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Abstract

The most critical areas in power transformers are their corner joints where the

magnetic flux distribution presents a very high heterogeneity. This heterogeneity

results from several parameters such as the geometry of the magnetic core, the

anisotropy level of the electrical steel laminations and a critical induction. This

paper is focused on the magnetic steel grades influence on the critical induction,

adding a new parameter to those classically considered, such as the number of steps

in a multiple step lap stack. Due to the difficulty to perform local measurements

inside a real transformer corner, the study is performed both experimentally and by

Finite Element analyses on a simplified magnetic core structure. The paper high-

lights that, in a corner of a core, it exists a critical induction level which depends

on the magnetic steel grades and that, in a lamination, the magnetic flux density

value along the Transverse Direction can be of the same order that it has along the

Rolling Direction.
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Introduction

Knowing the influence of Grain Oriented Electrical Steel (GOES) grade on the mag-

netic flux distribution inside transformer cores is a key point for their optimization

in terms of core losses and acoustic noise. It is now admitted that this noise founds

its origin into two magnetic phenomena: the Maxwell’s forces and the magnetostric-

tion [1–5]. In both cases, the most critical areas are the corner joints where the magnetic

flux distribution presents a high degree of heterogeneity [6,7]. It is the consequence of

various parameters such as the geometry of the magnetic core [8], the anisotropy level

of the electrical steel [9] and a critical induction BC [4,10,11]. In particular, the latter

parameter, which is the average induction level for which there is enough energy in the

core to generate domains in the Transverse Direction (TD), significantly modifies the

ratio between the in-plane and out of plane magnetic flux density. Now, according to

the literature [4,10,11], BC only depends on the geometry in a first hand, ie the number

of steps in a Multiple Step Lap (MSL) configuration, and on the saturation polarization

in a second hand.

In this paper, the influence of the magnetic steel grade on BC inside the corners

is investigated. But due to the difficulty to perform local measurements inside a real

transformer corner, the study is performed both experimentaly and by Finite Element

(FE) analysis on a simplified structure enabling to reproduce the same phenomena. The

experimental device, as well as its numerical model, are presented in the first part of the

paper. In the second part, the experimental and numerical results are compared in order

to validate the FE model. The third part is devoted to the study and the analysis of the

influence of the electrical steel grade on BC, and thus on the magnetic flux distribution

in transformer corners. In particular, it will be shown that in a corner:

• BC does depend on the magnetic steel grade,

• in a lamination, the magnetic flux density value along the TD can be of the same

order of magnitude than in the Rolling Direction (RD)
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1 Studied Structure

1.1 GOES stack in frame shape

Studying especially the magnetic flux distribution in a transformer corner joint (Fig. 1a)

is a difficult task, particularly in the in-plane air gaps. Due to their very small size, it

is not obvious to insert measurement devices without modifying the local configura-

tion [12,13]. Numerical models would give a possibility to avoid the instrumentation

of a studied device, but modeling a whole transformer corner, including every lami-

nations and air gaps would lead to extremely high or even unacceptable computation

time. Hence, one of the best way to study the magnetic flux distribution in such areas

consists in developing simplified structures as easy to equip with non invasive sensors

as it is to model.

The structure reported in this paper is presented in Fig. 1b. The test assembly is

made of a stack of hollow GOES square plates shifted one another from 90◦. There

is no other air gap but the ones between each lamination out of the plane as shown in

Figs. 1c and 1d. By contrast, each core section presents a succession of RD and TD.

Fig. 2 shows the first magnetization curves along the RD and TD for three different

GOES grades: HGO 0.30 mm, CGO 0.30 mm and HGO 0.23 mm [14]. Due to the low

value of the magnetic permeability along the TD, the reluctance of the parts of the legs

oriented into that direction corresponds to the reluctance of a less than 1 mm thickness

air gap. Then, it is assumed that the studied structure has a magnetic permeability

arrangement comparable to the one locally encountered in the corners of a single-phase

transformer, as well as in the external corners of a three-phase transformer built with

Butt Lap or Single Step Lap joints.

