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Abstract— The aim of real-time Dynamic Trafic Routing
(DTR) is to find the time-dependent split variables at the
diversion point for routing the incoming traffic flow onto the
alternate routes in order to reach a user equilibrium traffic
pattern. This paper exploits the recent advances on model-
free control and proposes a robust and easy implementable
algorithm to deal with the DTR problem in the case of
non-recurrent congestions. The provided simulations show the
relevance of the developed approach.

I. INTRODUCTION

Although the extension of the existing road networks,
adding lanes and designing alternative new infrastruc-
tures are considered as a natural solution against the
ever growing traffic jam problems, they cannot be always
utilized due to the lack of space and their expensive costs.
Therefore, transportation engineers and researchers have
focused on the development of dynamics traffic manage-
ments approaches, resulting of a huge literature devoted
to these problems (See, e.g., [22], [23], [28], [29], [33], [34],
[36], [43], and references therein).

Indeed, at the network level, dynamic traffic flow
management represents a valuable means to improve the
highway throughput and to ensure a efficient, safe and
less polluting transportation of goods and persons [42]. It
also contributes to a large reduction of direct and indirect
costs.

Several actions have been developed in the frame of
intelligent transportation systems. Mandatory actions
like ramp metering and dynamic speed limit, are the most
implemented control measurements. Route guidance and
dynamic traffic routing, although that are a non manda-
tory actions, aim to provide a reliable information to the
users in term of travel time, and are more adapted in the
case of non recurrent congestions.

Dynamic Traffic Routing (DTR) and (DTA, Dynamic
traffic assignment) aim to achieve a user-equilibrium traf-
fic pattern via Dynamic Variable Message Sign (DVMS)
[21] via the calculation of time-dependent split defined
as a control variable.

With the advent of Intelligent Transportation Systems
(ITS), several algorithms have been developed in order
to provide an efficient framework for real time control
for such problem. Among these, [18] and [30] have pro-
posed a strategies based on the expert systems. [39]
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have developed a solution for such problem using opti-
mization techniques. A linear quadratic, and nonlinear
optimization techniques for Dynamic Traffic Assignment
(DTA) have been developed by [37] and [35]. Most of
these approaches are designed for off-line control and
do not take into account real-time traffic flow variation.
Using the mass conservation law and the fundamental
diagram proposed by Greenshields [17], Kachroo and
Özbay have designed several on-line diversion algorithms
starting from feedback, sliding mode control to fuzzy
control laws, [21] [24],[25], (See also [26]). Although these
algorithms seem to be efficient, the use of Greenshields
fundamental prevents taking into account the whole
traffic flow phenomena. Previous work, [4] has proposed
an algorithm based on the concept of differential flatness,
successfully applied to DTR problem.

Nevertheless, most of the proposed algorithms rest
on the use of macroscopic traffic model. Although the
technical literature on macroscopic traffic flow modeling
is vast and increasing in an accelerated pace, rigorous
model validation exercises using real traffic data are
surprisingly sparse. Given the largely empirical character
of the proposed models, the lack of validation efforts is a
shortcoming that cannot be sufficiently emphasized [38].
Moreover, application of such models to DTR/DTA leads
to very complex expressions at network level.

This paper develops the following point which is quite
new in traffic engineering and therefore in DTR problem
also (See e.g., [1], [2], [3], for the first applications to
ramp-metering, and [20], for successful implementation).
It concerns the concept of Model-free control, or MFC,
and the corresponding intelligent PID controllers, or
iPID, which were introduced by Fliess and Join (see
[8], [9], [11]) and yield a straightforward control strategy
where:

• the need of any global mathematical description of
the traffic flow becomes unnecessary,

• robustness with respect to quite strong disturbances
is provided,

• the implementation and the tuning of the feedback
loop become obvious.

The paper is structured as follow. Section II, recalls
the principle of the dynamic traffic routing problem and
the used, for simulation purposes, macroscopic model.
Section III presents an overview of model-free control
and its main elements which are employed here, for
DTR problem. The main idea rests on the following



principle. The unknown global equations, which cannot
be derived for complex systems from simple physical
laws, are replaced by a very simple differential equation,
in general of first order, which is only valid during a
very short time window. The real-time adaptation of this
last system is achieved via a parameter identification
technique, which goes back to ([12], [13]). It yields a
time-varying term which contains the unknown parts
of the system as well as the unknown perturbations,
without making any difference between them. It yields
a proportional-integral controller which is “intelligent”,
i.e., it is endowed with an additive term which

• is deduced from the previous estimation,
• alleviates the unknown parts and perturbations.

