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Projecting discrete quantities from one mesh to another one is a critical operation which is usually required in multi-physical 

problems. The efficiency of a Galerkin projection method is studied for magneto-thermal and magneto-elasticity couplings. As examples 
of application, two electromagnetic devices are studied: a three-phase busbar system as a magneto-thermal problem and an electro-
magnet as a magneto-mechanical problem. 
 

Index Terms—Coupled Problems, Finite Element Method, Projection Method.  
 

I. INTRODUCTION 

In many studies, such as multi-physical coupled problems, 
one can need to use different meshes to take into account some 
regions or not according to their influence on the computed 
field. In addition, each problem can ask for a particular 
fineness of mesh. Hence, the main issue about coupled 
problems using dedicated meshes is to properly transfer each 
discrete field obtained on one mesh onto another one. 

The finite element (FE) method allows evaluating a field 
everywhere in a studied domain via the direct interpolation of 
basis functions. This method can be used to perform mesh to 
mesh interpolation. Another approach for mesh to mesh 
interpolation consists in defining the discrete expression of a 
field on the two considered meshes and then minimize the gap 
between them through a weighted residual method to build an 
easy to solve linear matrix system. In a previous study [1], the 
theory of the method has been presented for the projection of 
magnetic, thermal and mechanical quantities. In this paper, this 
theory is recalled and the method is used to perform the 
transfer of source quantities in the cases of magneto-thermal 
and magneto-mechanical problems using dedicated meshes for 
each physical phenomenon. As examples of applications, two 
electromagnetic devices are studied: a three-phase busbar 
system as a magneto-thermal problem and an electro-magnet 
as a magneto-mechanical problem. The influence of the 
projected source quantities on the temperature – in the first 
case – and the displacement – in the second case – is studied. 

II. FIELDS COMPUTATION 

A. Magnetic Field Computation 

Maxwell's equations and material constitutive laws are 
written in a studied domain Ω: 

 curl , curl t= = − ∂h j e b  (1) 

 ,σ µ= =j e b h  (2) 

where h is the magnetic field, b is the magnetic flux density, e 
is the electric field, j is the current density, µ is the magnetic 
permeability and σ is the electric conductivity. Boundary 

conditions are defined on two complementary parts Γb and Γh 
of the boundary of the studied domain: 

 0 on  and 0 on b h⋅ = Γ × = Γb n h n  (3) 

with n the unit normal exterior to Ω. 
By combining equations (1) with (2) one can obtain either 

the magnetodynamic h-formulation (4) or a-v formulation (5). 

 1curl( curl ) ( ) 0t
− + ∂ =h hσ µ   (4) 

 1curl( curl ) ( grad ) 0t v− + ∂ + =a aµ σ  (5) 

where a is the magnetic vector potential and v is the scalar 
electric potential, with b = curl a and e = − ∂t a − grad v. 

B. Thermal Field Computation 

The heat transfer in a studied domain is described by the 
Fourier's law: 

 ( )div gradp tC T T p∂ − =ρ λ  (6) 

where ρ is the mass density, Cp is the specific heat and λ is the 
thermal conductivity. In addition to (6) boundary conditions – 
ideal insulation, isotherm wall, radiation and convection – also 
have to be taken into account. 

C. Elastic Field Computation 

In the case of small displacements u, the equilibrium 
equation is given by: 

 0B∇ + =σ F  (7) 

where FB represents body forces and σσσσ  is the stress. The latter 
is linked to the strain εεεε via Hook's law = ⋅σ E ε  where E is 
Young modulus. 

III.  COUPLING STRATEGIES AND QUANTITIES 

For coupled problems, two different coupling strategies, 
either direct (strong) or indirect (weak), can be used. The most 
natural and obvious approach from a mathematical point of 
view is the direct solution since it allows taking into account 
every single field interaction between each other. 
Nevertheless, such a strategy can be computationally 



PE1-13 2 

expensive and is only justified in particular configurations. 
On the other hand, under certain conditions, one can use 

indirect coupling strategy. For magneto-thermal coupled 
problems, using such an approach is justified by the fact that 
each field has its own specific time scale. For magneto-
mechanical coupled problems, indirect coupling can be used in 
the case of small deformations. 

With such an approach, the interaction between the different 
fields is taken into account through coupling quantities, which 
are the heat sources and the temperature (which influences the 
electrical conductivity) in a magneto-thermal study and the 
magnetic force in a magneto-mechanical study. 