1.2 Experimental setup

The experimental setup of the simplified structure is presented in Fig. 3. The stack is

composed of 35 HGO 0.30 mm sheets. The dimension of a frame is 0.5 m×0.5 m and

the width of a leg is 0.1 m. Primary and secondary windings are placed along each

leg (coils A, B, C and D in Fig. 3). All the coils have to same number of turns and coils
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B and D are split in order to be able to insert sensors, as indicated in the following.

The excitation is made through the primary winding with a sinusoidal voltage at 50 Hz

whereas the secondary winding is used to measure the magnetic flux density value in

a whole leg, noted Bglobal . Flux sensor coils disposed inside the legs (Fig. 3) give

access to the local magnetic flux density along the RD and the TD, noted BRD and BT D

respectively. Their thickness is of 100 µm which is bigger than to coating thickness (a

few microns) and in order not to influence the behavior of the magnetic circuit those

coils are located in the middle of a leg (Fig. 3), which is far enough from the corners.

Note that, in the following, Bglobal , BRD and BT D will refer to peak values.

1.3 Numerical model

An FE model of the simplified structure, taking into account the laminations as well as

the interlaminar air gaps, has been developped using the software GETDP [15] in order

to interpret the magnetic flux distribution in addition to the measured results. As previ-

ously stated (Fig. 1b), the structure is composed of a stack of GOES laminations whose

RD are shifted one another from 90◦. Then, the periodic shape of the structure have

been taken as advantage for simplification and model reduction, making it possible to

model only two sheets, with the interlaminar air gaps. As an illustration, a plane cut of

the model in the same axis system as the one used in Fig. 1 is presented in Fig. 4. This

strategy has already successfuly been used in [16]. As regards the mesh, it is consti-

tuted of prisms obtained by extrusion along the z axis (Fig. 1b). The use of an extruded

mesh allows to easily control its density as well in the thickness of the laminations and

as in that of the interlaminar air gaps. In this study, it is consituted of 8 and 4 prismatic

layers in a lamination and in an air-gap respectively. Moreover, in order to get results

as valid as possible, every simulations are performed with both scalar and vector mag-

netic potentials formulations [17]. Note that the characteristics of the aforementioned

mesh, especially its thinness, have been chosen so that both formulations give the same

results. Nevertheless, in order to improve the readability of the figures, only the results

obtained by the h−φ formulation are shown.

Several methods exist to take into account the anisotropy of the GOES [18–23].
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Usually, the choice of a method with respect to another is made by considering the

accuracy level, the implementation complexity, the computation time and the num-

ber of experimental data required. In this work, the method named Newton-Raphson

in [22] is used. The mains rationales on the use of this method are its simplicity of

implementation and its accuracy given the structure studied in this paper, as it will be

shown in the following section. It requires the definition of the magnetic permeability

along three directions: the RD, the TD and the Normal Direction (ND). In each direc-

tion, the non linearity of the sheets is taken into account by using first magnetization

curves (Fig. 2). The ones related to the RD and the TD were obtained via standardized

single sheet tester method [24,25], whereas the one related to the ND is obtained by

using a specific test bench [26].

2 Numerical Model Validation

In order to validate the numerical model, FE simulations have been performed using

the steel grade used in the experimental device presented in section 1.2. That way,

the experimental and numerical results can be compared. To do so, the frames have

been magnetized as stated in sections 1.2 and 1.3 respectively, so that Bglobal varies in a

range from 0 T and 1.35 T. In Fig. 5 it appears clearly that, for Bglobal < BC, the whole

magnetic flux takes place along the RD, and there is no flux along the TD. But as soon

as BC is reached, BRD does not evolve anymore, and BT D increases.

As an illustration of this phenomenon, Figs. 6 and 7 show the magnetic flux dis-

tribution in two contiguous laminations in the case of Bglobal = 0.48T (induction for

which there is a real possibility for both directions to be magnetized) and Bglobal = 1.22T

(the value of the magnetic flux density just at the end of the knee of the TD magnetiza-

tion curve) respectively. This distribution is as expected:

• in the case of the low Bglobal value, the magnetic flux establishes along the RD

only and then passes from a lamination to another one in the corner areas in order

to fulfill the principle of energy minimization (Fig. 6),

• in the case of the high Bglobal value, it still tends to establish along the RD, but
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also has to spread out along the TD (Fig. 7). As an example, in this figure,

BT D = 0.578T.