We are left to a linear first order system. The tuning
of the iIP is straightforward. Section IV, deals with
the application of MFC to DTR problem. Computer
simulations with real data are developed in Section V.
A few concluding remarks are stressed in Section VI.

II. Dynamic traffic routing problem

A. Review of traffic models

Since the early works of Lighthill, Whitham and
Richards (LWR), [32], [41], several models have been
proposed in order to deal with the thorny problem of
traffic flow behavior. Their classification, which is of
utmost importance allows a better understanding of the
complex phenomena of traffic in order to implement
control actions to eliminate or at least minimize the
effects of congestion. Such classification can be performed
according to the degree of granularity which leads to
microscopic, mesoscopic, and macroscopic set of models.
Most of the conducted works in the field of intelli-
gent transportation systems underlines that macroscopic
models are more adapted and useful one for the traffic
flow monitoring, planification and dynamic management
[36], [19].

Macroscopic models are based on the conservation law
and are derived by analogy with fluid dynamic and con-
sider the following partial differential equation relating
the traffic density ρ(x, t) (in a number of vehicles per
kilometers (veh/km)) and the traffic flow q(x, t) expressed
in term of a number of vehicles per hour (veh/h).

∂ρ(x, t)
∂ t

+
∂q(x, t)

∂x
= 0 (1)

The space discretization of (1) assumes that the high-
way is subdivided into a set of segments. Therefore, the
conservation equation reads:

ρ̇i, j(t) =
1
Li

[
qi, j−1(t)−qi, j

]
(2)

where

• (i, j) = ((1,1),(1,2), . . . ,(2,n1),(2,1),(2,2), . . . ,(2,n2)).
• Li is the section length and ρi, j represents the traffic

density at section j of the route i.

B. DTR formulation

The main objective of dynamic traffic routing is to
reach a user-equilibrium. Let us stress that the control
action is mainly informative and it is not a mandatory.
The success of the control depends on the driver’s compli-
ance. The implementation of such algorithm may follows
the steps below:

• For each road, calculate the travel time following
[5]. This calculation is, usually achieved via tracking
vehicles.

• Based on the desired trajectory (here equal travel
time), the control algorithm calculates the split rate
β which defines the road allowing an optimal cost.
The cost in traffic engineering is already related to
the comfort, safety, or travel time of the possible
alternative routes to the desired destination.

• At each step the DVMS shows the travel time
realized by the users (See [27], for more explanation).

In order to formulate the DTR problem, consider the
simple highway depicted in Figure 1.

At each of the two alternate routes of the example, the
relationship between the traffic density ρi and traffic flow
qi includes the mean speed vi as follow:

qi(t) = ρi(t)vi(t)λi (3)

where vi is defined as a nonlinear expression (See [34]):

vi = v f i exp
[(
−1

a

)(
ρi

ρci

)a]
(4)

ρci represents the critical density and a, a model param-
eter. v f i, the free-flow speed.

The aim of the DTR problem is to synthesis a control
law which ensure to reach a user equilibrium traffic
pattern. Consider β (t) ∈ [0, 1], the control variable that
ensures this user equilibrium. This will be made by
minimizing the total travel time T T .{

β (t)qe(t) = q1,0(t)
(1−β )qe(t) = q2,0(t) (5)

qe(t) is the incoming measured flow.
As in Kachroo and Özbay [21], the dynamic routing
problem can be expressed as a problem of minimization
of the objective function in (6) by finding the split rate
β0;

J(β ) =
∫ t f

0

[
m

∑
i=1

T T (ρi)−
m+p

∑
m+1

T T (ρi)

]2

dt (6)

where, T T is the travel time function and t f the final
time.

The same raisonnement may be applied for
a highway with n alternate routes. In this
case, the whole network subdivided into several
segments is described by (2), where, (i, j) =
((1,1), . . . ,(1,n1),(2,1),(2,2), . . . ,(2,n2),(n,1), . . . ,(n,nn)).



