Graphical Representation Enhances Compliance with Normative Argumentation Principles
Srdjan Vesic, Bruno Yun, Predrag Teovanovic

To cite this version:
Srdjan Vesic, Bruno Yun, Predrag Teovanovic. Graphical Representation Enhances Compliance with Normative Argumentation Principles. SPUDM 2021, Aug 2021, Warwick (online), United Kingdom. hal-03426766

HAL Id: hal-03426766
https://univ-arrois.hal.science/hal-03426766
Submitted on 12 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Graphical Representation Enhances Compliance with Normative Argumentation Principles
Srdjan Vesic (vesic@cril.fr), Bruno Yun and Predrag Teovanovic

Introduction
Reasoning semantics in formal argumentation follow normative argumentation principles. Do argumentation principles proposed by the AI researchers realistically model human reasoning?

Methods
- Participants were randomly assigned to one of two groups: Graph (n = 57) and No Graph (n = 41).
- They answered 16 questions where they needed to estimate the strength of each argument by using the scale from 1 (very weak) to 4 (very strong).
- Participants also completed three Cognitive Reflection Test tasks and short, five item versions of Need for cognition and Faith in intuition scales.

Conclusions
The graphical representation of argument significantly enhances:
- performance on group level
- reliability of individual differences

<table>
<thead>
<tr>
<th>Scale</th>
<th>No graph (n=57)</th>
<th>Graph (n=41)</th>
<th>Test of difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
</tr>
<tr>
<td>Independence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>72.7</td>
<td>23.1</td>
<td>89.1</td>
</tr>
<tr>
<td>Anonymity between tasks</td>
<td>18.1</td>
<td>19.4</td>
<td>60.5</td>
</tr>
<tr>
<td>Anonymity within tasks</td>
<td>70.2</td>
<td>20.3</td>
<td>65.8</td>
</tr>
<tr>
<td>Void precedence</td>
<td>47.3</td>
<td>24.7</td>
<td>73.0</td>
</tr>
<tr>
<td>Maximality</td>
<td>38.8</td>
<td>25.0</td>
<td>57.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scale</th>
<th>No graph (n=57)</th>
<th>Graph (n=41)</th>
<th>Test of difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
</tr>
<tr>
<td>1. Independence</td>
<td>.43</td>
<td>.45</td>
<td>.56</td>
</tr>
<tr>
<td>2. Anonymity between tasks</td>
<td>-.07</td>
<td>.62</td>
<td>.70</td>
</tr>
<tr>
<td>3. Anonymity within tasks</td>
<td>.42</td>
<td>.52</td>
<td>.62</td>
</tr>
<tr>
<td>4. Void precedence</td>
<td>.54</td>
<td>.04</td>
<td>.28</td>
</tr>
<tr>
<td>5. Maximality</td>
<td>.45</td>
<td>.37</td>
<td>1.0</td>
</tr>
<tr>
<td>6. Control tasks</td>
<td>.44</td>
<td>.24</td>
<td>.47</td>
</tr>
<tr>
<td>7. Cognitive reflection</td>
<td>.22</td>
<td>.03</td>
<td>.17</td>
</tr>
<tr>
<td>8. Need for cognition</td>
<td>-.22</td>
<td>-.16</td>
<td>-.21</td>
</tr>
<tr>
<td>9. Faith in intuition</td>
<td>-.07</td>
<td>.05</td>
<td>-.08</td>
</tr>
</tbody>
</table>