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In 2-D electrostatic and magnetostatic finite element problems, portions of flux tubes are defined by field lines together with their
orthogonal lines. These two sets of lines can be obtained as the isovalue lines of scalar and vector potentials. One set is related
to a multivalued potential that, when made single-valued via the definition of cuts, undergoes discontinuities, resulting in lines
interruptions at the cuts. A method is proposed for obtaining continuous isovalue lines for the multivalued potentials. This then
helps in locating selected portions of flux tubes and quantifying their equivalent properties, i.e., capacitances or reluctances, to be
used as is or in equivalent circuits.

Index Terms—Finite element analysis, field lines, flux tubes

I. INTRODUCTION

WHEN modeling an electromagnetic device, the choice
of one method or the other depends on several

parameters such as the level of desired accuracy, computational
time or complexity of the physical phenomena. The
equivalent circuit modeling approach, whether electric or
magnetic, usually offers the best balance between computation
time and accuracy of the results, which is why it is
intensively used for fast modeling [1], failure analyzes [2]
and design-optimization [3]. Nevertheless, both accuracy
and ruggedness of these studies greatly depend on the
determination of the lumped parameters constituting the
equivalent circuit. They can be determined by analytical
relations, tubes and slices method [4] or from Finite Element
(FE) modeling [5].

The method presented in this paper uses the latter approach
but, differently from [5], it uses both static dual 2-D
formulations to accurately determine flux tube portions,
delimited by both flux walls and gates, that are related to
lumped parameters. Indeed, an electromagnetic problem is
usually solved through either a scalar or a vector potential
formulation. In 2-D and in case of a total potential, the
associated field is either parallel or perpendicular to its
isovalue lines, which makes the determination of such lines
a key point for the characterization of flux tubes portions.
For a given problem, obtaining both sets of lines requires
the use of dual formulations. Whereas the commonly used
formulations (with electric scalar potential in electrostatics
and magnetic vector potential in magnetostatics) involve
single-valued potentials, their dual formulations (with electric
vector potential and magnetic scalar potential, respectively)
involve multivalued potentials, i.e., presenting discontinuities
through some cut lines making their support domain simply
connected [6]. The aim of this work is the development
of a method allowing to adjunct the parts of the isovalue
lines of the multivalued potentials at the cuts in order to be
able to exploit them as boundaries of flux tubes portions.
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The complementary portions are directly obtained from the
complementary classical single-valued potentials.

Electrostatic and magnetostatic test problems are solved to
illustrate and validate the developed methodology.

II. STATIC DUAL FORMULATIONS AND FLUX TUBES

A. Electrostatic and magnetostatic problems

Electrostatic and magnetostatic problems in a bounded
domain Ω ⊂ R2 of boundary Γ are governed by :

curl e = 0 , divd = ρ , d = εe (1a)
curlh = js , div b = 0 , b = µh (1b)

where e is the electric field, d is the electric flux density, h is
the magnetic field, b is the magnetic flux density, js is a source
current density, ρ is a source volume charge density, ε is the
electric permittivity and µ is the magnetic permeability. Their
weak formulations are obtained from Green’s identities (2):

(f , grad g)Ω + (divf , g)Ω = 〈n · f , g〉Γ (2a)
(curlf , g)Ω + (f , curl g)Ω = 〈n× f , g〉Γ (2b)

where f , g ∈ H1(Ω), g ∈ H1(Ω), (·, ·)Ω and 〈·, ·〉Γ denote
a volume integral in Ω and a surface integral on Γ of the
product of their vector field arguments respectively and n
is the unit normal vector exterior to Ω. The domain Ω is
composed of conducting and nonconducting parts Ωc and ΩC

c
as Ω = Ωc ∪ ΩC

c . Moreover, Ωs denotes the source parts for
ρ or js, with Ωs ⊂ Ωc in electrostatics and Ωs ⊂ ΩC

c in
magnetostatics.

From each of the systems (1a) or (1b), two dual
formulations can be established – one involving a
single-valued potential, the other one involving a multivalued
potential – depending on the selected strong and weak
formulations, and thus whether (2a) or (2b) is used [7,8].