In our case, using dedicated grids for each physical 
phenomenon requires projecting those coupling quantities onto 
different meshes (Fig. 1).  
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Fig. 1. Magneto-thermal (left) and magneto-mechanical (right) indirect 
coupled problems using dedicated meshes 

IV.  PROJECTION METHOD 

A. Galerkin Projection Method General Formulation 

One considers a studied domain Ω and two function spaces 
( )2U L∈ Ω  and ( )2V L∈ Ω  with a known field u U∈ . The 

aim of the method is to find v V∈  by using a weighted 
residual method, with test functions ψ, so that: 

 ( ) 0 ,v u d V
Ω

− = ∀ ∈∫ψ τ ψ  (8) 

In the discrete domain, a field can be interpolated via the 
basis functions defined on the mesh used to discretize Ω. 
Hence, if the field u is discretized on a source mesh and v on a 
target mesh, writing (8) in the discrete domain leads to: 

 ,
j j i i

t sv u

t t s s
j i

v w d u w d V
∈ ∈Ω Ω

= ∀ ∈∑ ∑∫ ∫
ε ε

ψ τ ψ τ ψ  (9) 

where 
us

ε and 
vt

ε are sets of geometrical entities belonging to 
the source and the target mesh respectively. Moreover, 

is
w and 

jtw  are the basis functions associated to the entity i of the 
source mesh and j of the target mesh respectively. Hence, the 
Galerkin method is applied with each basis function 

jtw as a 
test function ψ so (9) leads to a linear matrix system where the 

discrete coefficients 
jtv  are the unknown entities. The 

numerical integration has to be done using an appropriate 
number of Gauss points to accurately sample to source field 
variations. 

B. Projection of Magneto-Thermal Coupling Quantities 

As we mentioned it earlier, coupling quantities in a 
magneto-thermal problem are heat sources and temperature. 
According to Tonti diagram (Fig. 2) those quantities are 
discretized in the volume FE space 3E  and the nodal FE space 

0E  respectively [2]. 
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Fig. 2. Tonti diagram applied to thermal problem 

Hence, the projection of the heat source and of the 
temperature is performed by replacing

jtw , and so the test 
function ψ, by a volume basis function and a nodal basis 
function respectively. However, the projection of the heat 
sources can be tricky. Indeed, the fact that it is discretized in 
the volume FE space means that the heat sources are constant 
per FE. Hence, in some cases, such as devices with skin effects 
for example, a step effect can appear on the projected quantity. 
Moreover, most of thermal codes historically use nodal 
element space to discretize the heat sources. Hence, for both 
reasons, one can use nodal basis functions for both the 
projected heat source and its associated test function ψ in the 
projection formulation. 

C. Projection of the Force 

The proposed projection method (9) is made for the 
projection of discrete quantities in the sense of FE. That means 
that one has to be careful about the space in which quantities 
to be projected take place, especially about the force since 
there are various methods to determine it. For example, in the 
case of Laplace's force×j b , the right function to use to 
replace the test function ψ is nodal basis function [4]. 

In the case of nodal forces given by the virtual work 
method, the projection cannot be done directly by using (9). 
Indeed, those forces do not define a field [5], but rather a set 
of discrete force components acting on each node. Hence, once 
the nodal forces Fn given by the virtual work method are 
computed for each node n of the mesh supporting the magnetic 
computation, one needs to determine the vectorial values fn of 
the corresponding force field. Those fn then define a force 
density and are, by definition, related to Fn via the expression 

 ,
s i i s

s

n s s n s s
i N

w w d n Nτ
∈Ω

= ∀ ∈∑∫ f F  (10) 

with Ns the set of nodes belonging to the source mesh. 
Hence, once the force density is evaluated on the source 

mesh (supporting the magnetic computation), it can be 
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projected onto the target one (supporting the mechanical 
computation) by replacing the test function ψ by a nodal basis 
function. 

V. APPLICATIONS 

A. Magneto-Thermal Coupled Problem 

A three-phase busbar system is taken as an example for the 
application of the coupling strategy presented in Fig. 1 (left). It 
is composed of five copper bars included in a concrete bloc 
(Fig. 3). Dimensions of each bar and of the concrete bloc are 
100 8 mm²× and 104 200 mm²×  respectively. 

 

Fig. 3. Three-phase busbar system 

Three different meshes are generated for the study. Mmag – 
supporting the electromagnetic computation – is fine enough to 
take into account the skin effect that appears in the conducting 
parts with good accuracy, whereas Mther1 and Mther2 are 
coarser. The number of elements of these three meshes are 
28791, 3763 and 1144, respectively. 

