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Projecting discrete quantities from one mesh to arther one is

a critical operation which is usually equired in multi-physical

problems. The efficiency of a Galerkin projection nethod is studied for magneto-thermal and magneto-asticity couplings. As examples
of application, two electromagnetic devices are stlied: a three-phase busbar system as a magneto-thesl problem and an electro-

magnet as a magneto-mechanical problem.

Index Terms—Coupled Problems, Finite Element Method, Projectio Method.

I. INTRODUCTION

In many studies, such as multi-physical couplecblems,
one can need to use different meshes to take atmuat some
regions or not according to their influence on tdwenputed
field. In addition, each problem can ask for a ipatar

conditions are defined on two complementary pBgtandly,

of the boundary of the studied domain:
bMm=0onl, anchxn= 0 oM (3)

with n the unit normal exterior tQ.
By combining equations (1) with (2) one can obteither

fineness of mesh. Hence, the main issue about edupthe magnetodynamic-formulation (4) ora-v formulation (5).

problems using dedicated meshes is to properhsfeareach
discrete field obtained on one mesh onto another on

The finite element (FE) method allows evaluatindiedd
everywhere in a studied domain via the direct puéation of
basis functions. This method can be used to perfogsh to

curlie L curlh)+a, (uh)=0 4
5

wherea is the magnetic vector potential amds the scalar

curl(,u'1 curla)+o(©ia+ gradv =

mesh interpolation. Another approach for mesh toshme €lectric potential, with = curla ande = —d;a - gradv.

interpolation consists in defining the discrete resgion of a
field on the two considered meshes and then mieirtiiz gap
between them through a weighted residual methdzlild an
easy to solve linear matrix system. In a previdudys[1], the
theory of the method has been presented for thegion of
magnetic, thermal and mechanical quantities. s phaiper, this
theory is recalled and the method is used to perftine
transfer of source quantities in the cases of ntagthermal
and magneto-mechanical problems using dedicatetiender
each physical phenomenon. As examples of applitstitwo
electromagnetic devices are studied: a three-plasbar
system as a magneto-thermal problem and an eleignet

as a magneto-mechanical problem. The influence hef t

projected source quantities on the temperature thenfirst
case — and the displacement — in the second dassguedied.

1. FIELDS COMPUTATION

A. Magnetic Field Computation

Maxwell's equations and material constitutive laese
written in a studied domai:

curlh=1j
j=oe ,

curle=-0d;b
b=wuh

1)
)
whereh is the magnetic fieldy is the magnetic flux densitg,

is the electric fieldj is the current densityy is the magnetic
permeability ando is the electric conductivity. Boundary

B. Thermal Field Computation

The heat transfer in a studied domain is describedhe
Fourier's law:

pCp0; T —div(AgradT) = p (6)

wherep is the mass densitf, is the specific heat antlis the
thermal conductivity. In addition to (6) boundamnditions —
ideal insulation, isotherm wall, radiation and cection — also
have to be taken into account.

C. Elastic Field Computation

In the case of small displacements the equilibrium
equation is given by:

Oo+Fg =0 ()

whereFg represents body forces agdis the stress. The latter
is linked to the strairg via Hook's lawe = E (& whereE is
Young modulus.

Ill.  COUPLING STRATEGIES ANDQUANTITIES

For coupled problems, two different coupling stgas,
either direct (strong) or indirect (weak), can Isedi The most
natural and obvious approach from a mathematicait puf
view is the direct solution since it allows takiimjo account
every single field interaction between each other.
Nevertheless, such a strategy can be computatjonall
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expensive and is only justified in particular cgufiations. discrete coefficientsy;, are the unknown entities. The

On the other hand, under certain conditions, ome e numerical integration has to be done using an ap@e
indirect coupling strategy. For magneto-thermal ped number of Gauss points to accurately sample tocsofield
problems, using such an approach is justified leyftiet that variations.

each f|gld has its own specp‘ |c.t|me scalg - For mm B. Projection of Magneto-Thermal Coupling Quantities
mechanical coupled problems, indirect coupling lsarused in

the case of small deformations. As we mentioned it earlier, coupling quantities @
With such an approach, the interaction betweemliffierent Mmagneto-thermal problem are heat sources and tetoper

fields is taken into account through coupling qit@s, which According to Tonti diagram (Fig. 2) those quantitiare
are the heat sources and the temperature (whitkeides the discretized in the volume FE spaEé and the nodal FE space

0 .
electrical conductivity) in a magneto-thermal stualyd the E~ respectively [2].
magnetic force in a magneto-mechanical study.