B. Single-valued potentials formulations

The single-valued potentials formulations, either in
electrostatics or in magnetostatics, are the most commonly
used, essentially for their ease of implementation and use.
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In electrostatics, the e-conform formulation is obtained
by introducing the electric scalar potential v such that
e = −grad v. Then, in ΩC

c , i.e., where ρ = 0, the weak form
of divd = 0 can be obtained from (2a):

(−ε grad v , grad v′)ΩC
c
−〈n·d , v′〉Γd = 0 ,∀v′ ∈ F0

e (ΩC
c ) (3)

where F0
e (ΩC

c ) is the space of admissible potential v and v′ is
its associated test function [7].

In magnetostatics, the b-conform formulation is obtained
by introducing the magnetic vector potential a such that b =
curla, with a gauge condition on a to ensure its uniqueness.
The weak form of curlh = js can be obtained from (2b):

(µ−1curla , curla′)Ω − (js,a
′)Ωs + 〈n× h , a′〉Γh = 0

∀a′ ∈ F1
b(Ω) (4)

where F1
b(Ω) is the space of admissible potential a and a′ is

its associated test function [8].

C. Multivalued potentials formulations

The multivalued potentials formulations, in duality with
the formulations presented in section II-B, usually require
the introduction of source fields related to their associated
sources [6,7,9]. These are non-zero in the source regions
Ωs and can be extended to be non-zero in ΩC

s = Ω \ Ωs,
allowing the initially multivalued total potentials to become
single-valued reaction potentials.

In electrostatics, the source field ds allows ensuring
divds = ρ in Ωc and divds = 0 in ΩC

c . Electric flux density
d can then be expressed as the association of such a source
field and a divergence-free reaction field, expressed as the curl
of an electric vector potential u (with a gauge condition), i.e.,
d = ds + curlu [7], leading to the d-conform formulation:

(ε−1ds , curl u′)ΩC
c

+ (ε−1curl u , curl u′)ΩC
c

+ 〈n× e , u′〉Γe = 0 , ∀u′ ∈ F1
d(ΩC

c ) (5)

where F1
d(ΩC

c ) is the space of admissible potential u and u′

is its associated test function. The same procedure is followed
in magnetostatics [8]. In presence of a nonzero current source
js in Ωs, a source field hs is defined such that curlhs = js.
The reaction field can thus be expressed as the gradient of a
magnetic scalar potential φ, leading to h = hs − gradφ. The
resulting h-conform formulation is:

(µ gradφ , gradφ′)Ω − (µhs, gradφ′)Ω + 〈n · b , φ′〉Γb = 0

∀φ′ ∈ F0
h(Ω) (6)

where F0
h(Ω) is the space of admissible potential φ and φ′ is

its associated test function.

D. Using potentials isovalue lines as flux tubes boundaries

For simplicity of presentation, one denotes F either the
electric or magnetic flux density, f either the electric or
magnetic vector potential, i.e., u or a, G either the electric
or magnetic field, and g either the electric or magnetic scalar
potential, i.e., v or φ. In 2-D, with electric and magnetic fields
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(g2)

iso-f lines

iso-g lines

∆g

∆f

Fig. 1. Flux tube boundaries definition
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Fig. 2. Discontinuities of f and g isovalue lines on cuts

in the xy-plane, f can be written f = fz z = f z where
z is the unit vector perpendicular to the studied plane. This
implies that gauge condition divf = 0 is implicitly satisfied.
In regions where potentials f and g are total (with a zero
source field), one can write:

F = curlf = grad f × z (7a)
G = −grad g (7b)

From (7a), it is straightforward to deduce that iso-f lines
and F are colinear, i.e., field lines of F are iso-f lines. In
other words, iso-f lines represent flux walls for F . Similarly,
it is straightforward to deduce from (7b) that iso-g lines are
normal to G, i.e., iso-g lines represent flux gates for G.
Hence, in the case of continuous iso-lines, the area bounded
by iso-f and iso-g lines defines a flux tube (Fig. 1) and can
then be related to its equivalent property, i.e., a capacitance
or a reluctance in case of an electrostatic or a magnetostatic
problem, respectively. Because (7a) only makes sense in 2-D,
the method is not applicable as such to 3-D cases.

