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Determining the Partial Discharge Inception Voltage (PDIV) is a key point when designing electrical coils or busbars. In this
paper, a method making it possible to calculate the PDIV as well as to locate partial discharges in windings of any shape is presented.
It is based on a 2D finite element computation using both dual – i.e. scalar and vector potential – electrostatic formulations and a
comparison of the obtained operating points with the Paschen’s curve.

Index Terms—Finite element method, field lines, partial discharge inception voltage.

I. INTRODUCTION

DEPENDING on the applications they are used for,
electrical machines are subject to different stress factors,

such as thermal, mechanical and electrical stresses. They
all contribute to the machine possible failures [1]. Among
them, 30 % are related to electrical faults, the majority of
which coming from a windings insulation breakdown [1]. It is
highlighted in the literature [2] that Partial Discharge (PD)
appearance is responsible for the insulation system early
aging. This is the reason why determining a priori the Partial
Discharge Inception Voltage (PDIV) is a key point when
designing electrical windings. So far, only experimental tests
realized on already built devices allow to determine this
quantity, which conflict with a design step.

It is reported in the literature that the Paschen’s law [3,4]
is an efficient criteria for the PDIV determination of electrical
machines windings [2,5,6]. To be utilized, this criteria requires
two quantities. The first one is the distance of the path
covered by free electrons during the avalanche breakdown
process. In Paschen’s theory, this path can be assimilated to an
electric field line. The second quantity is the electric potential
difference between the two ends of that field line. Although
determining those two quantities is relatively easy in the case
of two plane electrodes, it is still impossible in the case of
more complex shapes [6].

The aim of this paper is to provide a numerical method
allowing to treat a priori any 2D complex geometry – cables,
motor/transformer windings or busbars – whether for the
determination of the PDIV or the location of PDs. It is
shown that using both dual – scalar and vector potential –
electrostatic formulations allows to account for the correct
pair of aforementioned quantities, which, to the author’s
knowledge, is an approach that has never been seen in the
literature. Three application examples are treated in order to
evaluate both the validity and the robustness of the method.

All FEM computations are performed using the code
GetDP [7]. Its Open Source approach allowed us to implement
the electric vector potential formulation which, to the authors’

knowledge, is never implemented in any commercial software,
as well as the post-operations allowing to compute the PDIV.

II. PASCHEN’S LAW FOR THE DETERMINATION OF
DISCHARGE PRECURSORS

In [3], Friedrich Paschen described the theory which allows
to determine the Vb voltage corresponding to the initiation of
phenomena leading to the electrical breakdown of a motionless
gas located between two plane electrodes. This breakdown
voltage is governed by [4]:

Vb =
B pd

ln(Apd)− ln[ln(1 + 1
γse

)]
(1)

where p is the pressure (in Torr), d is the distance (in cm)
between either the electrodes or the insulation layers if any, γse
is the Townsend secondary electron emission coefficient and
A and B are coefficients which depend on the considered gas
and temperature [3,6]. Then, it is possible to plot the so-called
Paschen’s curve Vb = f(d) (Fig. 1).
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Fig. 1. Paschen’s curve for air at ambient pressure and temperature

This curve can be used as a criteria for the determination of
the PDIV [2,5,6]. Indeed, let’s consider a point, noted M , of
coordinates (des, Ves) where des is the distance between the two
insulation layers and Ves = |Ve − Vs| (Fig. 2a). Then, there are
three possibilities:

1) M is located below the curve (M1 in Fig. 1), which
means that no PD appears.
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2) M is located above the curve (M2 in the red zone in
Fig. 1), which means that PDs will appear.

3) M is located on the curve (M3 in Fig. 1), which means
that the PDIV is equal to the supply voltage applied to
the electrodes.

As previously stated, this theory has been established
in [3] from two plane electrodes (Fig. 2a), which implies
that the electric field between them is homogeneous. In
consequence, in such a configuration, both Ves and des are
easy to determine. This theory can still be applied to other
electrodes shapes [2,5,6], such as circular ones (Fig. 2b).
Indeed, PDs appear in areas presenting very high electric
field levels inside very small gaps between the electrodes, like
between two adjacent turns of a coil for example. For this
reason, even if the field is non-homogeneous in this case, the
dimensions of considered geometries are such that the electric
field along a field line can be considered as uniform, on one
hand, and those field lines bending radii are very small, on the
other hand, which means that all the assumptions made for
rectangular shaped electrodes cases are still valid for circular
shaped electrodes cases. Nevertheless, in the latter case, both
Ves and des, which is the length of a curved field line (Fig. 2b),
are impossible to determine experimentally.
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Fig. 2. Field lines between two insulated electrodes