In our case, using dedicated grids for each phlysica 0T PGy p E®
phenomenon requires projecting those coupling dfigsbnto J div
different meshes (Fig. 1). EC T

E' 9

Computation Fig. 2. Tonti diagram applied to thermal problem

Force {xb or

(™)
C tati . .
s Virtual Work Method) Hence, the projection of the heat source and of the
m temperature is performed by replacigg, and so the test
Force Density

W@ function y, by a volume basis function and a nodal basis
L Projecti . . . . .
gsses Projecto Projection [ function respectively. However, the projection tietheat

F°Prf;fc§r;§‘y sources can be tricky. Indeed, the fact that disgretized in
Computation

the volume FE space means that the heat sourcenastant

w per FE. Hence, in some cases, such as deviceskiitleffects
for example, a step effect can appear on the pegjeguantity.

Di t . .
spemen Moreover, most of thermal codes historically usedaio

element space to discretize the heat sources. Hércboth
reasons, one can use nodal basis functions for Hweh
projected heat source and its associated testidmngtin the
projection formulation.

Fig. 1. Magneto-thermal (left) and magneto-mechani@right) indirect
coupled problems using dedicated meshes

IV. PROJECTIONMETHOD C. Projection of the Force

A. Galerkin Projection Method General Formulation The proposed projection method (9) is made for the

One considers a studied dom&rand two function spaces projection of discrete quantities in the sensetfFhat means
U LZ(Q) and VO LZ(Q) with a known fielduU . The that one has to be careful about the space in wduemtities
aim of the method is to find/OV by using a weighted to be projected take place, especially about theefsince

residual method, with test functions so that: there are varlousl methqu to deter.mlne it. Fpr @lkanin the
case of Laplace's forgexb, the right function to use to

fl//(V—u)dr =0 , OyOv (8) replace the test functionis nodal basis function [4].
0 In the case of nodal forces given by the virtualrkvo
) . i . . method, the projection cannot be done directly by (9).

In the discrete domain, a field can be interpolatedthe  |hgeed, those forces do not define a field [5], tather a set
basis functions defined on the mesh used to diger€. f giscrete force components acting on each nodace} once
Hence, if the fieldl is discretized on sourcemesh andona  the nodal forcesF, given by the virtual work method are
target mesh, writing (8) in the discrete domain leads to: computed for each nodeof the mesh supporting the magnetic

_ computation, one needs to determine the vectoaklesf, of
dr = d Oy Ov 9 . . !
_[lﬂ 2 Vi, W, A7 !;ﬂ 2 Ugwgdr . Dy ©) the corresponding force field. Tho$g then define a force

i0 iCke, . T . )
e s density and are, by definition, relatedRgvia the expression
where £ and & _are sets of geometrical entities belonging to _
. w, w, fodr=F , OngON 10
the source and the target mesh respectively. Mereow, and !2 ”si[% S8 Ns sTs (10)
S

w, are the basis functions associated to the ety the
source mesh andof the target mesh respectively. Hence, thwith N the set of nodes belonging to the source mesh.

Galerkin method is applied with each basis functignas a Hence, once the force density is evaluated on thece
test functiony so (9) leads to a linear matrix system where th@esh (supporting the magnetic computation), it dam
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projected onto the target one (supporting the m@Echh 250
computation) by replacing the test functiprby a nodal basis
function.

N
]
S

V. APPLICATIONS

Joule Losses Density (kW/m:
g

A. Magneto-Thermal Coupled Problem

A three-phase busbar system is taken as an exdangiee ‘
application of the coupling strategy presentediin F (left). It 0 ¥ postion (m;j S %
is composed of five copper bars included in a cetecbloc
(Fig. 3). Dimensions of each bar and of the corctdtc are
100x 8 mm:and 104x 200 mm respectively.

=
1)
3

250

Joule Losses Density (kW/m3)

0 25 50
Y Position (mm) [Inside a bar]

‘— Reference Solution— Mtherl — Mtherz‘

Fig. 4 Joule losses densities versus y-positioa lar; projected quantities

Fig. 3. Three-phase busbar system with volume fop) or nodal pottom) basis functions
Three different meshes are generated for the stddy, — TABLE |
supporting the electromagnetic computation — is &nough to VALUE OF THE RZ&;’ES;;ER
take into account the skin effect that appearbénconducting MESHUSED FOR ~ TOTALLOSSESINTHE . 0 o iy
parts with good accuracy, whereasyM and My, are THERMAL DEVICE AFTER THE REFERENCE
coarser. The number of elements of these three aneate COMPUTATION PROJECTION SOLUTION (%)
28791, 3763 and 1144, respectively. W, W, W, W,
The study is performed in two stepsMis first used to Miners 347.76  347.76 0.028 0.028
perform a magneto-thermal computation via the fdatmns M ner2 346.98  346.98 0.252 0.252
mentioned in section Il. Due to the high numbeeleiments —
and so high number of degrees of freedom — belgngin 120

Mmag the so-computed FE solution is considered ageaerce
one for both magnetic and thermal problems. On corsd
step, Mg is used for the magnetodynamic computation only.
The Joule losses are then projected successivéty e
and Mpere Using (3). For that computation, both nodal and
volume basis functions are used. Results obtaimedthat
operation are compared to the reference solutiofign 4. 80
Moreover, total Joule losses evaluated on targethew are
compared in table I.