Fig. 8, which presents the temporal evolution of measured and numerical values of

BRD and BT D, also shows that the experimental and numerical results are in very good

accordance since the maximum error value is 4 %. Hence, in the next section, the FE

model will be applied to various steel grades.

3 Influence of the Electrical Steel Grade

As previously stated, the FE model can be used to compare and interpret the influence

of the eletrical steel grades (HGO 0.30 mm, CGO 0.30 mm and HGO 0.23 mm) on the

value of BC, and thus, on the magnetic flux distribution inside the structure.

Fig. 9 shows the variation of BRD and BT D with respect to Bglobal for the three

electrical steel grades previously mentioned. The influence of the latters appears on

two points:

• the maximum flux density which can be established in the RD of a lamination

cross section differs for the three different grades: it is equal to 1.86 T, 1.72 T

and 1.82 T in the cases of HGO 0.30 mm, CGO 0.30 mm and HGO 0.23 mm

respectively. That was expected given their first magnetization curves (Fig. 2).

• Fig. 9 also shows that BC depends on the electrical steel grade. Indeed, it is equal

to 0.90 T, 0.72 T and 0.82 T in the cases of HGO 0.30 mm, CGO 0.30 mm and

HGO 0.23 mm respectively

This relation between the electrical steel grade and BC has never been mentioned

in the literature. Actually, in the literature, it is stated that BC depends on the number

of steps in the corner, on one hand, and on the saturation polarization [4,10,11], on

the other hand. However, in our case, all the tested grades have the same saturation

polarization since they all are FeSi 3 %. Then, those results show that BC does not

depend on the saturation polarization but depends on the approach to saturation of the

magnetization curve, which is different from a grade to another one; the approach to
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saturation of CGO 0.30 mm is slower than the one of HGO 0.30 mm, and at the same

time BC of CGO 0.30 mm lower than BC of HGO 0.30 mm. This may have a great

influence on the efficiency of the tranformer in term of losses, on one hand, since

the presence of magnetic flux in the TD of electrical steel sheets increases the core

losses [13], and it may also have influence on the core vibration and noise, on the other

hand. Indeed, the differences noted on BRD(t) and BT D(t) (Fig. 10) turn into a clipping

on BRD(t) and thus to distortion. The lower the BC value, the higher the distortion,

and thus, the more important the related harmonics. Now, exciting a tranformer so that

Bglobal is higher than BC results in an increase of the acoustic noise harmonics [27,28].

This BC is not a one for all deterministic value for noise and it has also to be associated

to the geometry of the core joints, but it can be used as an indicator for noise increase.

As previously stated, the noise emission results from vibrations, which have two

different origins: the Maxwell’s forces and the magnetostriction. As both phenomena

are related to the square of the local magnetic flux density, Figs. 11a and 11b show

the spectra of the square of the local magnetic flux densities along the RD and TD

respectively. It appears that for BRD, the fundamental (100 Hz) and the first harmonic

(200 Hz), which are the most significant spectral lines in this case, are the highest in

the case of HGOES. This is in good accordance with the fact that BCHGO > BCCGO as

previously stated, in one hand, and the fact that CGO sheets are noisier than HGO

ones [29–32], on the other.

4 Conclusion

In this paper, a simplified magnetic core enabling to analyze the distribution of the

magnetic flux density in transformer corners has been presented. An FE model of this

structure has been made, and the numerical results lead to a good accordance with

the measurement results. Additional simulations, performed using various electrical

steel grades, have shown the influence of the latters on the critical induction BC. The

analysis of the results, such as the variation of the local magnetic flux density inside the

structure as well as its harmonic spectrum, showed that the critical induction BC seems
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to be a key parameter to describe the occurrence of losses or noise but this quantity can

not be identified without a suitable setup. Complementary investigations are needed to

enable a simple access to this quantity.
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of multidirectional magnetostriction for the noise generation of transformer cores.

Journal of Magnetism and Magnetic Materials, 215–216:634–636, June 2000.
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[10] F. Löffler, T. Booth, H. Pfützner, C. Bengtsson, and K. Gramm. Relevance of

step-lap joints for magnetic characteristics of transformer cores. IEE Proceedings,

Electric Power Applications, 142(6):371–378, November 1995.
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Figure 7: Magnetic flux distribution in the structure for Bglobal = 1.22T
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