventory and
components warehouse) are represented as “tanks”. Material
in these pipes and tanks correspond to Work-in-Progress
(WIP) and inventory with a transportation time (or delivery
time) θd , respectively.

The corresponding manufacturing process network is
given in Fig. 2.

Fig. 2. Manufacturing Process Network [24].

The output of a factory is stored in a warehouse where
it awaits shipments to customers. Thus, the supply chain is
modeled as a serial process where each node orders goods to
its immediate supplier. In this way, each echelon may obtain
enough goods to supply the orders of its immediate customer
of the chain [11].

Application of the mass conservation principle to the
system leads to a differential equation relating net stock
in each echelon (material inventory, yi(t)) to factory starts
(input pipe flow, ui(t)) and customer demand (output tank
flow, di(t)) which is represented by (1):

dyi

dt
= Kiui(t−θi)−di(t) (1)

Based on (1), it is possible to maintain inventory level
(yi(t)) in node i at a desired set point (yd,i) by manipulating
the factory starts ui(t) (control action). Customer demand
(di(t)) is considered as the sum of the forecasted demand
(dFi ), known a forecast horizon θFi days ahead of time and
unforecasted demand (dUi ) as shown below:

di(t) = ui+1(t) = dFi(t−θFi)+dUi(t) (2)

The overall dynamical system is then defined by (3):

dyi

dt
= Kiui(t−θi)−dFi(t−θFi)−dUi(t) (3)

In Laplace domain (3) becomes:

Yi(s) = pi(s)Ui(s)− pd1i
pd2dFi(s)− pd2dUi(s) (4)

where: 
pi(s) =

Kie−θis

s
pd1i

(s) = e−θFi s

pd2(s) =
1
s

(5)

Equation (4) is the nominal model for production-inventory
system control oriented tactical decision policies ([23], [25],
[26]), considered in this paper.

1A die, in the context of integrated circuits, is a small block of semicon-
ducting material on which a given functional circuit is fabricated.



Notice that pi(s) is a pure delay that is often very difficult
to order. This is why in the IMC controllers used in the
literature for the control of this system have been improved
by adding robustness filters (see [25] for example).
Either for the inventory levels yi(t), or for the control actions
ui(t), physical constraints must be taking into account:{

yi,min ≤ yi(t)≤ yi,max
ui,min ≤ ui(t)≤ ui,max

(6)

The set of the above equations constitute the basis of
the development of the Multi-degree of freedom feedback-
feedforward IMC to the control of production-inventory
system. Such control strategy will be compared with the
proposed model-free control approach.

B. IMC control of supply chains

The multi-degree of freedom feedback-feedforward IMC
controller structure as depicted in fig. (3), contains three
independent controllers that are used for three different
objectives based on the H2-optimal minimization hence the
designation as three-degree-of-freedom (3DoF) (See e.g.,
[26] for more explanation and details).

Fig. 3. Three-degree-of-freedom combined feedback-feedforward internal
model control structure [23]

IMC(3DoF) contains three controllers that minimizes the
average error magnitude. Such controllers will lead to violent
reactions from manipulated variables. In order to attenuate
these effects, the obtained result are enriched with low-pass
filters for robust stability and performance.
• Set-point tracking controller qr: the controller guaran-

tees no offset for step set-point changes in the control
system. The mode allows the controller to adjust safety
stock inventory targets to any user-desired level.

qr(s) =
s
K

1
(λrs+1)nr

(7)

• Measured disturbance rejection qF : the controller is
designed using H2 optimization and performs a feed-
forward action relying on the known demand θF days
ahead.

qF(s) = q
′
F(s) fF(s) (8)

where q′F(s) consists of:

q
′
F(s) =

{
e−(θF−θd−θ)s

K when θF ≥ θd +θ
(θ+θd−θF )s+1

K when θd +θ > θF
(9)

Where θF is the forecast horizon, the factory throughput
time θ and delivery time θd . It is augmented with
generalized type-2 filter fF(s)

fF(s) =
(nF λF s+1)
(λF s+1)nF

(10)

• Unmeasured disturbance rejection qd : this controller
takes into account the unforecasted demand in the
feedback designed for ramp disturbance changes, with a
generalized type-2 filter guaranteeing no offset for both
ramp disturbances and asymptotically step [25] given
by

qd(s) =
s(θs+1)

K
ndλds+1
(λds+1)nd

(11)

Each controller is required to be stable and proper, thus
imposing the restriction that all values of the user adjustable
parameters be positive (λd > 0, λF > 0, λr > 0) and that the
filter order is chosen to ensure transfer function properness
(nr ≥ 1, nd ≥ 3, nF ≥ 3).