Fig. 1. Simple example of two alternate routes

The problem consists then on finding a set of split vari-
ables, βn−1, where, ∑

n−1
i=1 β i = 1 which minimize the total

travel time T T , (See [21], for the optimal formulation of
the DTR problem for a general case)

β (t)qe(t) = q1,0(t)
β (t)qe(t) = q2,0(t)

...
(1−β1−β2−, . . . ,−βn−1)qe(t) = qn,0(t)

(7)

Notice that the travel time function T Ti for each
alternate route i is defined by the following expression:

T Ti =
Li

vi
(8)

The control variable can be obtained thanks to the first
derivative of the equation (8). It is not difficult to see that
for a large network, the obtained equations providing
different split rates βi become very complexes. Using
the recently introduced model-free control theory allows,
among other, to overcome these heavy stages of the
control design. The following section provides the basic
principle of this concept.

III. Model-free control: an overview

Most of the developed control strategies are model-
based. Nevertheless, obtaining a reliable mathematical
model tacking into account all physical and dynamical
behaviors is always a difficult task. To overcome these
problem, model-free control has been recently introduced
where the physical representation is replaced by a purely
numerical model called “phenomenological model” [14],
(See a.g. [16], [9] for a thorough presentation) Such
ultra-local model involves very few parameters which are
estimated, online via algebraic methods of identification.
The control action is then derived and tuned easily by
this numerical model.

A. Model-free control principle

For simplicity’s sake, consider a single-input single-
output (SISO) system S which is unknown. Replace the
unknown “global” model by the following “phenomeno-
logical” one:

y(ν) = F + αu (9)

which is

• α ∈R is a non-physical constant parameter that has
no a priori precise numerical value. This parameter
is chosen by the engineer such as αu and y(ν) are of
equivalent magnitude

• The model (9) is continuously updated.
• F which subsumes all the unknown parts of the

system including perturbations is estimated as in
subsection III.B.

Remark 3.1: Notice that (9) should not be confused
with a “black-box” identified model.

B. Estimation of F

Under a weak integrability condition, F in (9) may be
“well” approximated by a piecewise constant function F̂ .
Let us summarize two types of the techniques borrowed
from [13].

1) Rewrite (9) with ν = 1 in operational domain (See
[44])

sY (s)− y(0) =
Φ

s
+ αU(s) (10)

where Φ is a constant. To get rid of the initial
condition y(0), multiply both sides on the left by
d
ds .

Φ

s2 =−Y (s)− s
dY (s)

ds
+ α

U(s)
ds

(11)

For noise attenuation, multiply both sides on the
left by s−2, which is equivalent, in time domain to
a lowpass filter. It yields in time domain the real
time estimate, thanks to the equivalence between
dk

dsk , k ≥ 1 and the multiplication by (−t)k

F̂ =
6
τ3

∫ t

t−σ

[(τ−2σ)y(σ)+ ασ(τ−σ)u(σ)]dσ

(12)
where σ > 0 might be quite small, [15]. Notice that
in practice, this integral may be replaced by classic
digital filter.

2) For the second technique, close the loop with the
intelligent proportional controller iP. It yields:

F̂ =
1
τ

[∫ t

t−τ

(ẏ?−αu−Kpe)dσ

]
(13)



C. Intelligent controller

The knowledge of F permits the calculation of the
control variable u(k) at the sampling period k using
equation (14). This calculation is a simple cancellation of
the nonlinear term F in addition to a closed loop tracking
of a desired trajectory t→ y? [16]:

u(k) =− [F(k)]e
α︸ ︷︷ ︸

NL Cancellation

+
ẏ(ν)?(k)

α
+ Kpe + Ki

∫
e + Kde︸ ︷︷ ︸

Closed loop tracking

(14)
where

• y? is the output reference trajectory, which is ob-
tained via the differential flatness principle (see, e.g.,
[6], [40]),

• e = y− y∗ is the tracking error,
• Kp, Ki and Kd are parameters to be tuned.

Remark 3.2: The term [F(k)]e
α

+ ẏ(ν)?