The good accuracy between the projected Joule dosse
evaluated on thermal meshes and the referencesqmarited
out in Fig. 4 and table 1. Moreover, even if loeator due to
"step effect" appear when using volume basis fonstifor the
projection, the global Joule losses do not suffemf any
major loss of accuracy, which is an advantage efpitoposed
method in comparison with the classical interpolati

Temperature (°C)

X Position (mm) [Top of bars]

Temperature (°C)

80

technique. 0 20 20 %0
Then, the so-computed heat sources are used toripes X Position (mm) [Top of bars]

‘— Reference Solutior— Mtherl — Mtherz‘

thermal computation via (6) on ¢4, and Me» Results of
that computation are shown in Fig. 5. The resuitaioed with Fig. 5. Evolution of the temperature versus x-positon top of bars;
projected heat sources are in very good agreemiémtiose projected Joule losses with voluntep) or nodal bottom) basis functions
obtained by using one single mesh.

B. Magneto-Elastic Coupled Problem

An electro-magnet above a plate is taken as an geafor
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the application of the coupling strategy preseritedrig. 1
(right). For the mechanical computation, the laeftesof the
plate is clamped and the studied quantity is tlspldcement
of the right side of the plate.

Since the mechanical studied domain is the plate, w
generate three different meshes ma! Mmecn1 and Mpecnz —
differing from each other on the number of eleméntide
that region, which are 2000, 1200 and 800 respagtiAs in
the previous section, the study is performed in steps. A
magneto-mechanical computation is first performedvig,,qto
get a reference solution in term of force densitasd
displacement at the free side of the plate. Heimce, second
step, the electromagnetic and mechanical problemsalved
on dedicated meshes, requiring the projection ef fiirce
densities from MagONnto Mnechi@nd Mrecha

54 mm

LY
Inductors:”
]
B £ E
S 5
< <
Iron Core- |5
30 mn
Conductive Plate E
: ~

¥ )

90 mn

Fig. 6. Electro-magnet above a plate

As an illustration of the fact that the forces givey the
virtual work method are strongly linked to the meshwhich
they are computed, those latter are shown in Fifprhoth
Mmag (left) and Mrecn1 (right). The corresponding force density;
distributions are shown in Fig. 8.

\ || | (1
chptppateeeteetete:

Fmag_ww v Fmag_w v

0 55 1 zx 0 55 11 zx [2]
= e = =

Fig. 7. Force given by virtual work method undetoath using Mhag (I€ft)
and Mnechl(right) [3]

\ | | [4]
ittt e hah bR AR AY

Y
0 1.5e+04 3e+04 Zx 0
— | —

1.5e+04 3e+04 zZx
| —

Fig. 8. Force density evaluated from the force witog virtual work method
under a tooth using Mg (Ieft) and Myechi (right)

Results of the force density projection operatiom shown
in Fig. 9. A good accuracy between the force dgrsitnputed
on My, and the projected ones is obtained. Then, the
projected force densities are used for the mageletstic
computation. The displacement of the free siddeflate for
both computations — using M1 and Myecho — are presented
in table 1l. The mechanical computation using datid
meshes — and so projected source terms — givesagetyate

results in comparison with the reference solution.

30000

24000

18000

12000

6000

Value of the Force Density (N/m*

0
0,015

0,025
X Position (m) [Top of plate]

0,035

\7 Reference Solution—Mmechl— Mmech21

Fig. 9. Force density versus x-position along tgedf the plate, under a tooth

TABLE Il
DISPLACEMENT RELATIVE ERROR
MESHNAME VALUE (mm) (%)
Mmech1 0.30037 0.89
Mmechz 0.29500 2.67

VI. CONCLUSION

A Galerkin projection method has been used for the
projection of source quantities in both magnetattieé and
magneto-mechanical problems using dedicated mefires
each physical field computation. It has been shéhwat the
projected quantities are in good agreement withdtiginal
ones and can be used as source terms for multigathys
problems using dedicated meshes.
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