III. MODEL-FREE CONTROL AND THE CORRESPONDING
INTELLIGENT CONTROLLERS

A. Phenomenological model
Model-free control (MFC) is a novel approach to nonlinear

control stemming from M. Fliess et al., [6], (See e.g. [7] for
a thorough presentation). In model-free control, there is no
need of physical model but the control designer exposes a
merely numerical model which involves no many parameters
that are estimated thanks to the algebraic methods, online
during operation of the system. The feedback control law is
build and tuned by the numerical model and is thus updated
at each sample time. Notice that since its introduction,
several successful concrete applications in different fields
have been developed, [1], [2], [8], [9].

The MFC concept rests on the following principle. The
complex mathematical model which describe the input/output
behavior of the system, is replaced by a phenomenological
model called also an ultra-local model given by (12):

y(ν)(t) = F(t)+αum f c(t) (12)

where:
• y(ν)(t) and um f c(t) are respectively the derivative of

order ν ≥ 1 of controlled output y(t) and input. ν may
always be chosen 1 or 2 (see [7], [8]).

• α ∈ R, is chosen such that y(ν)(t) and αum f c(t) are of
the same magnitude.

• F is estimated by algebraic techniques as developed in
[8]. Using values of the output y and the input um f c(t)
at any sample time we calculate F . The time-varying
quantity F which is continuously updated, subsumes not
only the unmodeled dynamics, but also all the unknown
disturbances.



B. Intelligent controllers

Assume that F is estimated (See e.g., Fig.4 for the general
principle of MFC) and close the loop with the following
controller (13):

Fig. 4. General Model-free control principle

um f c =
1
α

(
−F(t)+ y(ν)re f (t)+C(e(t))

)
(13)

where e(t) = y(t)− yre f (t) is the tracking error and C(e(t))
is a function of the error. It is chosen such as yν +C(e(t))
is stable.

C(e(t)) = KPe(t)+KI

∫
e(t)+KD

de(t)
dt

(14)

Where KP, KI and KD are tuning gains and yre f is the
reference trajectory.

Under a weak integrability condition, F(t) is approximated
by a constant function (noted F̂) in a short interval of time
[t − T, t] where T is the estimation horizon. This interval
becomes [0,T ] by sliding window, with σ ∈ [0,T ], σ the
time variable.

For the studied supply chain system, the used ultra-local
model (12) is considered with ν = 1 (KI = KD = 0), which
leads to the so-called intelligent Proportional controller or
(iP). Combining Equations (12) and (13) yields:

ė(t)+KPe(t) = 0 (15)

where F(t) does not appear anymore. Thus limt→∞e(t) = 0
if KP > 0. This local stability property proves that the tuning
of Kp is straightforward. This is a major difference with the
classic gain tuning for PIs and PIDs (see, e.g. [16] and the
references therein).

C. Estimation of F

In Laplace domain, (12) with ν = 1 becomes:

sY (s)− y(0) =
F̂
s
+αUm f c(s) (16)

Deriving both sides of (16) with respect to s in order to
eliminate the initial condition y(0):

F̂
s2 =−Y (s)− s

dY (s)
ds

+α
dUm f c(s)

ds
(17)

The application of the inverse Laplace transform on the
interval σ ∈ [0,T ], with dk

dsk , k ≥ 1 equivalent to (−t)k in

time domain and sk equivalent to dk

dtk , yields:

σ F̂ =−y(σ)+

(
d

dσ
σy(σ)

)
−σαum f c(σ) (18)

And finally, by evaluating (18) in T , we have:

T F̂ =−y(T )+
(

dy(σ)

dσ
σ + y(σ)

)
(T )−αTum f c(T ) (19)

We have F̂ :

F̂ =
1
T

[
−y(T )+

(
dy(σ)

dσ
σ + y(σ)

)
(T )−αTum f c(T )

]
(20)

The estimation of F may be achieved via other methods as
in [16].

IV. APPLICATION TO INVENTORY CONTROL OF
SEMICONDUCTOR SUPPLY CHAIN

A. Application of multi-degree of freedom IMC

From the general structure depicted in Fig. 3, each node
is controlled by (7). Measured and unmeasured disturbance
rejection are ensured by (8)–(10).

B. Application of model-free control

For implementation, it is strongly advisable to discretize
(20) and filter F̂ using a classic second filter [9]. Then the
MFC (iP) for each node is given by (21) with a term ui,nom
that improves its robustness.

ui,m f c =
1
αi

(
−F̂i(t)− ẏi,re f (t)+Ci(e(t))

)
+ui,nom (21)

ui,nom =
1
Ki

(
dy∗i,re f

dt
+d∗i (t)

)
(22)


y∗i,re f = yi,re f
d∗i (t) = dFi(t−θF∗i )
θF∗i = θFi −θi

(23)

C. Case study

The considered case study is a three-echelons semi-
conductor manufacturing supply chain borrowed from [25].
The goal is to keep inventory level yi to its desired value
yd,i, while the customer demand is the sum of unforecasted
demand dU (t) and the forecasted demand (dFi(t), known θFi

days ahead of time), must be satisfied respecting physical
constraints given by (6). The numerical values of different
parameters used in this paper are summarized in table I.