α
represents the

“nominal control” in the “Flatness-based control”.
Remark 3.3: It is important to emphasize that, in

contrast with the classical PID controllers, here, no iden-
tification procedure is needed since the whole structural
information is containing in the term F which is canceled
[10].

IV. Application to DTR problem

As mentioned above, the travel time T T is defined
with the equation (8) and the DTR problem is solved
using the first derivative of this entity. In terme of model
free control, such equation is replaced by the following
“phenomenological model”

˙T T (t) = F(t)+ αβi(t) (15)

where βi represents the split rate at each controlled
diversion point. Following the MFC principle, this control
variable reads

βi =
1
α

(
−[F ]e + ˙T T ?−KPe

)
(16)

where

• T T ? is the reference trajectory.
• e = T T −T T ? represents the tracking error.
• KP is a positive gain.

Remark 4.1: It should be notice that, equation (15)
is here first order, a simple iP regulator is enough to
ensure convergence of the error to zero [16]. Indeed,
contrarily to classic feedback control, since the integral
effect is included in the term [F ]e,

1 there is no need of
an integral controller in order to ensure stabilization and
convergence of the error to zero.
The estimation of F is provided thanks to (12) , (13) or
using the following expression:

[F ]e = [ ˙T T (k)]e−αβi(k−1) (17)

1This fact comes from the estimation of F via the algebraic
method which leads to a set of iterated integrals.

where

• k is the sampled time
• [•]e indicates an estimate of •.

V. Numerical simulations

For simulation purpose, consider the simple network
depicted in Fig. 1. For this example, assume that the
two alternate routes are decomposed into three segments
with two lanes. In addition it is assumed a full drivers
compliance. Sections at the origin between the nodes N1
and N3 and at the destination between N9 and N11 are
with four lanes.

The conducted simulations rest of the second order
macroscopic model called “METANET” (See e.g. [31]
for more explanation about this model). In addition to
(2), (3) and (4), the model takes into account the speed
dynamic:

vi(t) = 1
τ

[Ve(ρi)− vi(t)]+ 1
Li

vi(t) [vi−1(t)− vi(t)]

− η

τLi

ρi+1(t)−ρi(t)
ρi(t)+υ

(18)

where, Ve(ρi) is the May fundamental diagram defined by
(4). where, τ, η and υ are the model parameters. The
traffic demand represented in figure 2, is provided via
a loop detector every 20s between 5 am and 8 pm, in
order to take into account the peak hours that include
congestions. Notice that the provided real data are often
corrupted by noises.
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Fig. 2. Traffic demand at the origin

In the no control case, Fig.3 and Fig.4 display the
densities and the flow evolutions in the two alternate
routes. The difference of travel time is shown in Fig. 5.

Fig. 6 shows the travel time of each of the two alternate
routes in the control case and confirms the performance
of the proposed controller that is able to ensure a perfect
routing at the diversion point as depicted also in Fig. 7.

Notice that with equal travel time in both route 1 and
route 2 the controller allows to minimize the difference
of travel time which allows an equal traffic flows and
densities in both routes (See. Fig. 8 and Fig. 9).
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Fig. 3. Traffic densities in the two alternate routes
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Fig. 4. Traffic flow in the two alternate routes
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VI. CONCLUSIONS

Based on a simple but realistic example, this paper
shows the efficiency of model-free control to deal with
the dynamic traffic routing problem. The main objective
is to ensure a user-equilibrium pattern in order to solve
the problem of non-recurrent congestions. The proposed
approach which is based on algebraic methods of identi-
fication provides a solid alternative to deal with dynamic
guidance and traffic routing.
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Fig. 7. Difference of travel times
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Fig. 8. Traffic densities in the two alternate routes

Furthers works will provide an integrated approach
using real-time ramp metering and route guidance in
order to efficiently minimize the recurrent and non-
recurrent traffic congestion at networks level.
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[4] H. Abouäıssa, D. Jolly and T. Stoilov. Flatness Based Control
for Real-Time Dynamic Traffic Routing Problem. Proc. of
IFAC, INCOM12, Bucarest, Romania. 2012.

[5] M. Cremer, On the calculation of individual travel times by
macro- scopic models, in Proc. 1995 Vehicle Navigation and
Information Systems Conf., Washington, D.C., 1995, pp. 187–
193.
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