III. USING BOTH ELECTROSTATIC DUAL FORMULATIONS
FOR THE DETERMINATION OF VB AND d

An electrostatic problem in a bounded domain Ω ∈ R3, of
boundary Γ = Γe ∪ Γd, is described by the electric field e
and the electric flux density d, governed by the curl and
div equations respectively, and related to each other by a
constitutive law as follows:

curl e = 0 (2a)
div d = ρ (2b)
d = ε e (2c)

n× e|Γe = 0 (2d)
n · d|Γd = 0 (2e)

where n is the unit normal vector exterior to Ω, ρ is the
charge density, ε is the electric permittivity. Ω is composed
of conducting and nonconducting parts noted Ωc and ΩC

c
respectively, with Ω = Ωc ∪ ΩC

c . Source parts and dielectric
parts belong to Ωc and ΩC

c respectively.
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Fig. 3. Tonti diagrams relative to electrostatic fields

System (2) can be solved by strongly verifying either (2a)
or (2b) and then weakly solving the other one. That way,
depending on which relation is strongly verified, the two
dual formulations can be established. The scalar potential (v)
formulation, which allows to strongly verify (2a), is obtained
by working with the electric field e.

div(ε grad v) = ρ (3)

The vector potential formulations is obtained by working
with the electric flux density d. In this case, the approach
is a little bit different since d is not divergence-free in Ωc.
Then, in ΩC

c , a source field ds ensuring div ds = ρ has to
be introduced [8]. The associated reaction field can thus be
expressed as the curl of an electric vector potential u and then
the electric flux density becomes d = ds + curl u. Combining
this relation with (2c) and reporting the result in (2a):

curl(ε−1ds) + curl(ε−1curl u) = ρ (4)

Note that the charge density being a surface one, with zero
field in Ωc, (3) and (4) are to be solved in ΩC

c , where ρ = 0.
Since we have two formulations, the question is: which

one to use for the determination of Ves and des? Actually, the
answer to this question can be found in Tonti diagrams (Fig. 3).
Fig. 3a shows that determining Ves is straightforward from v
using the scalar potential formulation. Nevertheless, it does
not allow for field lines distribution determination without
performing an additional post-treatment from the electric
field distribution. On the other hand, Fig. 3b shows that the
vector potential formulation allows to access to the field lines
distribution. Indeed, in 2D, u = u z where z is the unit vector
perpendicular to the studied plane. Then, the electric field can
be written as e = ε−1curl u = ε−1(grad u)×z which implies
that the field lines are the iso-u lines. Moreover, the vector
potential formulation also allows to compute Ves from the
electric field by means of its line integral along the considered
field line

∫ e
s e ·dl. Nevertheless, as previously stated, (4) does

not allow to strongly verify (2a), which means that the line
integral of e can suffer from numerical errors.

For all these reasons, as well as due to their
complementarity [9], the approach of using the dual
formulations is to be prefered. Then, the determination of the
PDIV consists in following these steps:

• For the supply voltage applied to the electrodes
|V2 − V1| = 1 V, perform an electrostatic finite element
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analysis using (4) in order to compute the des length of
each of a set of electric field lines in the air parts of ΩC

c .
• For the same supply voltage and on the same mesh,

perform an electrostatic finite element analysis using (3)
in order to compute Ves.

• Plot Ves = g(des) and the Paschen’s curve Vb = f(des)
in the same coordinate system. Due to the low supply
voltage, the curve g is way below f at this step.

• Taking advantage of the fact that the problem is linear,
compute the scaling factor to apply to the supply voltage
that leads to one of the computed Ves to match Vb. In
other words, compute the scaling factor leading to the
two curves f and g to touch each other.

Following this procedure, and since the original supply voltage
was intentionally chosen equal to 1 V, the PDIV is equal to
the computed scaling factor.