TABLE I
NUMERICAL VALUES

Echelons yd,i ui,max ui,min KPi θFi θi Ki
Echelon1 1000 200 0 0.24 7 1 0.99
Echelon2 900 400 0 0.25 6 2 0.98
Echelon3 800 200 0 0.1 5 3 0.99

yi,0 = 0, αi = 100, nri = 2, ndi = 3, nFi = 3, λri = 2, λFi = 2,
λdi = 4 and θdi = 0.

In addition: yd,i in MT: Mega tonnes; ui,max and ui,min in
MT/days; θFi , θdi and θi in days.



In the way that, each echelon may obtain enough goods
(yi equal to the desired value yd,i) to supply the orders of
its immediate customer (di(t)), the information flow must be
satisfied and synchronized to production rate ui.

D. Numerical results

Fig. 5 represents the total demand of customer d3(t).
At day t = 60 days, a customer demand step change from
0 to 100 MT/day is introduced (forecasted demand dF3(t)
known θF3 = 5 days ahead of time) and at day t = 100 days,
the demand signal becomes stochastic (unforecasted demand
dU3(t)).

Fig. 5. Customer demand d3(t)

Fig. 6. Net stock y3(t) in echelon 3

Fig. 6 shows the net stock y3(t) with the two controllers
in echelon 3. Both MFC and IMC perform equivalently
on unforecasted demand changes (unmeasured disturbance
rejection dU3(t), 100≤ t ≤ 200 days) and set point tracking
i.e all controllers converge to the desired value yd,3 = 800
MT in respect of physical constraints corresponding to their
maximal starts factory u3,MFC = u3,IMC = 158.886 < ui,max =
200 MT/day and y3(t)> 0 (Fig. 7).

However, differences between the controllers are visible in
presence of the fast changing forecasted demand (measured
disturbance rejection). At the day t = 57 days, the two
controllers anticipate the demand change that occurs at day
t = 60 days, and adjust their factory starts u3,MFC and u3,IMC
(see Fig. 7) accordingly.

One can see that the MFC (iP) stands out from IMC
(3DoF) by its speed to reach steady state (u = 105 Mt/day
corresponding to y3,MFC = y3,d = 800 MT) while it is at the

time t = 76 days that IMC reaches this value. This speed of
MFC reduces the transport and delivery delays and mitigate
production phenomena like bullwhip effect.

We observe then in Fig. 7 an overshoot u3,IMC = 132.45
MT/day at the day t = 63.2 which creates an inventory drift
∆y = y3,d − y3 = 800− 628.3 = 171.7 MT on safety stock
y3,IMC(t).

Fig. 7. Factory start u3(t) in echelon 3

Considering the demand in echelon 2 given by d2(t) =
u3(t), the factory start u2(t), and the net stock y2(t) are
shown in fig. 8.

Fig. 8. Net stock y2(t), factory start u2(t) in echelon 2

There is no overshoot in the inventory level with MFC (iP)
in node 2 contrary to IMC when it is subjected to demand
d2(t) changes. Overshoots in the inventory response y2,IMC
which lead to a large spike in factory starts u2,IMC that is
unacceptable for factory managers.

The variability in the ordering patterns increases (see Fig.
7) as we move up into the chain from echelon 3 (customer) to
echelon 1 (supplier). This phenomena is call bullwhip effect.

However, in the second echelon, the performance to bull-
whip effect mitigation with IMC under this tuning is dete-
riorated (the increasing of demand d1(t) = f (u2(t)) = 164.8
MT/day at around the time t = 76 days in echelon 1, see
Fig. 9)), but the MFC control approach works successfully
in the entire supply chain. The same results in echelon 3 are
observed in echelon 1, given by Fig. 9).

V. CONCLUSIONS

The proposed in this paper, model-free control approach
allows to bypass any dynamic mathematical model for the



Fig. 9. Net stock y1(t), Factory start u1(t) in echelon 1

supply-chain management. It has demonstrated its capability
to manage inventory in supply/demand network on a real
study case, a three-echelons semi-conductor manufacturing
supply chain. The results are discussed with a comparative
study which shown that all the controllers are both stable
and appropriate for controlling inventory in supply chain but
Model-Free Control stands out from Internal Model Control
by its speed and its robustness to forecasted demand.

The ideal case for the company is to produce the exact
amount needed product by costumers. By using forecast, the
net stock can be reduced compared to the net stock obtained
without forecast. Then the operating costs for the company
are significantly decreased. Then, the effectual solution to
this intricate problem is to anticipate the customer’s demand
at sufficient time before its occurrence. Generally, the ex-
isting forecasting methods are approaches that use historical
data based on identifying, modeling and extrapolating. Then,
we will proposed in the future work, a forecasting method
does not need information about the pattern or a model to
predict the customer demand.
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