Among the defined potentials, those that can be multivalued
are f ≡ u = u·z in electrostatics and g ≡ φ in magnetostatics.
In general, multivalued potentials are not total in ΩC

c because,
as mentioned in section II-C, d-conform and h-conform
formulations imply the introduction of source fields, that
are non-zero in ΩC

s . These can however be substituted with
discontinuities of the associated potential f ≡ u or g ≡ φ
through cuts making ΩC

s simply connected [6,9], which thus
makes that potential total in the whole ΩC

s . In electrostatics,
the discontinuity ∆ucutc through a cut c is the total electric
charge carried by the source conducting region connected only
to that cut, with the plus or minus sign depending on the
cut orientation. If more that one cut is connected to a source
region, each of the related cut discontinuities is a portion of the
carried total charge, their sum being the total charge. Similarly,
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in magnetostatics, the discontinuity ∆φcutc through a cut c
is the signed total electric current carried by the conducting
region connected only to that cut or a portion of that current
in case of multiple cuts.

The discontinuities of the potentials do not allow the
direct definition of flux tubes in the vicinity of the cuts
regions (Fig. 2). The adjunction of associated portions of
isovalue lines on both sides of the cuts has to be done, which
asks for a particular treatment as developed hereafter.

III. ADJUNCTION OF MULTIVALUED POTENTIAL LINES

From a calculated FE-wise distribution of a multivalued
potential, e.g., f ≡ u, in ΩC

c , pairs of additional
FE-wise distributions are created by shifting the initial
potential to plus or minus cut discontinuity ∆fcutc , for
each cut c. The initial distribution with all the shifted
distributions for all cuts fill a database of distributions
D = {f,

⋃
all cuts {f + ∆fcutc , f −∆fcutc}}.

Then, a line γ is selected from which iso-f lines are starting
for a certain set S = {f0, ..., fn} of n + 1 discrete values
fi, i = 0, ..., n, regularly incremented with a constant ∆f , i.e.,
fi+1 = fi + ∆f, i = 0, ..., n − 1. Point pi denotes the point
on γ at which value fi is found. One has fn − f0 = ∆fcutc ,
and thus ∆f = ∆fcutc/n, when the starting surface is the
one of a particular source region connected only to cut c. This
selected set can possibly be reduced to values of f encountered
along some particular surfaces in the studied problem, e.g., the
surfaces of the stator and rotor teeth of an electrical machine
for g ≡ φ in place of f , to focus on the flux tubes in a
particular region, between these particular surfaces. For each
value fi in the considered set S, the successive unique FE-wise
portions Pi,j (j = 0, ... is the portion index) of the related
iso-fi line are searched for in the database D, starting with the
portion that originates from point pi on the selected surface γ.
Each added portion is the one in D starting from the end of the
last added portion. Its end becomes the starting point for the
next portion up to the end of the iso-fi line, usually located on
the boundary of another source region or a symmetry plane.
A summary of the whole procedure is given in Table I.

TABLE I
POST-PROCESSING ADJUNCTION PROCEDURE

Step Action
1) Build distribution setD = {f,

⋃
all cuts {f + ∆fcutc , f −∆fcutc}}

2) Select a line region γ in ΩC
c with its set of discrete values S =

{f0, ..., fn} of f , at respective positions {p0, ..., pn}
3) For each fi in S

index j = 0, point pstart = pi
Do

Search the FE-wise portion of iso-fi line in D starting at pstart
If portion found
Pi,j = found portion
j = j + 1, pstart = end point of found portion

Else
next fi

While portion found

IV. APPLICATION EXAMPLES

A. Two-wire cable capacitance determination

As an electrostatic illustration example, a two-wire cable is
considered. The linear capacitance of such a cable is:

Canalytical =
πε0εr

ln(Dr )
(8)

where D is the distance between the wires centers and r is
their radius.
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Fig. 3. Iso-uz lines for a two-conductor electrostatic problem (a cut (poly)line
joins the conductors)
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Fig. 4. Electric flux tubes boundaries and equivalent capacitance network