The study is performed in two steps. Mmag is first used to 
perform a magneto-thermal computation via the formulations 
mentioned in section II. Due to the high number of elements – 
and so high number of degrees of freedom – belonging to 
Mmag, the so-computed FE solution is considered as a reference 
one for both magnetic and thermal problems. On a second 
step, Mmag is used for the magnetodynamic computation only. 
The Joule losses are then projected successively onto Mther1 
and Mther2 using (3). For that computation, both nodal and 
volume basis functions are used. Results obtained for that 
operation are compared to the reference solution in Fig. 4. 
Moreover, total Joule losses evaluated on target meshes are 
compared in table I.  

The good accuracy between the projected Joule losses 
evaluated on thermal meshes and the reference one is pointed 
out in Fig. 4 and table I. Moreover, even if local error due to 
"step effect" appear when using volume basis functions for the 
projection, the global Joule losses do not suffer from any 
major loss of accuracy, which is an advantage of the proposed 
method in comparison with the classical interpolation 
technique.  

Then, the so-computed heat sources are used to perform a 
thermal computation via (6) on Mther1 and Mther2. Results of 
that computation are shown in Fig. 5. The results obtained with 
projected heat sources are in very good agreement with those 
obtained by using one single mesh. 
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Fig. 4 Joule losses densities versus y-position in a bar; projected quantities 
with volume (top) or nodal (bottom) basis functions 

TABLE I 

VALUE OF THE 

TOTAL LOSSES IN THE 

DEVICE AFTER 

PROJECTION 

VALUE OF THE 

RELATIVE ERROR 

COMPARED WITH 

THE REFERENCE 

SOLUTION (%) 

MESH USED FOR 

THERMAL 

COMPUTATION 

vw  nw  vw  nw  

M ther1 347.76 347.76 0.028 0.028 
M ther2 346.98 346.98 0.252 0.252 
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Fig. 5. Evolution of the temperature versus x-position on top of bars; 
projected Joule losses with volume (top) or nodal (bottom) basis functions 

B. Magneto-Elastic Coupled Problem 

An electro-magnet above a plate is taken as an example for 
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the application of the coupling strategy presented in Fig. 1 
(right). For the mechanical computation, the left side of the 
plate is clamped and the studied quantity is the displacement 
of the right side of the plate. 

Since the mechanical studied domain is the plate, we 
generate three different meshes – Mmag, Mmech1 and Mmech2 – 
differing from each other on the number of elements inside 
that region, which are 2000, 1200 and 800 respectively. As in 
the previous section, the study is performed in two steps. A 
magneto-mechanical computation is first performed on Mmag to 
get a reference solution in term of force densities and 
displacement at the free side of the plate. Hence, in a second 
step, the electromagnetic and mechanical problems are solved 
on dedicated meshes, requiring the projection of the force 
densities from Mmag onto Mmech1 and Mmech2. 

 

Inductors 

Iron Core 

Conductive Plate 

30 mm 

90 mm 

2
 m

m
 

1
0 

m
m

 

4
0 

m
m

 

54 mm 

7 mm 

 

Fig. 6. Electro-magnet above a plate 

As an illustration of the fact that the forces given by the 
virtual work method are strongly linked to the mesh on which 
they are computed, those latter are shown in Fig. 7 for both 
Mmag (left) and Mmech1 (right). The corresponding force density 
distributions are shown in Fig. 8. 

 

  

Fig. 7. Force given by virtual work method under a tooth using Mmag (left) 
and Mmech1 (right) 

  

Fig. 8. Force density evaluated from the force given by virtual work method 
under a tooth using Mmag (left) and Mmech1 (right) 

Results of the force density projection operation are shown 
in Fig. 9. A good accuracy between the force density computed 
on Mmag and the projected ones is obtained. Then, the 
projected force densities are used for the magneto-elastic 
computation. The displacement of the free side of the plate for 
both computations – using Mmech1 and Mmech2 – are presented 
in table II. The mechanical computation using dedicated 
meshes – and so projected source terms – gives very accurate 

results in comparison with the reference solution. 
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Fig. 9. Force density versus x-position along the top of the plate, under a tooth 

TABLE II 

MESH NAME 
DISPLACEMENT 

VALUE (mm) 
RELATIVE ERROR 

(%) 
Mmech1 0.30037 0.89 
Mmech2 0.29500 2.67 

VI.  CONCLUSION 

A Galerkin projection method has been used for the 
projection of source quantities in both magneto-thermal and 
magneto-mechanical problems using dedicated meshes for 
each physical field computation. It has been shown that the 
projected quantities are in good agreement with the original 
ones and can be used as source terms for multi-physical 
problems using dedicated meshes. 
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