IV. APPLICATION EXAMPLES

A. Pair of twisted wires

The first application example is a pair of identical twisted
wires with a diameter of 1.25 mm. The thickness and the
relative permittivity of the insulation layers are 60 µm and
3.4 respectively (Fig. 4). This testing sample is used for
standardized PD measurements (IEC60270 and IEC60851-5).
The measured PDIV, obtained according to the procedure
described in IEC60270, is equal to 920 V. Fig. 5 presents the
curve Ves = g(des) obtained when Ves is computed using the
procedure described in the previous Section, i.e. using dual
formulations. As a comparison, this figure also presents the
curve obtained when only the vector potential formulation is
used, which means Ves is computed using the line integral
of the electric field, i.e. Ves =

∫ e
s e · dl. Figure 5 shows

that both methods lead to close values of Ves matching the
Paschen’s curve. This value is 427 V for the dual formulations
procedure and is 447 V for the line integral from the vector

Fig. 4. Field lines distribution in the air surrounding a pair of twisted wires.
(left) zoom on the conductors (right) zoom on the critical field line.
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Fig. 5. PDIV determination for a standardized pair of twisted wires

potential computation method, which correspond to PDIVs
equal to 937 V and 944 V respectively. Both values are in very
good agreement with the measured value since the error is less
than 3 %. Nevertheless, the line integral method leads to some
numerical errors on the curve presented in Fig. 5 which are
due to the fact that the vector potential formulation (4) does
not allow to strongly verify (2a). As an illustration, the field
lines along which PDs are expected to appear is presented in
Fig. 4.

B. Wire wound around on a grounded hollow tube

The second application example is also usually used for
standardized PD measurements. It consists of a wire with a
diameter of 1.25 mm wound around a hollow pipe which is
grounded (Fig. 6). The thickness and the relative permittivity
of the insulation layers are 60 µm and 3.4 respectively. It is an
axisymmetric problem that can be solved in 2D. The measured
PDIV is equal to 738 V (Fig. 7).

Fig. 6. Field lines distribution in the air surrounding the wire wound around
a grounded hollow tube. (left) zoom on the conductor (right) zoom on the
critical field line.
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Fig. 7. Energy and PDIV as functions of the number of nodes in the mesh
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Fig. 8. PDIV determination for a wire wound around a grounded hollow tube

For this study, several meshes, from relatively coarse to very
thin ones, were used in order to evaluate the robustness of both
the dual formulations and the line integral methods. Fig. 7
presents both the energy and the PDIV as functions of the
number of nodes in the used mesh. The energy curve shows
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that using a mesh of more than 253 000 nodes lead to a gap
between the two formulations is less than 1 %, which means
that both computation can be considered almost equivalent [9].
Nevertheless, this figure also shows that, for a given mesh
size, the dual formulations procedure provides the best PDIV
evaluation. The reason of it is still to be found in the presence
of numerical errors in the line integral due to (4) not strongly
verifying (2a) as illustrate in Fig. 8.In this case, the differences
with respect to the measured PDIV are 2.8 % and 9.4 % for
the dual formulations procedure and for the line integral from
the vector potential computation method respectively. As an
illustration, the field lines along which PDs are expected to
appear is presented in Fig. 6.

C. Busbar test piece

The last application example is a busbar test piece (Fig. 9
and 10). It is composed of two conducting plates of 6 cm by
11 cm with a thickness of 1.3 mm. They are insulated from
each other by a PET film with a thickness of 190 µm and with
a relative permittivity of 4.5. The measured PDIV is equal
to 1718 V (Fig .11).

Fig. 9. Busbar test piece

Fig. 10. Field lines distribution in the air surrounding a busbar test piece.
(left) zoom on the conductors (right) zoom on the critical field line.
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Fig. 11. Energy and PDIV as functions of the number of nodes in the mesh

Several meshes are also used in this case. Fig. 11 show that
no matter the mesh, the gap between the two formulations in
terms of energy is less than 0.1 %. Despite this tiny gap, the
same conclusion as the one stated in the previous case can be
made. No matter the mesh, the dual formulations procedure
always provides the best PDIV determination. Moreover, the
PDIV obtained with this procedure is almost the same with
the meshes composed of 552 000 and 1 150 000 nodes. Again,
the same conclusion on numerical errors can be stated from

Fig. 12. When computations are performed on the mesh
composed of 1 150 000, the differences with respect to the
measured PDIV are 19 % and 24 % for the dual formulations
procedure and for the line integral from the vector potential
computation method respectively.

Note that this application example is more critical regarding
the assumptions mentioned in Section II, especially the one
consisting in considering that the field lines are straight.
Nevertheless, accounting for this limit and all the uncertainties
belonging to the geometry or materials, the dual formulation
procedure still provides usable predetermined PDIV.
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Fig. 12. PDIV determination for a busbar test piece

V. CONCLUSION

In this paper, a numerical method allowing to determine
a priori the PDIV in the case of devices with constraining
geometries. This method, based on the Paschen’s theory and
the use of both dual electrostatic formulations, was tested on
three application examples. In all three cases, the computed
PDIV was in good accordance with the measured one, which
makes the proposed method a promising approach for the
study of windings or busbars.
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