The result of the problem solved with the d-conform
formulation is presented in Fig. 3a. As stated in section II-D,
the iso-uz lines (with uz = u) undergo a discontinuity
through the cut linking the two conductors and cannot be
used as flux walls as is (Fig. 3a). The lines portions are
then adjuncted following the method described in section III
to obtain continuous lines (Fig. 3b). At last, the flux tubes
boundaries are properly defined by solving the problem with
the e-conform formulation and combining both sets of isovalue
lines, i.e., uz and v (Fig. 4a). For each flux tube portion, an
elementary capacitance Cele = |∆uz|

|∆v| can be defined, where
∆uz and ∆v are the fixed potential differences between its
two flux walls and its two flux gates, respectively (Fig. 4b).
The two-wire cable capacitance can be computed by properly
associating the elementary ones, i.e., in parallel along flux
gates lines at first and then in series along flux walls
lines. As a numerical application, the capacitance obtained
for D = 6 mm and r = 1 mm is 1.5525× 10−11 F m−1

and 1.5407× 10−11 F m−1 by using (8) and the flux tube
method, respectively. It is worth noting that since the
adjunction procedure is performed at the post-processing step,
its accuracy only depends on the accuracy of the original
finite element computations. Moreover, the distribution in the
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studied domain of potential values used to plot the iso-lines
are obtained by classic interpolation from the basis functions.
In other words, if the e-conform and d-conform computations
preceding the adjunction procedure give valid results then the
adjunction procedure also will, and it is totally robust no matter
the geometry of the studied case.

Moreover, it can also be noted that due to its capability
to discretize ΩC

c into elementary portions, this method allows
to compute the capacitance of a specific part of the studied
domain instead of the global one, such as some insulated
regions or regions with fringing field. This capability is
highlighted in the following section.

B. Airgap reluctance identification

As a magnetostatic illustration example, the developed
airgap of a switched reluctance machine is considered. The
proper identification of the airgap reluctances is a key point
when using Magnetic Equivalent Circuit (MEC) method as
a modeling approach. Following the same methodology than
the one presented in section IV-A, the problem is solved
at first with the h-conform formulation to obtain the iso-φ
lines portions (Fig. 5a) which are then adjuncted following
the method described in section III (Fig. 5b). Magnetic flux
tubes portions are then determined by combining iso-az lines
to reconstituted iso-φ lines (Fig. 6a). Each flux tube defines
an elementary reluctance Rele = |∆φ|

|∆az| .
In the case of salient-pole machines, such as the considered

one, computing the global reluctance of the airgap would not
make any sense. Actually, in the case of a switched reluctance
machine, different airgap reluctances can be defined [10], such
as overlap, fringing, slot leakage and pole-to-pole leakage
reluctances. Moreover, each of them depends on the position
of rotor teeth with respect to stator teeth. For this reason,
the capability of the flux tubes method to focus on a specific
region is an interesting property for the identification of such a
machine reluctance equivalent network. Indeed, the considered
regions can be selected by properly defining the tube walls,
i.e., the min and max values of the iso-φ lines. As an example,
Figs. 6b and 6c present the flux tubes to consider in order to
determine the overlap and fringing reluctances respectively.

X

Y

Z

(a) Initial iso-φ lines

X

Y

Z

(b) Adjuncted iso-φ lines

Fig. 5. Iso-φ lines inside an airgap (a cut (poly)line joins the conductors)

V. CONCLUSION

The contribution of the work presented in this paper
is twofold. Firstly, a method allowing to eliminate the
discontinuities undergone through cuts by multivalued
potentials isovalue lines from their calculated FE-wise
distribution has been presented. In particular, it has been

X

Y

Z

(a) Reluctance map in the air gap

X

Y

Z

(b) Reluctance map for the
overlap reluctance definition

X

Y

Z

(c) Reluctance map for fringing
reluctance definition

Fig. 6. Magnetic flux tubes boundaries (iso-φ and iso-az lines)

shown that the developed adjunction method is totally generic
since it is suited for any 2-D multivalued potential, i.e., electric
or magnetic, for any 2-D geometry and for any number,
shape and distribution of source regions. Secondly, it has
been established that, once the adjuncted isovalue lines of the
multivalued potential are obtained, they can be combined with
the dual isovalue lines of the single-valued potential calculated
from the dual formulation in order to define the boundaries
of flux tube portions. Those flux tube portions can then be
related to their equivalent physical property to constitute either
a capacitance or a reluctance network. This network can be
employed in many applications, such as the determination of
the capacitance or the reluctance of a particular region of the
studied domain, or the establishment of equivalent lumped
parameters circuits.
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